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Abstract 
Simultaneous imaging of various facets of intact biological systems across multiple 

spatiotemporal scales would be an invaluable tool in biomedicine. However, conventional 

imaging modalities have stark tradeoffs precluding the fulfilment of all functional requirements. 

Here we propose the refractive index (RI), an intrinsic quantity governing light-matter 

interaction, as a means for such measurement. We show that major endogenous subcellular 

structures, which are conventionally accessed via exogenous fluorescence labeling, are 

encoded in 3D RI tomograms. We decode this information in a data-driven manner, thereby 

achieving multiplexed microtomography. This approach inherits the advantages of both high-

specificity fluorescence imaging and label-free RI imaging. The performance, reliability, and 

scalability of this technology have been extensively characterized, and its application within 

single-cell profiling at unprecedented scales has been demonstrated. 
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Introduction  

 

Imaging is the process of mapping a variable, called contrast, in space and time. The 

tradeoffs between different contrast mechanisms fundamentally determine the distinct 

characteristics of each imaging modality (Mertz, 2019). In biomedicine, fluorescence 

(FL) has been a canonical imaging contrast over several decades for visualizing 

specific elements within biological systems, powered by chemical, immunological, and 

genetic labeling strategies (Lichtman and Conchello, 2005). Despite the excellent 

biochemical specificity, however, a number of drawbacks are associated with FL: 

photobleaching and phototoxicity (limited temporal window), spectral overlap (limited 

multiplexing), variability of labeling quality (limited reproducibility and potential bias), 

and exogenous labeling-induced side effects (potential perturbation of endogenous 

biology). 

 

Recent advances in machine learning triggered an interesting approach, known as 

cross-modality inference or in silico labeling. This approach achieves FL contrast by 

measuring another contrast with complementary characteristics (Christiansen et al., 

2018; Nygate et al., 2020; Ounkomol et al., 2018; Rivenson et al., 2019). Most notably, 

the paring of images from simultaneous FL and bright-field (BF) microscopy, based on 

light absorption contrast, was used to train neural networks to convert BF images into 

FL images (Christiansen et al., 2018; Ounkomol et al., 2018) (“BF2FL”). Despite the 

ingenuity of this method enabling computational staining of unlabeled samples, the 

minimal absorption at the cellular and subcellular levels raises a fundamental question 

about BF2FL: is light absorption an optimal contrast mechanism for cross-modality 

inference? 

 

An alternative approach utilizes optical phase delay as the measured contrast (Nygate 

et al., 2020; Rivenson et al., 2019). Unlike absorption, phase distributions have a 

significant contrast in space even at the subcellular level, and forms the basis of 

phase-contrast microscopy. Emerging quantitative phase imaging (QPI) technologies 

measure the phase images of unlabeled samples with high sensitivity (Park et al., 

2018), which could be paired with FL images for cross-modality inference. Although 
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the improved contrast mechanism is expected to facilitate robust performance, so far, 

this method has not been extended beyond 2D imaging, which has significant 

limitations for the detailed characterization of subcellular dynamics. 

 

In this study, we report a new technology for data-driven multiplexed microtomography 

of endogenous subcellular structures and dynamics across various spatiotemporal 

scales. We fundamentally improved the cross-modality inference framework by 

introducing the contrast mechanism of the 3D refractive index (RI), which is an 

endogenous quantity governing light-matter interaction including both absorption and 

phase delay. The diffraction-limited 3D RI tomograms, measured by high-speed multi-

angle holography (or holotomography), enabled the scalable inference of multiple 3D 

FL tomograms for the corresponding subcellular targets (“RI2FL”). Importantly, we 

found that RI2FL generalizes across cell types, outperforming BF2FL in all quantitative 

measures. Moreover, Bayesian uncertainty quantification schemes provided measure 

of spatiotemporal reliability. We demonstrated a proof-of-concept application of RI2FL 

in cell biology and high-throughput screening via unprecedented single-cell profiling. 

 

Results 

 

We sought to determine the quantitative relations linking RI distribution to subcellular 

targets in a data-driven manner by training 3D convolutional neural networks to 

translate a RI tomogram into FL tomograms corresponding to multiple subcellular 

targets (Figure 1A). We first created a large-scale dataset consisting of ~1,600 3D RI 

tomograms (at 532 nm wavelength) and the corresponding 3D FL tomograms from 6 

subcellular targets (actin, mitochondria, lipid droplets, plasma membranes, nuclei, and 

nucleoli) and 6 eukaryotic cell types (NIH3T3, COS-7, HEK 293, HeLa, MDA-MB-231, 

and astrocyte) using standardized holotomographic microscopes equipped with FL 

channels (Kim et al., 2017) (Methods). To train the networks, we used a subset of 

NIH3T3 tomograms only and held out all other data, in order to test the generalization 

of the discovered RI-target relations across cell types (Table S1). 
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The distinct nature of RI and FL presents several experimental and computational 

challenges. Firstly, while RI is an absolute and unbiased quantity independent of the 

experimenter or instrument, FL signals are heavily dependent on labeling quality, 

illumination power, and exposure time (Lichtman and Conchello, 2005; Mertz, 2019). 

To amend this, we implemented tight quality control procedures carried out by trained 

cell biologists throughout the data acquisition and processing pipeline, thereby 

establishing ground truth subcellular targets defined by 3D FL (Methods). Secondly, 

the drastic differences between the FL channels require the painstaking optimization 

of individual target-specific network architectures. We instead utilized a single, highly 

flexible network architecture for all subcellular targets, powered by a large-scale neural 

architecture search, which was also potentially advantageous for an extension to 

additional subcellular targets. (Figure S1). Thirdly, high-resolution 3D RI tomograms 

have enormous memory demands infeasible for most GPUs. To avoid this, we 

assumed that the target-specific patterns could be identified from local (~10 µm) 

distribution of RI, and implemented patch-based parallel processing (Figure S2). With 

these strategies in hand, we successfully trained the networks for RI2FL inference 

(Figure 1B, Figure S3, and Video S1). 

 

We characterized the performance of RI2FL by quantitatively comparing the inferred 

and ground truth FL in the held-out dataset. The prediction accuracy across cell types 

is illustrated in Figure 2A. Strikingly, not only NIH3T3 cells but also all other cell types, 

which were never presented to the networks during training, showed high 

performance. In particular, an excellent accuracy for astrocytes, which were obtained 

from primary cultures unlike other immortalized cell lines, strongly supported that 

RI2FL captured fundamental RI-target relations generalizing across cell types. The 

per-target performance is presented in Figure 2B. While the high accuracy for nuclei 

and lipid droplets is consistent with the high RI contrast of these targets (Lee et al., 

2019; Park et al., 2020), all the remaining targets, which are hardly recognizable via 

the visual inspection of RI tomograms, showed comparable performances. In addition, 

in order to rule out the labeling-induced bias of the dataset (which is unlikely due to 

the low density of fluorophores (Yoon et al., 2018)), we performed RI2FL with 

unstained samples, and then stained the samples to obtain the corresponding FL 

ground truth, which showed consistent results (Figure S4). Together, our results 
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confirmed the seamless identification of endogenous subcellular targets by RI2FL (see 

Table S2 for additional performance metrics). 

 

Next we quantified the advantage of RI over BF (Christiansen et al., 2018; Ounkomol 

et al., 2018). Because RI includes both absorption and phase delay information, one 

can reconstruct stacked BF intensity images from RI tomograms using Fourier optics 

(Mertz, 2019) (Methods). We trained BF2FL networks with the reconstructed BF 

images and the corresponding FL tomograms (Figure S3), and compared the 

performances of BF2FL and RI2FL (Figure 2C). Clearly, there was a considerable 

margin between the two methods. This is not surprising because the optical 

information in stacked BF images is only a tiny subset of the full RI information, 

particularly in cellular systems where phase delay dominates over absorption (Park et 

al., 2018). 

 

Despite the exciting opportunities provided by RI2FL in addition to previous cross-

modality inference approaches, the extent to which we can “trust” the model 

predictions in space and time has not been clear. We aimed to elucidate this by 

applying the recent advances in Bayesian deep learning (Gal and Ghahramani, 2016; 

Wang et al., 2019). To this end, we quantified the uncertainty maps to guide the end-

users with “error bars” accompanying the FL predictions. Intuitively, uncertainty can 

be estimated as the voxel-wise variability of predictions upon perturbation of the data 

or model (Figure S5). An example demonstrating uncertainty quantification in RI2FL 

is presented in Figure 2D (also see Video S2). During animal cell division, the nuclear 

envelope breaks down to facilitate the separation of aligned chromosomes by the 

spindle apparatus. This specific event, which is rare in the training dataset, makes 

nuclei prediction by RI2FL particularly challenging around the periphery of the nuclei. 

The specific increase in uncertainty at this stage (red arrow) casts a cautionary signal 

for downstream analyses. As such, uncertainty quantification can provide 

spatiotemporal reliability measures for the end-users, on top of the holistic accuracy 

metrics. The uncertainty maps can also guide data collection to strengthen the model. 
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RI2FL is intrinsically scalable in space and time because the RI-target relations are 

shift- and time-invariant. The trained models, together with the patch-based 

processing (Figure S2), can be readily applied to the large field-of-view (FOV) RI 

tomograms obtained by image stitching or high space-bandwidth product techniques 

(Baek et al., 2019; Zheng et al., 2013). We successfully operated RI2FL for tomograms 

with large FOVs up to 480´480´13 µm3 without trading off the high spatial resolution 

(Figure 2E). In addition, RI2FL can be sequentially applied to time-lapse large-FOV 

tomograms, as we demonstrated in the recordings up to 72 hours (Figure 2F and 

Video S3). Importantly, there is no theoretical upper limit in the spatial and temporal 

scales by virtue of holotomography that is free from photobleaching and phototoxicity; 

the only practical limitations are computing time and memory, which linearly scale with 

the data dimensions. 

 

One exciting application of RI2FL is time-resolved hybrid single-cell profiling for use in 

cell biology and high-throughput screening. The image-based profiling of single cells 

with standardized data acquisition and interpretable feature extraction has provided 

insights into new phenotypes and cellular heterogeneity, thereby complementing 

genomics (e.g., Cell Painting with CellProfiler (Bray et al., 2016)). While this capability 

is critically dependent on highly multiplexed FL imaging, the spectral overlap issue 

limits such measurement to fixed cells via multi-round imaging. On the other hand, 

multiplexed microtomography with RI2FL in intact living cells allows for the time-

resolved profiling of single-cell phenotypes. Furthermore, RI contributes additional 

information orthogonal to FL. Traditionally, RI has been a uniquely suitable modality 

for ultrasensitive quantification of subcellular mass (Barer, 1953), which is particularly 

relevant for the study of cell cycle and growth (Cooper et al., 2013; Mir et al., 2011). 

This quantitative nature of RI can be synergistically combined with the specificity of FL 

to access new dimensions for single-cell profiling (Figure 3A; Methods). 

 

For a sanity check, we profiled ~4,000 single cells detected in the dataset with the six 

cell types. Our fully automated pipeline robustly segmented individual cells and 

extracted a variety of interpretable features defined by morphology, FL, RI, or their 

combinations (Table S3). We defined a minimally redundant set of 65 features 
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spanning the representative facets of the single cells, while one can readily define 

thousands of single-cell features with the current level of multiplexing (Bray et al., 

2016). The unsupervised low-dimensional embedding of the single-cell features 

revealed an intriguing variability across and within the cell types (McInnes et al., 2018) 

(Figure 3B). Three exemplary features underlying this variability are shown in Figure 

3C. Astrocytes generally had large cell volumes, consistent with their complex stellar 

morphology. NIH3T3 cells, which are fibroblasts with characteristic actin structures, 

showed a high actin density. HEK 293 cells had a high mass density, which can be 

attributed to the high rates of protein production by this cell type. Notably, for these 

three, as well as all the other features, an enormous variability was observed within 

each cell type, which is partially dependent on the cell cycle, making single-cell 

profiling attractive. 

 

Next, we proceeded to time-resolved interrogations. For proof-of-concept, we carried 

out a series of perturbation experiments. Firstly, NIH3T3 fibroblasts were stimulated 

with platelet-derived growth factor (PDGF) to promote cell growth in a physiological 

manner (Martin et al., 2014), while observing the cells with a high volume rate (0.8 

sec/volume) exploiting the high speed of holotomography without photobleaching and 

phototoxicity. The inferred FL channels clearly visualized lamellipodia formation (white 

arrows) and actin reorganization in 3D at a time scale of minutes (Figure 3D and Video 

S4). The time-resolved profiling was able to measure the fast dynamics of the features 

in response to PDGF stimulation (Figure 3E). This measurement represents a new 

regime in cell biology that has been previously inaccessible due to technical 

limitations. The temporal resolution can be readily improved beyond the video rate 

(Kim et al., 2013). 

 

To determine the roles of the distinct signaling pathways, we specifically targeted 

RhoA, a Rho family small GTPase downstream of PDGF, using chemogenetics (Inoue 

et al., 2005). The rapamycin-induced formation of the FKBP-FRB-rapamycin complex 

recruited constitutively active RhoA to the plasma membrane (Figure 3F and Video 

S5). Unlike PDGF, RhoA stimulation specifically promoted the formation of actin stress 

fibers, resulting in characteristic cell morphology. Consistently, only a subset of the 
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features illustrated in Figure 3E showed similar dynamics to PDGF stimulation (Figure 

3G). The whole variety of features, including those based on multiple FL channels, 

may be relevant for studying inter-organelle interactions during these cellular 

responses. Taken together, our results demonstrate that RI2FL provides a powerful 

means by which to quantitatively profile single living cells via simultaneous access to 

a variety of information. 

 

Discussion 

 

In summary, we developed and extensively characterized RI2FL, a scalable 

framework with which to infer endogenous subcellular structures and dynamics from 

3D RI tomograms. The high performance of this approach was found to result from 

the nature of RI, which encompasses both absorption and phase delay information. 

Together with the uncertainty quantification schemes to measure the prediction 

reliability in space and time, RI2FL represents a powerful platform technology for cell 

biology and high-throughput screening, as demonstrated by its capacity for time-

resolved single-cell profiling. 

 

The high-dimensional observation and perturbation of single-cell dynamics at scale 

would facilitate the systems-level understanding of cellular behavior and decision-

making. So far, most studies in systems biology have been relying on snapshot (e.g., 

transcriptomics or multi-round imaging) or low-dimensional time-series (e.g., one or 

two fluorescence biosensors) measurement of cellular states, which had significant 

limitations to infer the network-based logic governing cellular dynamics. With the high-

dimensional time-series measurement (or single-cell state space trajectories) in hand, 

one could directly infer the underlying dynamical systems at the single-cell level, 

analogously to systems neuroscience (Pandarinath et al., 2018). We are currently 

applying this approach to search for the dynamical phenotypes specific to clinically-

relevant cellular malfunctions (e.g., cancer) or to high-efficacy drug actions (Topol, 

2019). 
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We believe that this study, at least partly, addresses a long-sought goal of the label-

free imaging community: biochemical specificity by RI. While the overlapping RI values 

of many subcellular structures have precluded RI-based imaging beyond nuclei and 

lipid droplets (Figure S6), we previously proposed that the spatial distribution of RI 

may encode enough information to infer these structures (Jo et al., 2019), as 

experimentally demonstrated in the present study. We look forward to extending this 

technology to tissues and ultimately to in vivo applications, synergizing with new 

approaches to 3D QPI in highly scattering systems (Chen et al., 2020; Lim et al., 

2019). 

 

An important next step would be reverse-engineering the trained models to interpret 

the discovered RI-target relations (Doshi-Velez and Kim, 2017; Sussillo and Barak, 

2013) (Figure S7). At the moment, the feasibility of RI2FL for a new target can be 

tested only empirically by target-by-target training and characterization. The 

interpretability might reveal general principles governing light-matter interaction in 

biological systems and clarify the fundamental limits of RI2FL as well as other cross-

modality approaches. 
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Methods 
 
Sample preparation 
 
NIH3T3 (ATCC CRL-1658), COS-7 (ATCC CRL-1651), HEK 293 (ATCC CRL-1573), 
and HeLa (ATCC CCL-2) cells, as well as primary-cultured astrocytes, were 
maintained in Dulbecco’s modified Eagle’s medium (DMEM; ATCC 30-2002) 
supplemented with 10% fetal bovine serum (Life Technologies) and 100 U/mL 
penicillin-streptomycin at 37°C in a 5% CO2 incubator. For MDA-MB-231 (ATCC HTB-
26) cells, DMEM was replaced with DMEM/F12 medium (Gibco). Astrocytes were 
obtained by cortical and hippocampal dissection of embryos from C57BL/6J mice 
(Jackson Laboratory), followed by astrocyte enrichment with a glial culture medium. 
All animal procedures were performed according to the guidelines of the Animal Care 
and Use Committee at KAIST.  
 
The fluorescence labeling strategies were as follows. Actin was stained by phalloidin 
(A12379; Invitrogen) or genetically labeled by expressing mCherry-Lifeact 
(constructed by inserting the F-actin peptide-encoding sequence into the mCherry-C1 
vector). Mitochondria were stained by MitoTracker Red CMXRos (M7512; Invitrogen). 
Lipid droplets were stained by LipiDye (FDV-0010; Funakoshi). Plasma membranes 
were stained by CellMask (C10046; Invitrogen) or genetically labeled by expressing 
GFP-MEM. Nuclei were stained by Hoechst 33342 (H3570; Life Technologies). Nuclei 
were genetically labeled by expressing FBL-mCherry. For the chemogenetic 
stimulation experiment, Lyn-FRB and YFP-FKBP-RhoA(CA) were co-expressed in 
NIH3T3 cells. All genetic labeling processes were driven by CMV promoters. The cells 
were transfected via electroporation (Neon Transfection System; Invitrogen) under the 
following conditions: voltage, 1,280 V; pulse width, 20 ms; number of pulses, 2. 
 
Holotomography-optimized cell culture dishes (Tomodish; Tomocube Inc.) were 
seeded with approximately 450,000 cells per dish. The culture dishes were coated 
with 0.01% poly-D-lysine for 15 minutes, washed three times with distilled water, and 
fully dried before usage.  
 
Imaging and perturbation 
 
Holotomography was conducted using standardized microscopes (HT-2; Tomocube 
Inc.) implementing optical diffraction tomography (ODT) to solve the RI-thickness 
coupling problem in phase images. The principles and implementations of ODT have 
been extensively reviewed elsewhere (Park et al., 2018). The specific implementation 
used here was based on holographic field retrieval with multi-angle Mach-Zehnder 
interferometry using coherent 532 nm laser light steered by a digital micromirror device. 
The 3D RI tomograms were reconstructed by mapping the measured field information 
to the 3D Fourier space and filling the missing cone using the non-negativity-
constrained iterative algorithm. The acquisition time for a single volume was less than 
a second. In addition, we optionally utilized the three FL channels to measure the 
ground truth 3D FL tomograms using stacked widefield acquisition with a ~0.3 µm step 
size followed by 3D deconvolution (Kim et al., 2017) (excitation center wavelengths: 
385 nm, 470 nm, and 565 nm). Excitation light intensity and exposure time were 
manually adjusted by trained cell biologists to clearly visualize the target structures. 
For the perturbation experiments, the concentrations of PDGF (PDGF-BB, PeproTech) 
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and rapamycin (Calbiocam) in the imaging medium were 10 nM and 0.5 µM, 
respectively. 
 
Data processing 
 
All tomograms were resized to have a voxel size of 0.15´0.15´0.2 µm3 before 
inference. The default FOV used in training and evaluation was 512´512´64 voxels, 
which corresponds to a volume of 76.8´76.8´12.8 µm3 volume. This volume was then 
further subdivided for patched-based processing. The large FOV RI tomograms were 
obtained by offline 3D stitching after the rapid acquisition of slightly overlapping tiles 
of FOVs. Specifically, we estimated the tile-to-tile displacement using the phase 
correlation of the single-FOV RI tomograms, and the overlapping volumes were 
processed by image blending. The RI values were clipped into the range between 
1.337 and 1.390. While we targeted the identical FOV for the RI and FL tomograms 
by sharing most optical path, we noticed a small axial discrepancy due to the intrinsic 
differences between the modalities (e.g., aberration and latency). In order to secure 
voxel-wise correspondence to facilitate supervised learning and evaluation, we 
estimated and corrected this discrepancy using the axial cross-correlation of the RI 
and FL tomograms. All the tomograms were manually inspected after the registration 
to be included in the dataset. It is worth noting that this procedure is not necessary 
after training and evaluation. 
 
To reconstruct the stacked BF intensity images corresponding to the RI tomograms, 
we took advantage of the full optical field information measured by multi-angle 
interferometry (Mertz, 2019; Park et al., 2018). We first mapped the fields to a 2D 
Fourier space corresponding to the focal plane, thereby obtaining an amplitude and 
phase image with suppressed coherent noise due to the synthetic aperture. This 2D 
field was numerically refocused by convolving the propagation kernel with a varying 
distance of propagation. The BF intensity at each plane was calculated as the square 
of the amplitude image. We used MATLAB (MathWorks) to implement the BF 
reconstruction script. 
 
Model design, training, and inference 
 
We used a single network architecture for all subcellular targets in order to avoid 
optimizing individual target-specific architectures. We automatically designed a highly 
flexible architecture through a scalable neural architecture search (Kim et al., 2019) 
(SCNAS). Specifically, SCNAS utilizes a stochastic sampling algorithm in a gradient-
based bi-level optimization framework to jointly search for the optimal network 
parameters at multiple levels with generic 3D medical imaging datasets. As a result, a 
U-Net-like encoder-decoder structure with skip connections was discovered (Figure 
S1). At the end of every micro-level architecture, known as a motif, we added a dropout 
operation. The network parameters were as follows: activation function, leaky ReLU; 
normalization function, instance normalization; size of initial feature map, 12; number 
of layers, 8; feature map multiplier, 3. 
 
To promote precise inference of both the large- and small-scale structures in the FL 
tomograms, for network training, we used a loss function, 𝑙, with both mean squared 
error (MSE), 𝑙"#$ , and gradient difference loss (GDL),  𝑙%&' , terms: 𝑙 = 𝑙"#$ + 𝑙%&' . 
Each term is defined as follows: 
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𝑙"#$ = 𝔼+,𝑦 − 𝑦
^
,
0
1 

𝑙%&' = 𝔼+,ℎ(𝑦) − ℎ 5𝑦
^
6,
0
1 

where 𝑦 and 𝑦
^
 are the ground truth and inferred FL channel, respectively, ℎ(·) is the 

3D Sobel operator, and 𝔼(·) is the expectation over voxels and operations. 
 
To train the networks, we used an Adam optimizer with an initial learning rate of 0.001, 
where the learning rate was reduced by a factor of 5 if there was no improvement in 
the validation metrics for 30 epochs. Randomly sampled parameters were used for 
data augmentation techniques such as flip, rotation, cropping, elastic deformation, and 
gamma correction. Hyperparameter optimization was based on a grid search 
algorithm whose search space consisted of hyperparameter combinations with similar 
memory and FLOPS requirements (Tan and Le, 2019). We used PyTorch in Python 3 
to implement the deep learning pipeline. 
 
Due to the memory constraints of GPU computing, we trained the networks using 3D 
patches instead of the whole tomograms. During training, the patches were randomly 
cropped from regions with registered FL data. For post-training inference, an RI 
tomogram was symmetrically padded, divided into overlapping patches with regular 
spacing, individually processed by the networks, and then stitched into whole FL 
tomograms with a spline kernel-based blending (Figure S2). The default size of a patch 
was 256´256´64 voxels. 
 
Performance and uncertainty quantification 
 
Three performance metrics were used, namely peak signal-to-noise ratio (PSNR), 
Pearson correlation coefficient (PCC), and structural similarity index (SSIM). Each 
metric is defined as follows: 

𝑃𝑆𝑁𝑅 5𝑦, 𝑦
^
6 = 10 · logBC

1
𝑙"#$

 

𝑃𝐶𝐶 5𝑦, 𝑦
^
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𝜎
FF
^

𝜎F𝜎F^
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^
6 =

52𝜇F𝜇F^ + 𝑐B6 52𝜎FF^ + 𝑐06

5𝜇F0 + 𝜇F^
0 + 𝑐B6 5𝜎F0 + 𝜎F^
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where 𝜇 and 𝜎 are the mean and standard deviation, respectively, covariance 
𝜎
FF
^ = 𝔼 LM𝑦 − 𝜇FN 5𝑦

^
− 𝜇

F
^6O , 𝑐B = 0. 010 , and 𝑐0 = 0. 030  by default. Following 

convention, we used a non-zero minimum standard deviation for PCC and a 3D 
Gaussian kernel with a size of 7 voxels for SSIM. The metrics were complementary to 
each other. PSNR is relevant for MSE, but suffers from poor perceptual performance 
and noise vulnerability. PCC has a decent perceptual performance, but hardly 
captures local differences. SSIM, which is relatively complicated, is a comprehensive 
metric designed to overcome the shortcomings of PSNR or PCC. SSIM can be 
factored into three terms called luminance, contrast, and structure. The luminance 
term is similar to MSE but uses mean values instead of voxel values. The contrast 
term quantifies the similarity of high-frequency components relevant to the GDL. The 
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structure term is nearly identical to PCC. Various quantifications of the three metrics 
are shown in Table S2. 
 
Following recent Bayesian deep learning approaches for computer vision, two types 
of uncertainty were considered, namely data (aleatoric) and model (epistemic) 
uncertainty. While the precise origins and mathematical derivations have been 
extensively reviewed elsewhere (Kendall and Gal, 2017), here, we describe the 
uncertainty quantification schemes well-suited for RI2FL. Data uncertainty was 
quantified by test-time augmentation (Wang et al., 2019) with image transforms, such 
as flip and rotation, which was compatible with the aforementioned loss function. 
Model uncertainty was quantified using a Monte Carlo dropout (Gal and Ghahramani, 
2016). In both cases, we quantified the mean and standard deviation in the FL output 
space upon the perturbation of either the data or model. The two calculated standard 
deviation maps defined the data and model uncertainty. The average of the two mean 
prediction maps defined the final inferred FL, which slightly increased the performance 
as well. We did not apply these schemes to the stitching or time-series (except for the 
cell division example) data due to high computational costs. 
 
Single-cell profiling 
 
Upon inference with RI2FL, a variety of open-source computational tools developed 
for FL data could be readily utilized. To segment the single cells and nuclei in the 
tomograms, we first trained a random forest voxel classifier, provided by Ilastik (Berg 
et al., 2019), based on the inferred nuclei and plasma membranes channels. The 
voxels were sparsely annotated as background, cytoplasm, or nucleus for a handful 
of tomograms, and the trained classifier generated the voxel-wise class probability 
maps for the entire dataset. Then the single nuclei could be readily segmented by 
thresholding the nuclei probability. The tentative cells, obtained by thresholding the 
summation of the cytoplasm and nuclei probability, were segmented by marker-
controlled watershed segmentation, provided by CellProfiler (Bray et al., 2016), using 
the identified nuclei as segmentation markers. The segmentation performance was 
robust due to the high specificity of the inferred FL channels. 
 
We extracted a variety of single-cell features from the segmented single cell/nuclei 
volume masks, the additional inferred FL channels (actin, mitochondria, lipid droplets, 
and nucleoli), and the measured RI channel aligned in a common coordinate system. 
The calculation of the mass-related features was based on the well-characterized 
linear dependence of RI, 𝑛(𝑥, 𝑦, 𝑧), to the dry mass density, 𝐶(𝑥, 𝑦, 𝑧), for biological 
samples (Barer, 1953; Park et al., 2018): 𝑛(𝑥, 𝑦, 𝑧) = 𝑛U + 𝛼𝐶(𝑥, 𝑦, 𝑧), where 𝑛U and 
𝛼 are the RI of the imaging medium (𝑛U = 1.337 at l = 532 nm) and the RI increment 
(𝛼 = 0.190 mL/g at l = 532 nm), respectively. The mass density and actin density 
described in the main text indicate the cellular dry mass density and cytoplasmic actin 
mean, respectively, in Table S3. For the time-lapse experiments, we used the frame-
wise application of the segmentation and feature extraction procedures to quantify the 
feature dynamics. We used MATLAB (MathWorks) to implement the feature extraction 
script. 
 
Uniform manifold approximation and projection (UMAP), implemented in Python 3, 
was used for the unsupervised nonlinear embedding of the features for 2D 
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visualization (McInnes et al., 2018). All features were z-scored before UMAP, and the 
hyperparameters were as follows: minimum distance, 0.5; number of neighbors, 5. 
 
Data and code availability 
 
Data and materials availability: RI2FL source code and data are available at 
https://github.com/NySunShine/ri2fl. 
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Figure 1. Data-driven microtomography of multiple subcellular structures. (A) 
Concept of RI2FL. (B) Examples of RI2FL across cell types and subcellular targets. All 
bounding boxes represent a volume of 76.8 ´ 76.8 ´ 12.8 µm3. 
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Figure 2. Performance, reliability, and scalability. (A-C) RI2FL performance 
quantification across (A) cell types, (B) subcellular targets, and (C) methods. All quantifications 
were conducted on the held-out data. Mean±S.D.; further statistics are provided in Table S2. 
(D) Uncertainty quantification example. Top: The dynamics of cell division observed with time-
lapse RI tomograms. White arrows indicate the dividing cell and its daughter cells. Bottom: 
Corresponding nuclei inference and its data uncertainty maps. The red arrow highlights the 
larger uncertainty due to the putative breakdown of the nuclear envelope, which is specific to 
this cell state. The bounding boxes represent a volume of 49.2 ´ 49.2 ´ 12.8 µm3. (E) Scaling 
up RI2FL to large FOV tomograms exploiting the shift-invariance of the RI-target relations. 
The larger bounding boxes represent a volume of 480 ´ 480 ´ 13 µm3. (F) Scaling up RI2FL 
in space and time, further exploiting the time invariance of the RI-target relations. The 
bounding boxes represent a volume of 307´307´13 µm3. In (E and F), only four FL (actin, 
mitochondria, nuclei, and lipid droplets) channels are shown for visual clarity. 
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Figure 3. Application to single-cell profiling at unprecedented spatiotemporal 
scales. (A) Fully automated single-cell profiling pipeline based on RI2FL. The bounding 
boxes represent a volume of 76.8 ´ 76.8 ´ 12.8 µm3. (B) Unsupervised embedding of single 
cells based on the extracted single-cell features. (C) Visualization of three representative 
features mapped onto single cells. (D–G) Perturbation experiments with (D and E) growth 
factor and (F and G) chemogenetic stimulation. (D and F) Time-lapse RI2FL. RI and three FL 
(actin, nuclei, and plasma membranes) channels are shown. The bounding boxes represent 
a volume of (D) 76.8 ´ 55.4 ´ 12.8 µm3 and (F) 76.8 ´ 76.8 ´ 12.8 µm3. (E and G) The 
corresponding feature dynamics over time. Only three out of 65 features are shown for visual 
clarity. 
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Figure S1. Network architecture. We used a single encoder-decoder network, 
systematically discovered by SCNAS, for all subcellular targets. 
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Figure S2. Patch-based processing. An example inference from an RI tomogram to the 
corresponding actin tomogram is illustrated as a flow chart, highlighting the patch-based 
processing for GPU memory management. All images represent maximum intensity 
projections of 3D data. 
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Figure S3. Comparison between RI2FL and BF2FL. An example inference with ground 
truth actin tomogram is shown. Clearly, RI tomograms enable more accurate FL inference 
compared to BF stacks, as quantified in Figure 2C. The bounding boxes represent 
76.8´62.1´12.8 µm3 volumes corresponding to an identical FOV. 
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Figure S4. Comparison between pre- and post-staining data. In order to validate the 
inference of endogenous subcellular targets, we imaged identical cells before and after 
staining. The qualitative correspondence between the pre- and post-staining data, despite the 
irreducible discrepancy due to the temporal difference (from minutes to an hour) and fixation, 
further validates the successful operation of RI2FL in unlabeled cells. 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300392doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300392
http://creativecommons.org/licenses/by/4.0/


 
 
Figure S5. Uncertainty quantification schemes. (A) Data uncertainty and (B) model 
uncertainty quantifications were conducted by test-time augmentation and Monte Carlo 
dropout, respectively. All images represent maximum intensity projections of 3D data. 
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Figure S6. RI ranges of the subcellular targets. The target-specific RI ranges were 
estimated using the inferred FL data. For each FL channel, the voxels corresponding to the 
targets were determined by Otsu’s method. Mean±S.D.; the results were calculated from 703 
NIH3T3 tomograms. 
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Figure S7. Deep feature visualization. In order to facilitate interpreting the operation of 
the trained networks, feature map activations for a single input tomogram were visualized. (A) 
Average feature map at each layer. (B and C) Individual feature maps at the last layers of 
encoder (B) and decoder (C) parts of the network inferring plasma membranes. All images 
represent maximum intensity projections of 3D data. 
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Table S1. Dataset summary. 
 

(Number of Tomograms) Actin Mitochondria Lipid Droplets Plasma 
Membranes Nuclei Nucleoli Total 

Training NIH3T3 98 248 84 116 83 69 698 

Validation NIH3T3 10 10 7 10 5 5 47 

Test 

NIH3T3 11 10 7 10 5 5 48 

COS-7 65 104 - - 79 - 248 

HEK 293 3 55 - - 50  108 

HeLa 112 86 - - 20 45 263 

MDA-MB-231 - 62 - - 87 - 149 

Astrocyte - 14 - - 26 - 40 

Total 299 589 98 136 355 124 1,601 

 
  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.16.300392doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300392
http://creativecommons.org/licenses/by/4.0/


Table S2. Performance metrics. 
 

(SSIM, PSNR, PCC) Actin Mitochondria Lipid Droplets Plasma 
Membranes Nuclei Nucleoli Average 

BF2FL NIH3T3 
0.541 ± 0.040 

27.1 ± 0.9 
0.269 ± 0.113 

0.854 ± 0.043 
30.0 ± 1.2 

0.185 ± 0.030 

0.865 ± 0.021 
28.8 ± 0.7 

0.093 ± 0.042 

0.449 ± 0.101 
23.3 ± 1.0 

0.252 ± 0.105 

0.537 ± 0.059 
24.3 ± 0.9 

0.362 ± 0.189 

0.810 ± 0.143 
30.7 ± 1.4 

0.184 ± 0.115 

0.635 ± 0.186 
26.9 ± 2.9 

0.229 ± 0.130 

RI2FL 

NIH3T3 
0.935 ± 0.019 

35.9 ± 1.8 
0.804 ± 0.078 

0.951 ± 0.020 
36.2 ± 2.2 

0.734 ± 0.046 

0.988 ± 0.005 
43.8 ± 3.4 

0.893 ± 0.030 

0.924 ± 0.034 
34.3 ± 2.2 

0.936 ± 0.049 

0.986 ± 0.005 
38.7 ± 3.0 

0.958 ± 0.028 

0.918 ± 0.091 
37.7 ± 3.9 

0.755 ± 0.126 

0.947 ± 0.042 
37.3 ± 3.9 

0.841 ± 0.105 

COS-7 
0.811 ± 0.048 

28.1 ± 3.8 
0.448 ± 0.079 

0.867 ± 0.031 
32.2 ± 2.4 

0.447 ± 0.060 
- - 

0.878 ± 0.066 
26.6 ± 2.9 

0.693 ± 0.163 
- 

0.856 ± 0.056 
29.4 ± 3.9 

0.525 ± 0.157 

HEK 293 
0.831 ± 0.033 

28.7 ± 1.3 
0.525 ± 0.064 

0.755 ± 0.067 
27.6 ± 2.6 

0.384 ± 0.119 
- - 

0.775 ± 0.109 
23.2 ± 2.6 

0.611 ± 0.155 
 

0.766 ± 0.089 
25.6 ± 3.4 

0.493 ± 0.176 

HeLa 
0.821 ± 0.066 

28.3 ± 2.7 
0.473 ± 0.139 

0.840 ± 0.039 
29.7 ± 2.1 

0.462 ± 0.066 
- - 

0.820 ± 0.056 
24.8 ± 1.8 

0.538 ± 0.117 

0.870 ± 0.063 
36.8 ± 2.0 

0.506 ± 0.218 

0.836 ± 0.059 
29.9 ± 4.1 

0.480 ± 0.138 

MDA-MB-231 - 
0.808 ± 0.049 

29.7 ± 3.4 
0.412 ± 0.088 

- - 
0.889 ± 0.031 

26.3 ± 1.8 
0.635 ± 0.065 

- 
0.855 ± 0.056 

27.7 ± 3.1 
0.542 ± 0.133 

Astrocyte - 
0.776 ± 0.032 

31.4 ± 2.7 
0.406 ± 0.056 

- - 
0.940 ± 0.026 

29.3 ± 4.6 
0.613 ± 0.141 

- 
0.883 ± 0.084 

30.1 ± 4.1 
0.541 ± 0.155 

Average 
0.824 ± 0.064 

28.7 ± 3.5 
0.484 ± 0.142 

0.829 ± 0.063 
30.4 ± 3.2 

0.441 ± 0.098 

0.988 ± 0.005 
43.8 ± 3.4 

0.893 ± 0.030 

0.924 ± 0.034 
34.3 ± 2.2 

0.936 ± 0.049 

0.866 ± 0.082 
26.2 ± 3.6 

0.644 ± 0.142 

0.875 ± 0.066 
36.9 ± 2.2 

0.531 ± 0.223 

0.845 ± 0.074 
29.3 ± 4.5 

0.529 ± 0.167 

(Mean±S.D.; the numbers of tomograms are shown in Table S1) 
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Table S3. Single-cell feature statistics. 
 

Single-cell Features NIH3T3 COS-7 HEK 293 HeLa MDA-MB-231 Astrocyte Average 

Ce
ll 

Volume (µm3) 8680 ± 5180 13500 ± 7860 4790 ± 2870 8210 ± 5080 8140 ± 4990 17500 ± 8600 8600 ± 5970 
Surface area (µm2) 3330 ± 1690 4520 ± 2360 1980 ± 900 2800 ± 1320 2850 ± 1360 5870 ± 2860 3110 ± 1800 

Sphericity 0.620 ± 0.082 0.620 ± 0.089 0.689 ± 0.070 0.694 ± 0.068 0.679 ± 0.069 0.581 ± 0.106 0.656 ± 0.084 
Principal Axis Length 1 (µm) 50.1 ± 18.6 51.8 ± 16.9 31.1 ± 10.1 41.8 ± 14.9 41.8 ± 14.0 61.6 ± 17.0 44.1 ± 17.3 
Principal Axis Length 2 (µm) 25.6 ± 10.0 33.0 ± 12.1 20.2 ± 5.9 22.9 ± 7.5 24.3 ± 7.5 38.5 ± 13.5 25.1 ± 9.9 
Principal Axis Length 3 (µm) 12.3 ± 1.4 13.2 ± 0.8 12.4 ± 2.0 13.1 ± 1.3 12.9 ± 1.3 12.5 ± 1.2 12.7 ± 1.5 

Principal Axes Ratio 1 0.545 ± 0.181 0.650 ± 0.152 0.673 ± 0.147 0.586 ± 0.179 0.611 ± 0.162 0.636 ± 0.163 0.603 ± 0.175 
Principal Axes Ratio 2 0.283 ± 0.115 0.287 ± 0.105 0.433 ± 0.134 0.348 ± 0.11 0.341 ± 0.111 0.220 ± 0.071 0.332 ± 0.128 
Principal Axes Ratio 3 0.546 ± 0.185 0.456 ± 0.166 0.651 ± 0.167 0.620 ± 0.162 0.572 ± 0.151 0.370 ± 0.149 0.569 ± 0.181 

Cell-nucleus displacement (µm) 5.23 ± 3.31 5.98 ± 3.57 3.37 ± 2.70 4.19 ± 2.92 4.68 ± 2.82 7.07 ± 5.25 4.73 ± 3.25 
Dry mass (pg) 225 ± 113 272 ± 152 282 ± 204 300 ± 170 334 ± 182 260 ± 129 274 ± 165 

Dry mass density (fg/µm3) 31.4 ± 17.9 22.0 ± 10.0 59.6 ± 21.6 39.9 ± 15.6 45.1 ± 17.5 15.6 ± 5.6 38.7 ± 21.0 
RI mean 1.343 ± 0.003 1.341 ± 0.002 1.348 ± 0.004 1.345 ± 0.003 1.346 ± 0.003 1.340 ± 0.001 1.344 ± 0.004 

RI standard deviation (10-3) 6.17 ± 2.82 4.97 ± 1.72 8.41 ± 2.25 7.45 ± 2.40 8.07 ± 2.88 3.28 ± 1.11 6.91 ± 2.79 
RI contrast (10-3) 48.0 ± 7.5 51.2 ± 3.5 48.6 ± 6.0 51.8 ± 2.8 50.9 ± 4.2 45.0 ± 11.5 49.8 ± 5.9 

RI entropy 4.02 ± 0.41 4.00 ± 0.32 4.73 ± 0.37 4.39 ± 0.35 4.48 ± 0.33 3.82 ± 0.29 4.29 ± 0.46 

N
uc

le
us

 

Volume (µm3) 1240 ± 620 1690 ± 910 1370 ± 1080 1450 ± 820 1420 ± 930 1240 ± 920 1400 ± 860 
Surface area (µm2) 634 ± 228 756 ± 307 728 ± 436 697 ± 296 706 ± 341 634 ± 337 692 ± 320 

Sphericity 0.856 ± 0.070 0.876 ± 0.066 0.794 ± 0.087 0.856 ± 0.064 0.833 ± 0.084 0.83 ± 0.067 0.844 ± 0.079 
Principal Axis Length 1 (µm) 16.2 ± 4.0 16.8 ± 4.5 17.5 ± 6.8 17.2 ± 5.2 17.1 ± 5.4 16.9 ± 6.2 16.8 ± 5.2 
Principal Axis Length 2 (µm) 11.5 ± 2.3 13.0 ± 3.2 11.9 ± 3.8 11.7 ± 2.5 11.7 ± 3.0 10.7 ± 2.9 11.8 ± 3.0 
Principal Axis Length 3 (µm) 9.14 ± 1.93 10.0 ± 2.29 8.78 ± 2.39 9.54 ± 2.31 9.32 ± 2.31 8.58 ± 2.28 9.30 ± 2.24 

Principal Axes Ratio 1 0.730 ± 0.130 0.790 ± 0.121 0.711 ± 0.149 0.708 ± 0.140 0.712 ± 0.140 0.673 ± 0.166 0.727 ± 0.139 
Principal Axes Ratio 2 0.581 ± 0.117 0.612 ± 0.117 0.538 ± 0.150 0.575 ± 0.126 0.565 ± 0.125 0.539 ± 0.138 0.573 ± 0.129 
Principal Axes Ratio 3 0.802 ± 0.116 0.777 ± 0.107 0.758 ± 0.140 0.819 ± 0.120 0.799 ± 0.118 0.804 ± 0.095 0.794 ± 0.122 

Dry mass (pg) 75.3 ± 41.3 78.3 ± 48.1 132 ± 124 105 ± 65 119 ± 88 47.1 ± 44.3 98.1 ± 78.8 
Dry mass density (fg/µm3) 65.4 ± 29.1 48.5 ± 19.8 93.3 ± 28.3 75.0 ± 24.8 86.4 ± 31.2 38.4 ± 15.8 72.8 ± 30.9 

RI mean 1.349 ± 0.006 1.346 ± 0.004 1.355 ± 0.005 1.351 ± 0.005 1.353 ± 0.006 1.344 ± 0.003 1.351 ± 0.006 
RI standard deviation (10-3) 5.29 ± 2.30 4.46 ± 1.84 6.29 ± 2.06 6.07 ± 2.38 6.60 ± 2.98 3.06 ± 1.59 5.68 ± 2.45 

RI contrast (10-3) 35.0 ± 11.0 38.9 ± 9.49 42.7 ± 9.21 47.1 ± 7.45 44.8 ± 8.83 28.0 ± 12.3 40.8 ± 10.7 
RI entropy 4.95 ± 0.29 4.86 ± 0.23 5.29 ± 0.17 5.08 ± 0.22 5.07 ± 0.25 4.62 ± 0.28 5.04 ± 0.28 

Nucleoli total 38.4 ± 27.7 48.0 ± 34.5 33.3 ± 31.9 46.5 ± 32.9 44.0 ± 33.9 20.5 ± 18.9 41.1 ± 31.9 
Nucleoli mean (10-3) 30.1 ± 16.4 26.7 ± 13.7 22.4 ± 10.5 29.9 ± 13.7 29.2 ± 14.6 15.6 ± 5.3 27.9 ± 14.5 

Nucleoli standard deviation (10-3) 30.9 ± 21.5 35.1 ± 23.0 22.1 ± 17.1 31.6 ± 21.0 30.8 ± 21.3 11.2 ± 6.8 29.7 ± 21.2 
Nucleoli contrast 0.316 ± 0.197 0.357 ± 0.224 0.227 ± 0.168 0.304 ± 0.192 0.310 ± 0.211 0.131 ± 0.094 0.300 ± 0.201 
Nucleoli entropy 2.74 ± 0.66 2.46 ± 0.57 2.38 ± 0.57 2.68 ± 0.58 2.65 ± 0.61 1.96 ± 0.42 2.60 ± 0.63 

RI-nucleoli correlation 0.375 ± 0.128 0.465 ± 0.135 0.327 ± 0.158 0.358 ± 0.136 0.309 ± 0.151 0.302 ± 0.160 0.365 ± 0.148 

Cy
to

pl
as

m
 

Volume (µm3) 7430 ± 4700 11800 ± 7230 3430 ± 2070 6760 ± 4520 6720 ± 4330 16200 ± 8160 7200 ± 5440 
Dry mass (pg) 150 ± 80 193 ± 114 149 ± 96 194 ± 123 214 ± 115 213 ± 105 176 ± 107 

Dry mass density (fg/µm3) 24.4 ± 13.9 17.8 ± 7.7 45.6 ± 17.0 31.2 ± 11.9 35.1 ± 13.0 13.8 ± 4.7 30.1 ± 16.0 
RI mean 1.342 ± 0.003 1.340 ± 0.001 1.346 ± 0.003 1.343 ± 0.002 1.344 ± 0.002 1.340 ± 0.001 1.343 ± 0.003 

RI standard deviation (10-3) 5.44 ± 2.68 4.54 ± 1.53 7.75 ± 2.09 6.77 ± 2.20 7.13 ± 2.46 2.98 ± 0.864 6.22 ± 2.57 
RI contrast (10-3) 47.7 ± 7.8 51.1 ± 3.6 47.8 ± 6.6 51.6 ± 3.5 50.6 ± 4.7 44.8 ± 11.8 49.4 ± 6.3 

RI entropy 3.85 ± 0.41 3.86 ± 0.34 4.53 ± 0.45 4.23 ± 0.39 4.34 ± 0.36 3.76 ± 0.29 4.12 ± 0.48 
Actin total 313 ± 205 333 ± 214 119 ± 82 236 ± 167 231 ± 149 514 ± 252 256 ± 192 

Actin mean (10-3) 44.2 ± 18.4 28.4 ± 6.5 34.8 ± 11.2 36.0 ± 15.4 35.3 ± 9.2 32.0 ± 4.0 37.1 ± 14.9 
Actin standard deviation (10-3) 29.9 ± 14.6 16.2 ± 4.6 21.7 ± 8.4 23.0 ± 12.0 22.1 ± 7.7 17.5 ± 3.3 23.7 ± 11.9 

Actin contrast 0.237 ± 0.109 0.161 ± 0.051 0.147 ± 0.056 0.180 ± 0.082 0.170 ± 0.059 0.193 ± 0.059 0.187 ± 0.088 
Actin entropy 2.95 ± 0.56 2.30 ± 0.31 2.75 ± 0.42 2.68 ± 0.55 2.66 ± 0.40 2.34 ± 0.21 2.71 ± 0.52 

Mitochondria total 97.4 ± 57.5 134 ± 84 52.8 ± 32.2 75.3 ± 50.6 81.2 ± 53.0 201 ± 110 89.0 ± 63.9 
Mitochondria mean (10-3) 14.6 ± 6.5 11.4 ± 2.4 15.9 ± 4.8 11.3 ± 2.9 12.2 ± 3.2 12.3 ± 2.8 13.3 ± 5.0 

Mitochondria standard deviation (10-3) 25.1 ± 9.1 17.7 ± 3.4 22.3 ± 5.8 17.9 ± 3.9 19.9 ± 4.9 18.7 ± 4.4 21.2 ± 7.0 
Mitochondria contrast 0.266 ± 0.082 0.21 ± 0.048 0.168 ± 0.047 0.171 ± 0.041 0.189 ± 0.052 0.219 ± 0.04 0.209 ± 0.073 
Mitochondria entropy 1.59 ± 0.50 1.57 ± 0.32 1.49 ± 0.37 1.55 ± 0.34 1.41 ± 0.27 1.35 ± 0.21 1.53 ± 0.39 

Lipid droplets total 70.0 ± 41.0 114 ± 68 46.7 ± 29.2 87.4 ± 58.1 82.6 ± 53.8 101 ± 52 78 ± 54 
Lipid droplets mean (10-3) 11.0 ± 6.1 10.1 ± 2.9 14.2 ± 5.2 13.3 ± 4.7 12.7 ± 4.9 6.37 ± 2.33 12.1 ± 5.3 

Lipid droplets standard deviation (10-3) 22.0 ± 11.8 23.6 ± 6.5 18.9 ± 0.01 28.3 ± 0.01 23.0 ± 8.5 13.9 ± 5.9 23.0 ± 10.1 
Lipid droplets contrast 0.355 ± 0.184 0.420 ± 0.116 0.224 ± 0.116 0.378 ± 0.122 0.321 ± 0.119 0.426 ± 0.237 0.341 ± 0.157 
Lipid droplets entropy 1.66 ± 0.46 1.61 ± 0.29 2.18 ± 0.37 1.88 ± 0.35 1.85 ± 0.36 1.27 ± 0.27 1.81 ± 0.44 

RI-actin correlation 0.446 ± 0.147 0.368 ± 0.087 0.412 ± 0.147 0.392 ± 0.109 0.438 ± 0.120 0.347 ± 0.116 0.415 ± 0.131 
RI-mitochondria correlation 0.593 ± 0.121 0.528 ± 0.086 0.485 ± 0.174 0.629 ± 0.090 0.611 ± 0.096 0.474 ± 0.068 0.573 ± 0.130 
RI-lipid droplets correlation 0.662 ± 0.093 0.660 ± 0.065 0.655 ± 0.100 0.682 ± 0.068 0.694 ± 0.073 0.677 ± 0.071 0.670 ± 0.084 

Actin-mitochondria correlation 0.391 ± 0.135 0.428 ± 0.097 0.219 ± 0.174 0.352 ± 0.121 0.346 ± 0.115 0.277 ± 0.081 0.349 ± 0.148 
Actin-lipid droplets correlation 0.319 ± 0.148 0.292 ± 0.107 0.420 ± 0.134 0.283 ± 0.116 0.364 ± 0.119 0.238 ± 0.134 0.331 ± 0.139 

Mitochondria-lipid droplets correlation 0.544 ± 0.143 0.466 ± 0.101 0.464 ± 0.183 0.535 ± 0.113 0.563 ± 0.106 0.406 ± 0.131 0.518 ± 0.141 

(Mean±S.D.; N = 1243, 569, 725, 836, 603, and 57 for NIH3T3, COS-7, HEK 293, HeLa, MDA-MB-231, and astrocytes, respectively). 
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Video Captions 
 
Video S1. RI2FL across cell types and subcellular targets. 
 
Video S2. Dynamics of cell division and RI2FL. 
 
Video S3. Large-scale imaging and RI2FL. 
 
Video S4. Growth factor stimulation. 
 
Video S5. Chemogenetic stimulation. 
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