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Abstract

Most sequencing data analyses start by aligning sequencing reads to a linear ref-
erence genome. But failure to account for genetic variation causes reference bias and
confounding of results downstream. Other approaches replace the linear reference
with structures like graphs that can include genetic variation, incurring major com-
putational overhead. We propose the “reference flow” alignment method that uses
multiple population reference genomes to improve alignment accuracy and reduce
reference bias. Compared to the graph aligner vg, reference flow achieves a similar
level of accuracy and bias avoidance, but with 14% of the memory footprint and 5.5
times the speed.

1 Introduction

Sequencing data analysis often begins with aligning reads to a reference genome, with
the reference represented as a linear string of bases. Linear references such as the pri-
mary GRCh38 assembly? work naturally with efficient text indexes and sequence align-
ment algorithms. But linearity leads to reference bias: a tendency to miss alignments or
report incorrect alignments for reads containing non-reference alleles. This can ultimately
lead to confounding of scientific results, especially for analyses concerned with hypervari-
able regions?, allele-specific effects®, ancient DNA analysis”® or epigenenomic signals®.
These problems can be more or less adverse depending on the individual under study;
e.g. African-ancestry genomes contain more ALT alleles, and so can be more severely af-
fected by reference bias!’.
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While graph aligners'™> can reduce reference bias, linear aligners still perform better

on certain classes of reads'® and graph-aligner performance is sensitive to the number
of variants considered!”. Other efforts have focused on elaborating the linear alignment
paradigm to address reference bias. Some studies suggest replacing the typical linear
reference with a “major-allele” version, with each variant set to its most common allele.
This can increase alignment!®*1® and genotyping accuracy?. The major-allele reference is
largely compatible with the standard reference (though indels can shift coordinates) and
imposes little or no additional computational overhead.

We propose a new strategy called “reference flow” that uses a collection of references
chosen so as to cover known genetic variants (Figure[I). We call the method “reference
flow” because it selects which reads to align to which genomes based on how well the
read aligned previously. In this work, we propose specific reference-flow strategies where
the method proceeds in two passes where the first pass aligns reads to the “initial” ref-
erence and identifies unaligned reads and reads with ambiguous (low mapping-quality)
alignments. The second pass re-aligns these reads to a collection of references that are cho-
sen to span the genetic space. By merging results from both passes, we can achieve higher
alignment sensitivity and lower reference bias compared to methods that use a single ref-
erence. We implemented methods to align second-pass reads to the set of five genomes
corresponding to the “super populations” studied in the 1000 Genomes Projectzo, as well
as to the set of 26 genomes corresponding to the more specific 1000 Genomes “popula-
tions.” This method (a) can use existing, robust linear aligners like Bowtie 22! or BWA-
MEM??, (b) requires only a small number of pre-established linear reference genomes, and
(c) imposes minimal computational overhead — with no possibility of exponential blowup
—relative to linear aligners.

To contextualize the results, a diploid “personalized reference genome” — the genome
from which reads are simulated — is used as the ideal reference genome for alignment.
By considering the alignments to the diploid personalized reference as a rough upper
bound on how well any method can do, we can express results in terms of the degree to
which a method closes the gap between the standard linear reference and the personalized
reference. When aligning simulated sequence reads, our “RandFlow-LD” method closed
71.82% of the gap in sensitivity on median compared to using GRCh38. Our method
also reduced reference bias, reducing by 37% the number of strongly biased sites, and
lowering the overall reference to alternate allele (REF-to-ALT) ratio from 1.014 to 1.004.
When aligning real whole-genome sequencing reads from NA12878, our method reduced
the number of strongly biased heterozygous (HET) sites by 13,332 (34%) and lowered the
overall REF-to-ALT ratio from 1.072 to 1.016. It achieves similar gains as the vg graph
aligner™! in terms of alignment accuracy and reference bias avoidance while using just
14% of the memory and 18% of the CPU time. RandFlow-LD can use a larger set of 26
population-level references (“RandFlow-LD-26") to achieve lower reference bias than vg,
while still running twice as fast.
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Figure 1: The reference flow workflow: Reads are aligned to reference genome in the first
pass. Reads with high mapping quality alignments are “committed.” Unaligned reads or
reads with low mapping quality are “deferred” and re-aligned to one or more additional
references. The process can iterate, with similar logic for how reads are committed or
deferred to another pass. Deferrals could follow the shape of an overall “reference flow
graph.” Once all alignments are complete, alignments are merged. For a read aligning to
more than one reference, only the best is reported, with ties broken arbitrarily. Alignments
are translated (“lifted over”) to the coordinates of a standard reference like GRCh38.

2 Results

2.1 Standard and major-allele references

We built a global major-allele reference by modifying the GRCh38 primary referencel to
contain the most common allele at each bi-allelic SNV or small indel. Common alleles
were determined using the 1000 Genomes Project GRCh38 call set?). We call this the
“global major” reference. We repeated this process but considering only the five subsets of
individuals belonging to the five super populations labelled by the 1000 Genomes Project.
We call these “superpop major” references. Table|l|summarizes the variants included in

each reference. All references were indexed for use with the Bowtie 2 aligner.

2.2 Simulations for major-allele reference flow

We studied the efficacy of a strategy we call “MajorFlow,” which starts by aligning all
reads to the global major reference. Reads that fail to align or align with low mapping
quality are deferred to a second pass where they are realigned to each of the 5 superpop
major references. For each read we report the best alignment to any reference. We per-
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formed all alignments using Bowtie 2 and default parameters?, though the method is not
restricted to a particular aligner or set of parameters (Section 3.5).
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Figure 2: Alignment results using different methods. (a) Alignment sensitivity for 100
samples selected from the 1000 Genomes Project; 2 million reads are simulated from each
sample. (b) The number of strongly biased heterozygous sites, and (c) the overall REF-to-
ALT ratio for 25 samples; 20 million reads are simulated for each sample. The columns
are sorted by median alignment sensitivity.
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Table 1: Number and types of variants included in each major-allele reference of chromo-
some 21. Superpopulation labels are from the 1000 Genomes Project: AFR (African), AMR
(admixed American), EAS (East Asian), EUR (European), and SAS (South Asian).

Group # samples #SNVs # indels %)(])Erig(es;) Inggg(E;t)
Global 2,548 25,437 4,006 44 29
AFR 671 27,542 4,195 44 52
AMR 348 26,424 4,175 44 29
EAS 515 26,394 4,114 44 52
EUR 522 25,884 4,132 32 29
SAS 492 26,748 4,200 44 29

We performed simulation experiments to compare MajorFlow to baselines that used
Bowtie 2 to align to the GRCh38 primary assembly! or to major-allele references. We used
Mason2% to simulate reads from GRCh38 chromosome 21 (Section . Starting from
the 1000 Genomes Project GRCh38 call set?Y2%, we randomly selected 100 individuals and
built personalized, diploid references for each using phased variant calls (Table [S2). We
included single nucleotide variants (SNVs) and short insertions and deletions (indels).
We simulated 1M reads from both haplotypes (2M total) of each individual. Since allelic-
balance measurements require deeper coverage, we also simulated a larger set of 20M
reads for 25 of the individuals (Table [S2). We also assessed the alignment methods using
an ideal, diploid personalized reference genome (Section 3.2). Results using the person-
alized reference serve as a rough upper bound on what is achievable with references that
lack foreknowledge of donor genotypes”2220. We call this a “rough” upper bound be-
cause, while the personalized reference is ideal in that it contains the correct variants,
the accuracy of alignment is also affected by tool-specific heuristics. A true upper bound
would be hard to obtain, so we settle for the rough upper bound provided by the person-
alized genome, as in previous work27,

We measured sensitivity, the fraction of input reads that aligned correctly, as well as
the fraction that aligned incorrectly. We called an alignment correct if its leftmost aligned
base was within 10 bases of its simulated point of origin (Section[3.3). We also measured
allelic balance at HET SNVs, where we defined allelic balance as the number of alignments
with the REF allele divided by the number with either the REF or ALT allele. We also
counted the number of strongly biased sites, i.e. those with allelic balance < 20% or > 80%.
Finally, as an aggregate measure of balance, we measured the overall REF-to-ALT ratio
totaled over all HET sites (Section 3.4).

The MajorFlow method (“MajorFlow” in Figure [2) exhibited higher sensitivity than
single-reference methods that used the standard reference (“GRC”) or any of the major-
allele references (“Major”). If we consider the increase in sensitivity relative to the sen-
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sitivity gap between the GRCh38 reference and the ideal personalized reference, Major-
Flow’s median sensitivity improvement closed about 51.34% of the gap. In terms of num-
ber of incorrect alignments, MajorFlow closed 46.81% of the benefit of personalization
(Figure [S15). MajorFlow’s sensitivity was still higher when we enhanced the major-allele
strategy by always matching the ethnicity of the major-allele reference to that of the sim-
ulated sample (“Matched”). Alignments for reads simulated from the African super pop-
ulation (AFR) had lower sensitivity compared to the others, even when aligned to the
AFR superpop-major reference (Figure [SI). This is consistent with AFR’s greater genetic
heterogeneity due to the out-of-Africa bottleneck. Consistent with past results, there was
only a small difference in mapping sensitivity when using the global-major versus the
superpop-major references, even when the simulated donor’s ethnicity was matched with
the reference (Figure ).

MajorFlow also reduced reference bias relative to the single linear references using the
set of 25 deeper simulations. Overall REF-to-ALT ratio decreased from 1.0145 using the
standard reference to 1.0073 using the global major reference, then further to 1.0064 using
MajorFlow method (Figure[2k). The median number of strongly biased HET sites dropped
from 70 for GRCh38 to 59 for MajorFlow (Figure k).

2.3 Simulations for stochastic reference flow

While MajorFlow outperformed the single-linear-reference strategies, we noticed it was
less effective than the graph-based vg aligner at increasing sensitivity or reducing refer-
ence bias (Figure ). We hypothesized this was because the major-allele references used
by MajorFlow were too similar to each other, narrowing the genetic diversity visible to
the method. Specifically, the mean edit distance between all pairs of superpop major ref-
erences was 15,115 bp for chromosome 21, whereas the mean between all pairs of five
individuals randomly drawn from the super populations was 47,966 bp (Figure [S4).

We designed two alternative methods that draw on super-population-specific varia-
tion while also keeping the second-pass genomes genetically distinct. “RandFlow” gen-
erates a random reference haplotype for each super population by performing an inde-
pendent draw at each variant site, choosing the ALT allele with probability equal to its
frequency in the super population. “RandFlow-LD” is similar but additionally maintains
some linkage disequilibrium (LD). RandFlow-LD begins by choosing one haplotype from
the super population uniformly at random. Then, starting at the first (leftmost) poly-
morphic site in the haplotype and for the length of a 1,000-bp window, it selects alleles
matching the chosen haplotype. At the next polymorphic site beyond the 1,000-bp win-
dow, the method chooses a new super-population haplotype uniformly at random and re-
peats the process. In this way, variant selection is still weighted by allele frequency (since
haplotypes are selected uniformly at random) but a degree of LD is also maintained. Both
strategies result in greater genetic distances between the second-pass references compared
to MajorFlow, with mean pairwise distances on chromosome 21 being 47,316 for the Rand-
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Flow strategy and 46,326 for RandFlow-LD. Further details are in Section

Using the chromosome-21 simulation data from the previous section, we observed that
RandFlow and RandFlow-LD achieved higher sensitivity and lower numbers of incorrect
alignments compared to MajorFlow. If we consider the increase relative to the sensitiv-
ity gap between the GRCh38 reference and the ideal personalized reference, RandFlow’s
and RandFlow-LD’s median sensitivity improvement closed about 70.91% and 71.82% of
the gap respectively (Figure 2p). The reduction of incorrect alignment compared to per-
sonalization was 66.22% for RandFlow and 67.34% for RandFlow-LD (Figure [S15). While
RandFlow slightly underperformed RandFlow-LD in sensitivity and number of incor-
rect alignments, we note that RandFlow does not require that variants be phased, and so
can benefit from larger compendia of unphased genotypes available through projects like
gnomAD%,

Using the set of 25 deeper simulations, RandFlow-LD reduced the median number
of strongly biased HET sites to 44, from a median of 70 using the GRCh38 reference.
RandFlow-LD also reduced the overall REF-to-ALT ratio to 1.0038, an improvement over
GRCh38 (1.0145) and MajorFlow (1.0064).

We further compared the reference flow methods to vg. vg aligns to a reference that
is shaped as a graph rather than a string. Paths through the graph correspond to different
combinations of REF and ALT alleles. Such methods can improve alignment accuracy
and reduce reference bias by adding paths — thereby removing alignment-score penalties
— for ALT alleles. We built a vg index using chromosome 21 of the GRCh38 primary
assembly as the base, and including all variants from the 1000-Genomes GRCh38 callset
having allele frequency at least 1% and aligned all reads to the graph. There were 192,846
variants passing the threshold, about twice as many ALT alleles as we considered in our
RandFlow (93,146) and RandFlow-LD (95,319) strategies. We found that RandFlow and
RandFlow-LD had higher sensitivity and fewer incorrectly aligned reads than vg (Figures
and [S15), but that vg yielded a smaller number of strongly biased sites (30, versus 44
for RandFlow-LD) and a slightly more balanced overall REF-to-ALT ratio (1.0026, versus
1.0038 for RandFlow-LD). While neither approach is the clear winner in this comparison,
the reference flow methods use substantially less time and memory, as discussed below.

To explore how using more second-pass genomes improves accuracy, we used the
same RandFlow-LD method to make a set of 26 population-specific chromosome 21 se-
quences. These correspond to the 26 separate populations studied in the 1000 Genomes
Project, subdividing the 5 super populations and including 168,593 variants in total. The
alignment sensitivity of this “RandFlow-LD-26" approach was the best of any we eval-
uated, closing 84.08% of the gap between the GRCh38 and personalized references. It
achieved lower allelic bias compared to RandFlow-LD, with a median of 39 strongly bi-
ased sites and an overall REF-to-ALT ratio of 1.0024. Though it used a total of 27 references
(including the first-pass major-allele reference), RandFlow-LD-26 used less CPU time and
had a smaller memory footprint compared to vg (Section [2.5).
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2.4 Assessing reference bias with real data

We further assessed these methods using a deep whole-genome sequencing dataset from
individual NA12878 (SRR622457) generated by the 1000 Genomes Project?. The dataset
consisted of 1.4 billion Illumina HiSeq 2000 101-bp paired-end reads, though we used
only the first end of the pair in these experiments. Since each read’s true point of origin
is unknown, we assess only allelic balance and not sensitivity. We assessed allelic balance
only at sites where NA12878 is HET according to the 1000 Genomes Project GRCh38 call
set, and then stratified the sites according to the Genome-in-a-Bottle v3.3.2 confidence an-
notation??. There were 1,723,317 (83%) HET sites in high-confidence regions, and 344,945
(17%) in low-confidence regions. We also constructed and aligned to an ideal, diploid
personalized reference using the phased variant calls for NA12878 from the GRCh38 call
set. We assessed only the RandFlow-LD and RandFlow-LD-26 methods since they out-
performed other reference-flow methods in the simulation experiments. After a first-pass
alignment to the global major-allele reference, there were 250M (17.4%) reads deferred
into the second pass.

Consistent with the simulation experiments, we observed that RandFlow-LD and vg
both reduced the number of strongly biased sites in all regions, from 44,810 in the case of
GRCh38, to 34,429 (23% reduction) for RandFlow-LD and 31,784 (29% reduction) for vg
(FigureBland Table[). Similarly, RandFlow-LD reduced the overall REF-to-ALT ratio from
1.0719 (GRCh38) to 1.0160 and vg reduced it to 1.0123. Further, RandFlow-LD-26 reduced
the number of strongly biased sites to 30,317 (32% reduction) and REF-to-ALT ratio to
1.0081, best among the methods using non-personalized references. The variant-aware
methods substantially reduced reference bias compared to a method that aligned only to
the global major reference (“Major”). In high-confidence regions, variant-aware methods
reduced the number of strongly biased sites by 39% — 50% compared to GRCh38, and
reduced the REF-to-ALT ratios from 1.041 to about 1.01 (Figure [S17). In low-confidence
regions, we observed 11% — 18% reduction in number of strongly biased sites, but a greater
benefit in REF-to-ALT ratios, from 1.024 to 1.001-1.028 (Figure [S18). RandFlow-LD-26
reduced bias most among variant-aware approaches.

Notably, the number of strongly biased sites was still as high as 23,290 when aligning
to an ideal personalized reference (Table [2). In part this is because the 1000 Genomes
Project calls include only a subset of the variation present in the actual NA12878 genome.
This is both because some genomic regions were excluded from the call set because of low
mappability, and because the call set does not include larger-scale structural variants that
can have an outside effect on sensitivity and bias. We also noted that the more strongly
biased sites were biased toward REF (13,899) more often than toward ALT (9,391) when
aligning to the personalized reference, supporting the argument that variants missing
from the call set are affecting the bias.

To better understand where variant-aware methods reduce bias the most, we studied
the relationship between highly biased HET sites and various categories of repeat fam-
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ilies (Figure {4) and classes (Figure annotated by RepeatMasker®’. Using alignment
to GRCh38, many strongly biased HETs are in L1 (10,288, or 23%) and Alu (11,255, or
25%). RandFlow-LD greatly reduced the number of strongly biased HET sites in L1 (to
5,250, reduced by 49%) and Alu (to 6,555, reduced by 42%). A similar reduction is ob-
served when using vg, but the greatest reductions are achieved by RandFlow-LD-26. For
instance, RandFlow-LD-26 reduces the number of strongly biased sites in L1 from 10,288
to 3,560, a 65% reduction.
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Figure 3: Histograms of allelic balance using a high-coverage real WGS dataset of indi-
vidual NA12878 (SRR622457). Experiments are performed using GRCh38 (GRC), global
major reference (Major), diploid personalized genome (Personalized), vg using alleles with
frequency > 10% (vg), reference flow using 1000-bp phased blocks with 5 super popula-
tions (RandFlow-LD) and reference flow using 1000-bp phased blocks with 26 populations
(RandFlow-LD-26).
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Table 2: Measures of allelic balance for NA12878 whole genome sequencing dataset strati-
fied by Genome-in-a-Bottle v3.3.2 confidence annotation. vg index includes variants with
10% or higher allele frequency in the 1000-Genomes Project GRCh38 call set. This meth-
ods are sorted by REF-to-ALT ratio in all regions.

Method REF-to-ALT Total # biased # biased
ratio # biased toward REF toward ALT
High confidence
GRCh38 1.0407 20,012 18,141 1,871
Major 1.0227 19,837 15,415 4,422
RandFlow-LD 1.0133 12,239 9,512 2,727
vg 1.0124 10,518 7,971 2,547
RandFlow-LD-26 1.0098 9,984 7,489 2,495
Personalized 1.0033 7,024 4,600 2,424
Low confidence
GRCh38 1.2355 24,798 20,594 4,204
Major 1.1230 26,579 20,108 6,471
RandFlow-LD 1.0282 22,190 15,891 6,299
vg 1.0120 21,266 15,422 5,844
RandFlow-LD-26 1.0008 20,333 13,874 6,459
Personalized 0.9750 16,266 9,299 6,967
All regions
GRCh38 1.0718 44,810 38,735 6,075
Major 1.0397 46,416 35,523 10,893
RandFlow-LD 1.0160 34,429 25,403 9,026
vg 1.0123 31,784 23,393 8,391
RandFlow-LD-26 1.0081 30,317 21,363 8,954
Personalized 0.9981 23,290 13,899 9,391

2.5 Computational efficiency

We constructed a dataset consisting of 10M single-end reads randomly sampled from the
first end of the SRR622457 paired-end dataset. We ran each alignment method and mea-
sured the total size of index files on disk, the peak memory usage, and the CPU time (Table
B). We measured peak memory usage using the maximum resident set size reported by
the GNU Time utility. We also measured CPU time using GNU Time. We performed the
experiments on a computer with a 2.2 Ghz Intel Xeon CPU (E5-2650 v4) and 515GB mem-
ory. We configured all read-alignment jobs to use 16 simultaneous threads but otherwise
left parameters at their defaults. Though RandFlow-LD and RandFlow-LD-26 were the
only reference-flow approaches we benchmarked here, we expect MajorFlow and Rand-

10
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Figure 4: Number of strongly biased HET sites stratified by RepeatMasker class, after
aligning single-end reads from SRR622457. HET sites are determined using 1000 Genomes
Project calls for NA12878, the individual sequenced in SRR622457. RandFlow methods
and vg reduce the number of biased sites substantially for L1, Alu and ERV1. RandFlow-
LD-26 reduces the number of biased sites most among the methods tested.

Flow to perform similarly to RandFlow-LD since they execute the same sequence of steps,
using the same number of linear reference genomes.

Compared to an alignment run against the GRCh38 primary assembly, RandFlow-
LD used about 5.97 times as much disk space to store the reference index files, consistent
with the fact that RandFlow-LD uses 1 reference in the first pass and 5 in the second (Table
E[). vg used a similar amount similar size of disk space for its indexes (.xg, .gcsa and
.gcsa.lcp). vg used 7.31 times as much peak memory usage compared to the linear-
based alignment methods, including RandFlow-LD. The baseline approach used less than
9% of the CPU time as vg, while RandFlow-LD used less than 18% of the CPU time as
vg. Overall, RandFlow-LD used only about twice as much CPU time as the baseline.
84% of RandFlow-LD’s runtime overhead was spent in re-alignment, 13% was spent in
liftover and less than 2% was spent in merging alignments. When extending RandFlow-
LD to RandFlow-LD-26, the CPU time increased to 589% of the baseline and the index
size increased to 104.9 GB. But its speed was 1.9 times that of vg.

We note that RandFlow-LD and RandFlow-LD-26 have similar peak memory foot-
print to the baseline because the reference-flow software runs the alignment jobs serially.
In other words, only one reference genome index is resident in memory at a time. Be-
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Table 3: Comparison of alignment methods using 10M single-end 101-bp reads from in-
dividual NA12878 (SRR622457). The vg index includes variants with allele frequency >
10% in the 1000-Genomes Project GRCh38 call set. The RandFlow-LD indexes include the
indexes for liftover and Bowtie 2 indexes for the global major-allele reference as well as
second-pass population references. CPU time is compared to a baseline run of Bowtie 2
to the GRCh38 primary assembly.

Method Index size Memory usage CPU time
Bowtie 2-GRCh38 3.9G 3.3G 1.00x (73m)
RandFlow-LD 23.3G 3.3G 2.04x (149m)
RandFlow-LD-26 104.9G 3.3G 5.89x (430m)
vg 25.4G 25.6G 11.26x (822m)

cause the read aligners themselves are multithreaded, we can do this while using many
simultaneous threads.

2.6 Comparison of variant-aware alignment approaches

We further compared the reference flow methods with other graph-based methods, in-
cluding the graph aligner HISAT212 (Figures and . HISAT?2 was computationally
efficient, using 46.5% of the CPU time compared to Bowtie2 with a whole-genome graph
containing variants with allele frequency > 10% in the 1000 Genomes Project. Its index
size (6.1G) and memory usage (6.5G) were small compared to vg’s (index size: 25.6G;
memory usage: 25.6G) using the same variant set. However, it performed worse than
other methods on mapping sensitivity (92.46%, versus 92.80% for vg), median number of
strongly biased sites (138, versus 30 for vg) and overall REF-to-ALT ratio (1.0265, versus
1.0026 for vg) when evaluated using simulated reads from chromosome 21.

To understand the effect of including different numbers of variants in the vg graph, we
tested a few vg graph sizes: a vg graph with no variants (just the linear GRCh38 reference),
a graph with all 1000-Genomes variants having > 10% allele frequency (AF), and a graph
with all > 1% AF variants. For a more direct comparison with RandFlow-LD, we also
made a vg graph that included the union of the variants used in all RandFlow-LD refer-
ences (Note [ST} Figure[S5). We indexed the graphs and evaluated alignment performance
using the same simulation framework as in sections 2.2 & The median mapping sen-
sitivity of the >10% AF graph outperforms other vg-based methods (> 10% AF: 92.805%;
> 1% AF: 92.797%), while the >1% AF graph gave fewer median strongly biased sites (>
10% AF: 40; > 1% AF: 30) and lower overall REF-to-ALT ratio (> 10% AF: 1.0051; > 1% AF:
1.0026). When comparing RandFlow-LD with the vg graph built using the RandFlow-LD
variants (vg-RandFlow-LD column in Figures and [S8), RandFlow-LD is more sensi-
tive (92.82%, versus 92.80% for vg-RandFlow-LD), achieves a more balanced REF-to-ALT
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ratio (1.0038, versus 1.0069 for vg-RandFlow-LD), and yields a smaller number of highly
biased sides (44, versus 50 for vg-RandFlow-LD).

3 Methods

3.1 DNA data simulation

We built diploid consensus genomes for the selected individuals (Table usingbcftools?
based on the SNVs and indels specified by the 1000 Genome Project GRCh38 call set**. We
used Mason24® to simulate paired-end Illumina 100-bp reads, but used only the first end

in most experiments. Since variants were already included in the reference genomes we
simulated from, we did not use Mason2’s variation-adding feature. We enabled Mason2’s
features for generating random sequencing errors and quality values. We simulated reads
independently from each haplotype to generate diploid read sets, keeping information
about the haplotype, chromosome and offset of origin for downstream evaluations.

3.2 Building and aligning to the personalized reference

We built personalized, diploid reference genomes for each of the 100 randomly selected
1000 Genomes individuals>*? (Table . We used phased variant calls — including SNVs
and indels and including sites with more than 2 ALT alleles — from both haplotypes of
the selected individual to build FASTA files containing a personalized diploid reference
genome. When aligning to the personalized diploid references, we aligned all reads sep-
arately to both haplotypes. We aligned to the haplotypes separately so that the mapping
qualities could be informative; aligning to both together would have yielded consistently
low mapping qualities. We then merged the resulting alignments. For a read that aligned
to both haplotypes, we took the alignment with the higher alignment score. We broke ties
by taking the alignment with higher mapping quality or, if the tie remained, at random.

For the simulated experiment using chr21, we aligned to each personalized haplotype
5 separate times, providing the aligner with 5 different random seeds. This yielded 10 total
alignments from which we selected the best. This helped to improve the upper bound
somewhat, since the 5 random seeds gave the aligner 5 times as many chances of finding
the best alignment even with the censoring effect of alignment heuristics (Figure |S6).

3.3 Measuring sensitivity

In simulation experiments, we keep information about each read’s haplotype, chromo-
some and offset of origin. We say a read aligns correctly if the alignment’s leftmost
mapped base is within £10-bp of the leftmost base at the read’s point of origin. Since
we use Bowtie 2 with default alignment parameters, no “soft clipping” is possible and
it does not affect the definition of correctness. Reads that align outside of the £10-bp
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window are called incorrect. We define sensitivity as the fraction of reads that aligned
correctly.

3.4 Allelic balance measurement

We measured allelic balance at each bi-allelic HET SNVs reported in the 1000 Genomes
Project GRCh38 call set. HET SNVs that were contained within a larger deletion variant
were excluded, whether or not the deletion was heterozygous. At each relevant HET, we
considered the “pileup” of alleles at the site induced by overlapping read alignments. Let
aref and a,y denote the number of REF and ALT alleles overlapping the site:

Allelic balance, § — —rf (1)

Gref + Galt

We say a site is strongly biased when 5 < 0.2 or 5 > 0.8. For a collection of sites, we
calculate the overall REF-to-ALT ratio as total number of REF alleles divided by the total
number of ALT alleles across the sites:

D _icH Oref,i
EieH Qalt,i

We ignore alleles besides REF and ALT, and we ignore alignments having a gap at the site.
The assumption that on average § should equal 0.5 at HET sites is well founded for sim-
ulated datasets. Real datasets have biases, which might be due to systematic sequencing
errors or fragmentation bias, for example. Biases might also arise from errors in the set
of sites we consider to be HET, e.g. if the variant caller that produced the HET calls was
itself affected by allelic bias.

Overall REF-to-ALT ratio = (2)

3.5 Reference flow

Preparation The reference-flow methods require that we first build read-alignment in-
dexes and coordinate-translation indexes for the relevant species and populations. Both
can be generated from a reference genome in FASTA format and a collection of popula-
tion variants in VCF format. The reference-flow software (a) processes the VCF to select
variants to include in the population reference genomes, (b) generates both the first-pass
and the second-pass references based on the reference genome, and (c) builds Bowtie 2
indexes for all references.

For convenience, we provide pre-built RandFlow-LD genomes and indexes based on
the GRCh38 reference and the 1000 Genomes Project GRCh38 call set (see Availability of
data and materials).
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First pass In the first pass, we align all reads to an initial reference genome. For the
particular reference-flow strategies evaluated here (MajorFlow, RandFlow, RandFlow-
LD, and RandFlow-LD-26), we first aligned to the “global major” reference (Section [2.2).
Reads that fail to align or that align with low mapping quality are “forwarded” to a second
pass, whereas reads that align with high mapping quality are “committed” and are ulti-
mately passed through to the final output. We use a mapping-quality threshold because
it is readily available — reported by most popular read aligners — and because alignments
with low MAPQ are the most likely to benefit from the second alignment pass. After
empirical experiments, we selected a MAPQ threshold of 10 (Figures [S2]and [S13).

Second pass For reads forwarded to the second pass, we realign to a set of references
that include a wider range of genetic variation. In the methods evaluated here other
than RandFlow-LD-26, we use five second-pass references, each corresponding to a 1000
Genomes Project superpopulation: AFR (African), AMR (admixed American), EAS (East
Asian), EUR (European), and SAS (South Asian). For RandFlow-LD-26, we use 26 second-
pass references, each corresponding to a population in the 1000 Genomes Project. In the
case of the MajorFlow method, the second-pass genomes are simply the major-allele ref-
erences corresponding to each of these superpopulations (Section [2.2). In all cases, the
second-pass references consist of a single haplotype.

Stochastic references In the RandFlow, RandFlow-LD and RandFlow-LD-26 strategies,
second-pass references are designed to represent “random individuals” from the super
populations. For RandFlow, we construct the second-pass references by iterating through
each polymorphic site ¢ and performing an independent random draw to choose the ALT
allele with probability equal to its allele frequency p; in the super population:

REF, 1—p;
GT; = p
ALT,  p;

In the case of the RandFlow-LD and RandFlow-LD-26 strategies, for a variant site we
select one haplotype in the super population uniformly at random. We then maintain
the linkage disequilibrium (LD) relationship by selecting the genotypes from the same
haplotype for the next 1000-bp region.

While we used the population and super population labels provided by the 1000
Genomes Project here, the reference-flow framework can work with any granularity of
label. Further, neither the MajorFlow nor the RandFlow strategies require that genetic
variants be phased. Those approaches could also work with larger, unphased compendia
of genetic information such as GnomAD4.

Merging and lifting For reads that aligned to more than one reference, we must choose
a single “best” alignment to include in the ultimate SAM output. We select by choosing
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the alignment with the highest alignment score; roughly, this corresponds to the align-
ment with the fewest mismatches and gaps. If there is a tie for best alignment score, the
alignment with higher mapping quality is selected. If there is a tie in both categories, we
select at random from among the tied alignments.

For maximum compatibility with downstream tools, the SAM output from our reference-
flow methods is with respect to the standard GRCh38 primary assembly. But since the
reference genomes in our method - including the major-allele references — can have inser-
tions or deletions with respect to the standard reference, we must translate (“lift over”)
these alignments to standard reference coordinates before outputting them. We imple-
mented a simple method to lift over alignments that builds a succinct mapping of coor-
dinates from a genome to the standard reference genome using a VCF file. We use the
mapping to adjust the POS and CIGAR fields of a SAM file so as to be compatible with
the standard reference. The time and memory used to lift the alignments were included
in the benchmarking measurements discussed in Section

4 Discussion

We proposed and evaluated a family of “reference-flow” alignment methods. These are
based on the idea that reads that fail to align or align poorly to one reference might align
well to another with a different complement of alleles. We first showed that a 2-pass
method using superpopulation major-allele references (MajorFlow) outperformed both a
standard linear reference and individual major-allele references. As a further improve-
ment, we proposed the RandFlow and RandFlow-LD methods that align to “random in-
dividuals” from each super population. These methods performed similarly to vg and
approached the performance achieved using the ideal, personalized reference. The refer-
ence flow methods were much more computationally efficient than vg, running 5.5 times
as fast and using 14% of the memory compared to vg when aligning to a graph containing
all 1000 Genomes variants of frequency 10% or higher.

Our results complement key points from previous studies. Like the FORGe study!?,
we also showed that alignment to a major-allele reference improves alignment accuracy
compared to the standard linear reference. Also like FORGe, we showed that aligning to
a super-population-matched major-allele reference did not substantially improve align-
ment accuracy compared to a global major-allele reference combining all super popu-
lations. Our results also reinforce that a linear aligner can be extended to incorporate
variants and exhibit similar accuracy to a graph aligner®3.,

For compatibility with downstream tools, alignments output by reference-flow meth-
ods must have their reference coordinates translated back to the standard linear reference.
Notably, this requires only a pairwise alignment from each of the reference-flow refer-
ences to the standard reference. Thus, approaches such as RandFlow and RandFlow-LD
use 5 references in the second pass require 6 pairwise whole-genome alignments: one
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from the first-pass major-allele reference to the standard reference, and 5 from each of the
second-pass references. This can be advantageous in the situation where the reference-
flow genomes are assemblies with no pre-existing multiple alignment (e.g. VCF file) de-
scribing their relationship. Algorithms for calculating genome-scale multiple alignments
are resource intensive®**> and yield a more complex structure compared to a pairwise
alignment. Reference flow’s use of pairwise alignments also helps to solve an “N+1" prob-
lem; adding one additional reference to the second pass requires only that we index the
new genome and obtain an additional whole-genome alignment (or otherwise infer such
an alignment, e.g. from a VCF file) to the standard reference. We demonstrated that we
could extend reference flow to 26 1000-Genomes populations, reducing bias still further
while still aligning faster than vg. This flexibility could be important in the coming era
where long and ultra-long sequencing reads allow us to build many high quality human
genome assemblies.

While we explored methods involving a single initial reference and a set of second-
pass references based on 1000-Genomes populations or super populations, we can also
consider a wider class of possible architectures. For instance, considering that our method
consistently performs worst on the AFR super population, we could imagine building
a deeper “tree” of AFR-covering references. A read aligning poorly to the second-pass
reference representing the AFR super population could, in a third pass, be aligned to an
array of references for specific populations within AFR. We can imagine more complex
architectures as well, leading to a general notion of a “reference flow graph” where nodes
represent references and directed edges indicate which references might be attempted
next. Whether a read should be forwarded along an edge would be dictated by a (possibly
edge-specific) rule that uses alignment score, mapping quality, whether the alignment
overlapped some genomic region, or other factors.

Our approach for selecting population-specific genomes involves randomness, chiefly
as a way of “pushing” genomes further apart compared to the major-allele references. An
alternative would be to cast this as a problem of optimizing the references’” “coverage” of
the overall genotype space. Such an optimization approach might improve coverage (and
therefore accuracy) while removing the random element. This might be accomplished us-
ing unsupervised, sequence-driven clustering methods**°7, using the “founder sequence”
framework®®®’, or using some form of submodular optimization*’. A more radical idea
is to simply index all available individuals, forgoing the need to choose representatives;
this is becoming more practical with the advent of new approaches for haplotype-aware
path indexing®® and efficient indexing for repetitive texts*".

Since reference flow is essentially a “wrapper” that can be placed around an existing
aligner, Bowtie 2 could be replaced by a different linear aligner such as BWA-MEM or
even a graph aligner such as vg. It is even possible for different nodes in the graph to use
different alignment tools. Since the wrapper is written using Snakemake*?, it is easily de-
ployable both in one-sample single-computer scenarios and in scenarios involving many
samples or a collection of networked computers.

17


https://doi.org/10.1101/2020.03.03.975219
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.03.975219; this version posted September 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In the future, it will be important to benchmark reference-flow methods when larger
structural variants are included in the references. Structural variants have a dispropor-
tionate effect on alignment quality***%. In principle they are not difficult to include in the
reference flow framework, though our lift over procedure is not currently robust enough
to handle more complex structural variants like inversions or rearranges.
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