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1 Groundwork: Evolutionary dynamics

We begin with some developments that will become necessary background material for other results. Variants

of our one-locus model have appeared elsewhere by ourselves and others [6, 8, 5, 4, 1, 2], but we believe our

characteristic-function (Fourier) framework, our two-locus model and our derivation of covariance dynamics

is new.

1.1 Deterministic dynamics 1: One-locus model

1.1.1 Evolution of the distribution of fitnesses

Let u(x, t) denote probability density in fitness x at time t (i.e.,
∫
x
u(x, t) = 1 for all t) for an evolving

population. Under selection and mutation, u evolves as:

∂tu(x, t) = (x− x̄)u(x, t) + U

∫
γ

u(x− γ, t)g(γ, t)− Uu(x, t)

where U is genomic mutation rate, and g(γ, t) is probability density for fitness changes incurred by mutation,

i.e., g(γ, t) is the “distribution of fitness effects” of newly-arising mutations, or DFE.

1.1.2 Evolution of the corresponding characteristic function

Let C(ϕ, t) denote the characteristic function for u(x, t), i.e., C(ϕ, t) =
∫
eiϕxu(x, t)dx and let M(ϕ, t) denote

the characteristic function for the DFE, i.e., M(ϕ, t) =
∫
eiϕxg(x, t)dx. The transformed equation is:

∂tC(ϕ, t) = −i∂ϕC(ϕ, t) + i∂ϕC(0, t)C(ϕ, t) + UC(ϕ, t)(M(ϕ, t)− 1).

Over the time interval in question (assumed to be short on evolutionary time scales), we will suppose the

DFE is invariant such that M(ϕ, t) = M(ϕ). Let Φ(ϕ, t) = lnC(ϕ, t); then we have:

∂tΦ(ϕ, t) = −i∂ϕΦ(ϕ, t) + i∂ϕΦ(0, t) + U(M(ϕ)− 1).

This equation is a variant of the transport equation and, when boundary condition Φ(0, t) = 0 is applied, it

has solution:

Φ(ϕ, t) = Φ(ϕ− it, 0)− Φ(−it, 0)− iU
∫ ϕ

ϕ−it
(M(γ)− 1)dγ + iU

∫ 0

−it
(M(γ)− 1)dγ

which reduces to:

Φ(ϕ, t) = Φ(ϕ− it, 0)− Φ(−it, 0)− iU
∫ 0

−it
(M(ϕ+ γ)−M(γ))dγ (1)
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1.1.3 Dynamics of mean fitness

Mean fitness at time t, denoted x̄(t), is derived as follows:

x̄(t) = (−i) ∂
∂ϕ

[Φ(ϕ, t)]ϕ=0

Letting Φ0(ϕ) = Φ(ϕ, 0), this gives a general expression for mean fitness evolution under selection and

mutation:

x̄(t) = −iΦ′0(−it) + U [M(−it)− 1] (2)

where the prime denotes derivative.

1.1.4 Dynamics of fitness variance and higher cumulants

Fitness variance at time t, denoted σ2
x(t), is derived as follows:

σ2
x(t) = (−i)2 ∂2

∂ϕ2
[Φ(ϕ, t)]ϕ=0

giving:

σ2
x(t) = −Φ′′0(−it)− iU [M ′(−it)−M ′(0)] (3)

And generally, the jth cumulant at time t, denoted κj(t), is given by:

κj(t) = (−i)j ∂
j

∂ϕj
[Φ(ϕ, t)]ϕ=0 (4)

1.1.5 Connection to classical theory

Without mutation, the equation for mean fitness evolution is:

x̄(t) = −iΦ′0(−it)

which may be rewritten as:

x̄(t) = −i ∂
∂ϕ

[
iκ1ϕ−

1

2
κ2ϕ

2 − i1
6
κ3ϕ

3 + ...

]
ϕ=−it

= −i
[
iκ1 + κ2it+O(t2) + ...

]

Noting that κ1 = x̄(0) and κ2 = σ2
x(0), and computing for some very small time increment into the future,

t = dt, we have:

x̄(dt) = x̄(0) + σ2
x(0)dt+O(dt2), or

x̄(dt)− x̄(0)

dt
= σ2

x(0) +O(dt)
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And letting dt→ 0 gives:
dx̄

dt
= σ2

x

which is the continuous-time formulation of Fisher’s fundamental theorem of natural selection.

1.2 Deterministic dynamics 2: Two-locus model

1.2.1 Change of notation

• Let superscripts (i,j) denote the ith derivative with respect to the first argument and the j(th) derivative

with respect to the second argument. For example:

∂

∂ϕ∂θ
Φ(ϕ, θ) = Φ(1,1)(ϕ, θ)

• Let κi,j denote the (i, j)th bivariate cumulant, i.e.,

κi,j = Φ(i,j)(ϕ, θ)
∣∣∣
ϕ,θ=0

.

1.2.2 Evolution of the bivariate distribution of fitnesses

We now suppose that there are two “genes” that determine fitness, such that total fitness is determined by

their sum. Letting fitness contributions of the two genes be denoted by x and y, respectively, the total fitness

is then simply x+ y. The extension of the previous one-dimensional pde is therefore immediate:

Let u(x, y, t) denote probability density in fitness contributions x and y at time t (i.e.,
∫
x,y

u(x, y, t) = 1 for

all t) for an evolving population. Under selection and mutation, u evolves as:

∂tu(x, y, t) = (x+ y − x̄− ȳ)u(x, y, t) + U

∫
γ,φ

u(x− γ, y − φ, t)g(γ, φ, t)− Uu(x, y, t)

where again U is genomic mutation rate, and g(γ, φ, t) is again the “distribution of fitness effects” of newly-

arising mutations, or DFE, only now it is a bivariate distribution.

1.2.3 Evolution of the corresponding characteristic function

Let Φ(ϕ, θ, t) denote the characteristic function for u(x, y, t), i.e., Φ(ϕ, θ, t) =
∫
eiϕx+iθyu(x, y, t)dxdy and

let M(ϕ, θ, t) denote the characteristic function for the DFE, i.e., M(ϕ, θ, t) =
∫
eiϕx+iθyg(x, y, t)dx. The

transformed equation is:

Φ(0,0,1)(ϕ, θ, t) =− iΦ(1,0,0)(ϕ, θ, t)− iΦ(0,1,0)(ϕ, θ, t) + [iΦ(1,0,0)(0, 0, t) + iΦ(0,1,0)(0, 0, t)]Φ(ϕ, θ, t)

+ UΦ(ϕ, θ, t)(M(ϕ, θ, t)− 1).

Again, over the time interval in question (assumed to be short on evolutionary time scales), we will suppose
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the DFE is invariant such that M(ϕ, θ, t) =M(ϕ, θ). And letting C(ϕ, θ, t) = ln Φ(ϕ, θ, t), we have:

C(0,0,1)(ϕ, θ, t) = −iC(1,0,0)(ϕ, θ, t)− iC(0,1,0)(ϕ, θ, t)+ iC(1,0,0)(0, 0, t)+ iC(0,1,0)(0, 0, t)+U(M(ϕ, θ)−1). (5)

This equation is a two-dimensional variant of the transport equation and has more possible solution forms

than the one-dimensional case, namely, solutions can be of the form: C(−it+ϕ, θ−ϕ), C(−it+ θ, ϕ− θ), or

C(−it+ ϕ,−it+ θ). The solution form that works and that satisfies the boundary condition is the last one.

When boundary condition C(0, 0, t) = 0 is applied, it has solution:

C(ϕ, θ, t) = C(ϕ− it, θ − it, 0)− C(−it,−it, 0)− iU
∫ 0

−it
(M(ϕ+ γ, θ + γ)−M(γ, γ))dγ (6)

1.2.4 Dynamics of mean fitness

Rates of change of mean genic fitnesses at the two loci are obtained by taking the derivative of Eq (5) with

respect to ϕ and θ, respectively, and evaluating at ϕ = θ = 0. This yields:

∂tx̄(t) = σ2
X(t) + σXY (t)− Us̄X

∂tȳ(t) = σ2
Y (t) + σXY (t)− Us̄Y

where s̄X is mean deleterious effect of mutation at the x-locus, and s̄Y is mean deleterious effect of mutation

at the y-locus. Mean genic fitnesses at time t are obtained by applying the same procedure to Eq (6). Letting

C(ϕ, θ) := C(ϕ, θ, 0), this gives a general expression for mean fitness evolution under selection and mutation:

x̄(t) = − i C(1,0)(−it,−it) + U [M(−it,−it)− 1]

ȳ(t) = − i C(0,1)(−it,−it) + U [M(−it,−it)− 1] .

1.2.5 Covariance dynamics

The covariance dynamics for the case U = 0 are given directly by:

σXY (t) = C(1,1)(−it,−it)

Now we define the empirical characteristic function at time zero:

Φ̃(ϕ, θ) =
1

N

N∑
j=1

eiXjϕ+iYjθ

where Xj and Yj are measures of genic fitness contribution. And we then define:

C̃(ϕ, θ) = ln Φ̃(ϕ, θ)
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So that future covariance dynamics are predicted explicitly from empirical data by:

σ̃XY (t) = C̃(1,1)(−it,−it) .

This covariance-forecasting equation is shown to be very accurate in Extended Data Fig. 8.

1.3 Stochastic dynamics: Incorporating genetic drift

For our first few steps, we follow the logic outlined in Ewens’ book [3], section 4.10. We use the same notation

as in that reference, with the exception of his use of the variable x which we replace with q, because we will

later use X as we have before, to denote the fitness contribution of one of the two genes. We define the

expectation of some arbitrary function g(q), to be:

E[g(q)] =

∫
g(q)f(q; p, t)dq

where f(q; p, t) is a probability density of a diffusion process in q with initial frequencies p.

Ewens [3] (p.154, eq.4.83) gives the rate of change of the expectation of g(q):

∂

∂t
E[g(q)] = E

[∑
ai(q)

∂g(q)

∂qi
+

1

2

∑
bi(q)

∂2g(q)

∂q2
i

+
∑∑

cij(q)
∂2g(q)

∂qi∂qj

]
(7)

We now define the function g(q) to be:

g(q) = g(q1, q2, ..., qn) = Log

(
n∑
i=1

qie
θXi+φYi

)
= C̃(θ, φ) (8)

where, adhering to our previous notation, the Xi and Yi are fitness contributions of the two genes in question,

as before, and qi denotes the frequency of individuals with total fitness Zi = Xi + Yi.

The first term on the right-hand side of (7) is the selection term, with:

ai(q)dt+O(δt) = E[δqi] = qi(Zi − E[Z])

and the second two terms are drift terms, with:

bi(q)dt+O(δt) = Var[δqi] = qi(1− qi)/n

and

cij(q)dt+O(δt) = Cov[δqi, δqj ] = −qiqj/n

Plugging these definitions into Eq. (7), we have:
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• First term (selection):

∑
i

ai(q)
∂g(q)

∂qi
=

∑
i qi(Xi + Yi)e

θXi+φYi∑
i qie

θXi+φYi
−
∑
i

qi(Xi + Yi)

= C̃(1,0)(θ, φ) + C̃(0,1)(θ, φ)− C̃(1,0)(0, 0)− C̃(0,1)(0, 0)

as before, where C̃(θ, φ) = C̃(θ, φ, 0) is the cumulant-generating function associated with random vari-

ables X and Y at time zero, as defined above in (8).

• Second term (drift 1):

1

2

∑
i

bi(q)
∂2g(q)

∂q2
i

= − 1

2

1
n

∑
i qi(1− qi)e2θXi+2φYi

(
∑
i qie

θXi+φYi)
2

• Third term (drift 2):

∑
i

∑
j>i

cij(q)
∂2g(q)

∂qi∂qj
=
− 1
n

∑
i

∑
j>i qiqje

θ(Xi+Xj)+φ(Yi+Yj)

(
∑
i qie

θXi+φYi)
2

The two drift terms have a common denominator so the numerators can simply be added. When added, it

can be rearranged so that the sum of the two drift terms is:

1
2

(∑
qie

θXi+φYi
)2 − 1

2qie
2θXi+2φYi

(
∑
qieθXi+φYi)

2 =
1

2n

Φ̃(θ, φ)2 − Φ̃(2θ, 2φ)

Φ̃(θ, φ)2
,

where Φ̃(θ, φ) =
∑
i qie

θXi+φYi , the moment-generating function associated with random variables X and

Y . And of course we have that Φ̃(θ, φ) = eC̃(θ,φ), so that the drift term may be rewritten as:

1

2n

(
1− eC̃(2θ,2φ)−2C̃(θ,φ)

)
So now the whole CGF equation looks like this:

∂

∂t
E[g(q)] =

∂

∂t
E[C̃(θ, φ)] = E

[
C̃(1,0)(θ, φ) + C̃(0,1)(θ, φ)− C̃(1,0)(0, 0)− C̃(0,1)(0, 0) +

1

2n

(
1− eC̃(2θ,2φ)−2C̃(θ,φ)

)]
We suspect this equation can no longer be solved because of the non-local funny business in the drift term

(the 2θ and 2φ), but we can immediately see how drift affects the covariance by taking derivatives with

respect to θ and φ and setting these equal to zero:

∂tσXY (t) = κ1,2(t) + κ2,1(t)− 1

n
σXY (t)

where κi,j(t) is the (i, j)th joint cumulant of X and Y at time t, and we recall σXY (t) = κ1,1(t). This shows

that drift will tend to weakly push covariance towards zero from either side.
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Now writing out the full equation, with selection, mutation, and drift, we have:

∂tσXY (t) = κ1,2(t) + κ2,1(t) + Um1,1 −
1

n
σXY (t)

where m1,1 = E(∆X∆Y ) and ∆X and ∆Y are changes in fitness due to mutation. I.e., m1,1 is the first joint

moment of the DFE.

In Ewen’s book [3], n is interpreted as the number of alleles plus one: n = K − 1, where K is the number of

alleles. And if you start with an asexual population in which all individuals have different fitnesses, then in

effect you have K = N alleles, where N is population size, so that n = N − 1 ≈ N .

The foregoing developments allow us to study the effects of drift in isolation:

∂tσXY (t) = − 1

n
σXY (t) ,

giving rise to the prediction that under drift only,

σXY (t) = σXY (0)e−t/n . (9)

We compare these predictions with simulations in Extended Data Fig. 9. Simulations were individual-based

and stochastic; they started with a population that was heterogeneous in with σXY (0) = −0.025, and

proceeded with no selection and no mutation. Results of the simulations support the interpretation of n as

N .

1.4 Generalized evolutionary model

Two-loci

We now treat X and Y not as fitness components per se, but as fitness-related phenotypes. In this new

formulation, total fitness is Z = φ(X,Y ), where φ is any function of X and Y .

We are now effectively in 3 dimensions, and we thus define the following:

• Probability density of individuals having fitness Z = z and fitness-related phenotypes X = x and

Y = y:

u(x, y, z)

• Evolution equation without drift:

∂

∂t
u(x, y, z) = (z − z̄)u(x, y, z) + U

∫
δx,δy

g(x− δx, y − δy, z)g(δx, δy)− U

9 Return to Table of Contents



• Moment-generating function for u(x, y, z):

Φ(θ, φ, γ) = E[eθX+φY+γZ ]

• Cumulant-generating function for u(x, y, z):

C(θ, φ, γ) = LogΦ(θ, φ, γ)

• Moment-generating function for DFE g(δx, δy):

M(θ, φ) = E[eθ∆X+φ∆Y ]

Following steps similar to previous derivations, the evolution equation in cumulant form is now (with drift):

∂

∂t
C(θ, φ, γ) = Cγ(θ, φ, γ)− Cγ(0, 0, 0) + U(G(θ, φ)− 1) +

1

2N

(
1− eC(2θ,2φ,2γ)−2C(θ,φ,γ)

)
(10)

From here, we immediately have:

∂tx̄(t) = σXZ − Us̄X
∂tȳ(t) = σY Z − Us̄Y , (11)

a restatement of the full Price equation. And dynamics of covariance in X and Y are:

∂tκ1,1,0 = κ1,1,1 + Um1,1 −
1

N
κ1,1,0 ,

where the κ are cumulants as before, and m1,1 = E[∆X∆Y ]. If we ignore the drift term for now, this may

be rewritten as1:

∂

∂t
E[(X − X̄)(Y − Ȳ )] = E[(X − X̄)(Y − Ȳ )(Z − Z̄)] + UEg[∆X∆Y ] .

Fitness functions

As stated above, fitness is Z = φ(X,Y ), where φ is some function of fitness-related phenotypes X and Y .

• Additive. When φ(X,Y ) := X+Y , this more general model collapses back into the equations derived

from the previous model (intuitively) in which X and Y were considered “additive fitness components”

of Z. We have:

σXZ = σX,X+Y = σ2
X + σXY ,

1This can also be written as follows:

∂tσXY = σXY Z −mXσY Z −mY σXZ −mZσXY + Us̄xy ,

where m• = E[•], σ•,• = Cov(•, •), and σXY Z := E[XY Z] − E[X]E[Y ]E[Z].
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which, when plugged into Eq (11) yields:

∂tx̄(t) = σ2
X + σXY − Us̄X

∂tȳ(t) = σ2
Y + σXY − Us̄Y .

This gives rise to the previously-derived observation that σXY may be computed just from data for X.

(Or likewise, from data for Y only.)

• Multiplicative. Our independent variables are already in log-fitness space (owing to the fact that our

model is in continuous time), and it is thus not clear how to interpret a multiplicative model. Were it

to have some biological interpretation, however, this is what it looks like:

σX,Z = σX,XY ,

which, when plugged into Eq (11) yields:

∂tx̄(t) = σX,XY + UmX .

We have lost the convenient fact that Cov(X,Y ) can be computed with data for X alone, as we

had in the additive case, but we do have that Cov(X,XY ) can be computed with data for X alone.

This is more difficult to interpret, however, and does not nicely translate to a selective advantage for

recombination.

• Gaussian fitness peak. Here, we assume that φ(X,Y ) := LogN (µ,Σ), where µ = (xp, yp) and

Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
. We define new variables:

X̃ :=
X − xp√

2 σX
and Ỹ :=

Y − yp√
2 σY

where the fitness peak is found at the point (xp, yp). Then we have:

Cov(X,Z) = (1− ρ2)−1Cov(X,−X̃2 + 2ρX̃Ỹ − Ỹ 2) ,

where ρ is the correlation coefficient associated with the fitness peak. A positive correlation, for

example, would mean that individuals with similar values of X and Y would tend to have higher

fitness than individuals with divergent values of X and Y . This equation, when plugged into Eq (11)

yields:
∂

∂t
E[X] = −Cov(X̃, X̃2) + 2ρCov(X̃, X̃Ỹ )− Cov(X̃, Ỹ 2) + UEg[∆X] .

and for completeness, we write the equation in Y :

∂

∂t
E[Y ] = −Cov(Ỹ , Ỹ 2) + 2ρCov(Ỹ , X̃Ỹ )− Cov(Ỹ , X̃2) + UEg[∆Y ] .
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• First-order expansion of f(X,Y ). If our starting values are X = x0 and Y = y0, then we have:

f(X,Y ) ≈ f(x0, y0) + (X − x0)∂xf(x0, y0) + (Y − y0)∂yf(x0, y0) .

We can of course rescale so that x0 = y0 = 0, giving:

f(X,Y ) ≈ f(0, 0) +X∂xf(0, 0) + Y ∂yf(0, 0) .

n-loci

Our present work does not yet rely on this case. A subsequent publication will develop this case in greater

depth. We only mention in passing that dynamics of means of genic fitnesses is immediate:

∂

∂t
E[Xi] =

n∑
j=1

Cov(Xi, Xj) + UEg[∆Xi] ,

which is a continuous-time polygenic version of the full Price equation.
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2 Covariance and recombinant advantage

2.1 Classical discrete-time definition of relative fitness

Using standard notation and definitions, we let wi denote the mean number of offspring that the ith individual

contributes to the next generation, and w̄ = 1
N

∑N
i=1 wi, the grand mean number of offspring taken across

all individuals in the population. The relative fitness of the ith individual is simply:

wi
w̄

(12)

We emphasize here that this definition of relative fitness is in discrete time, where the discrete time interval

is a generation. While it makes biological sense and is the most commonly-used definition of relative fitness,

technically speaking it implicitly makes the questionable assumption of synchronous reproduction, which

can introduce error.

We now suppose that each individual has two genes, having genic fitnesses x and y. In the absence of

epistasis, the relative fitness of the ith individual is:

xiyi
x̄y

(13)

2.2 Recombination

If a recombinant is produced that carries the x allele from the ith individual and the y allele from the jth

individual, the relative fitness of the recombinant will be:

xiyj
x̄y

(14)

If a recombinant is produced that carries the x allele from the ith individual and the y allele from a randomly

chosen individual in the population, then on average, the relative fitness of the recombinant will be:

xi
1
N

∑N
j=1 yj

x̄y
(15)

Following the same logic, if a recombinant is produced from two randomly-chosen parents, then on average,

the relative fitness of the recombinant will be:

w̄r =
1
N

∑N
i=1 xi

1
N

∑N
j=1 yj

x̄y

N→∞−−−−→ E[x]E[y]

E[xy]
(16)
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2.3 Selective advantage of recombinants

The standard discrete-time definition of selective advantage is mean relative fitness after one generation

minus one. By this definition, the mean selective advantage of recombinants is:

s̄r = w̄r − 1 =
E[x]E[y]

E[xy]
− 1 =

−Cov(x, y)

w̄
(17)

where w̄ = E[xy], the mean fitness of the population.

2.4 Log fitness

We now define log-fitnesses, X = log x, and Y = log y, and we rewrite Eq (13) as:

eXieYi

1
N

∑N
j=1 e

Xj+Yj

(18)

If a recombinant is produced that carries the X allele from the ith individual and the Y allele from the jth

individual, the relative fitness of the recombinant will be:

eXieYj

1
N

∑N
j=1 e

Xj+Yj

If a recombinant is produced that carries the X allele from the ith individual and the Y allele from a randomly

chosen individual in the population, then on average, the relative fitness of the recombinant will be:

eXi 1
N

∑N
j=1 e

Yj

1
N

∑N
j=1 e

Xj+Yj

Following the same logic, if a recombinant is produced from two randomly-chosen parents, then on average,

the relative fitness of the recombinant will be:

1
N

∑N
i=1 e

Xi 1
N

∑N
j=1 e

Yj

1
N

∑N
j=1 e

Xj+Yj

N→∞−−−−→ E[eX ]E[eY ]

E[eX+Y ]
(19)

This defines the mean relative fitness of a randomly-chosen recombinant. The selective advantage of recom-

binants is now:

s̄r = w̄r − 1 =
E[eX ]E[eY ]

E[eX+Y ]
− 1 =

−Cov(eX , eY )

w̄
,

where here w̄ = E[eX+Y ].
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2.5 Characteristic function form

If X and Y follow some bivariate distribution whose evolving probability density is u(x, y, t) at time t, then

the associated characteristic function (cf) at time t is:

Φt(ϕ, θ) =

∫
x,y

eiϕx+iθyu(x, y, t) = E[eiϕX+iθY ]t (20)

Writing Eq (19) in terms of Eq (20), the mean relative fitness of a randomly-chosen recombinant may now

be rewritten in terms of cf’s as:

w̄r(t) =
Φt(−i, 0)Φt(0,−i)

Φt(−i,−i)

2.6 Cumulant-generating function form

The cumulant-generating function (cgf) is simply the log of the cf; thus we define:

Ct(ϕ, θ) = log Φt(ϕ, θ) (21)

from which the mean relative fitness of a randomly-chosen recombinant at time t, may now be rewritten in

terms of cgf’s as:

w̄r(t) =
eCt(−i,0)+Ct(0,−i)

eCt(−i,−i)
= eCt(−i,0)+Ct(0,−i)−Ct(−i,−i) (22)

We are now prepared to derive the evolution over time of the relative fitness of recombinants. But first, a

few observations are in order:

• While equations (20) and (21) are expressed in terms of a continuous distribution f(x, y), there are

data-friendly discrete versions of both, which we present below. These discrete versions make no

assumptions about the resolution of the fitness data, and work even when fitnesses are very granular

with only a few fitness types in the population.

2.7 Dynamics of recombinant fitness

In section 1.2, we derived the time evolution of the cgf for genic fitness X and Y . Here, we rewrite the

“selection-only” version of cgf dynamics:

Ct(ϕ, θ) = C(ϕ− it, θ − it)− C(−it,−it) (23)

where C(ϕ, θ) := C0(ϕ, θ) the cgf at time zero. Now, we are armed and ready to write down the time evolution

of recombinant fitness. Applying Eq (23) to the terms in Eq (22) we have:

• Ct(−i, 0) = C(1− it,−it)− C(−it,−it)

• Ct(0,−i) = C(−it, 1− it)− C(−it,−it)

• Ct(−i,−i) = C(1− it, 1− it)− C(−it,−it)
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Substituting these expressions into Eq (22) gives recombinant relative fitness as a function of time:

wr(t) = eC(1−it,−it)+C(−it,1−it)−C(1−it,1−it)−C(−it,−it) (24)

This expression forecasts the time evolution of recombinant relative fitness, given only the fitness distribution

at time zero; that is, all that is needed is the initial cgf, C(ϕ, θ).

Interpretation of Eq (24) : Equation (24) gives a classical discrete-time relative fitness of recombinants,

and yet it employs Eq (21) which derives from a continuous time model. The correct interpretation of

Eq (24) is that it gives the mean relative fitness of recombinants, where fitness is defined in the classical

per-generation sense, but it does so continuously. For example, its prediction for fitness at time t = 23.7 is

correctly interpreted as a relative change in mean offspring number between times t = 23.7 and t = 24.7.

2.8 How to get the cgf from data in a finite population

We suppose we have a set of empirically-determined genic fitness values for X and Y , say Xi and Yi for

i = 1, 2, ..., n. We can employ an empirical version of Eq (21):

Ĉ(ϕ, θ) = log
1

N

N∑
i=1

eiϕXi+iθYi (25)

to forecast the evolution of recombinant fitness, by substituting Ĉ for C in Eq (24).

While this formula can be used to compute the cgf from real data, here we use it for a different purpose,

namely, to compute expectations for finite populations.

For example, the expected dynamics of recombinant fitness, E[wr(t)], in a finite population of size N , can be

obtained by replacing C in Eq (24) with Ĉ from Eq (25), and integrating over random variables Xi and Yi.

2.9 An alternative derivation of the covariance result with classical population-

genetic definitions as the starting point

Equation (24) is built from the classical definition of relative fitness. We now expand each term of the

exponent in (24):

• C(1− it,−it) = C(−it,−it) + C(1,0)(−it,−it) + 1
2C

(2,0)(−it,−it) +O(C(3,0)(−it,−it))

• C(−it, 1− it) = C(−it,−it) + C(0,1)(−it,−it) + 1
2C

(0,2)(−it,−it) +O(C(0,3)(−it,−it))

• C(1− it, 1− it) = C(−it,−it) + C(1,0)(−it,−it) + C(0,1)(−it,−it)
+ 1

2

(
C(0,2)(−it,−it) + 2C(1,1)(−it,−it) + C(2,0)(−it,−it)

)
+O(C(i,j)(t, t)|i+j=3)

and we substitute these expansions back into Eq (24); this reduces to the following compact expression for

the dynamics of recombinant fitness:

w̄r(t) = e−C
(1,1)(−it,−it) (26)
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This expression is identical to the expression for recombinant fitness derived from our Fourier-transform

approach. Curiously, the expression derived from the Fourier-transform is exact, whereas here Taylor series

truncations are required. We note, however, that this approach is exact when fitness is gaussian, because in

this case all of the O(·) terms are identically zero, such that the series truncations are exact.

2.10 Covariance and recombinant advantage in continuous time

We define:

• E[X + Y ]t is expected wildtype fitness at time t.

• Er[X + Y ]t is expected recombinant fitness at time t.

• s̄r(t) is the mean selective advantage of recombinants at time t:

s̄r(t) = Er[X + Y ]t − E[X + Y ]t

We have:

s̄r(0) = Er[X + Y ]0 − E[X + Y ]0 = 0

and will show that, if σXY < 0 then:

s̄r(t > 0) = Er[X + Y ]t>0 − E[X + Y ]t>0 > 0

After one generation, we have:

s̄r(1) ≈ s̄r(0) + ∂ts̄r(0) = ∂ts̄r(0)

= ∂tEr[X + Y ]0 − ∂tE[X + Y ]0

where:

∂tEr[X + Y ]0 = σ2
X + σ2

Y

∂tE[X + Y ]0 = σ2
X + σ2

Y + 2σXY

so that:

sR(1) ≈ −2σXY

Employing a Moran model of evolution, we find that recombinant advantage increases linearly from 0 to

−2σXY over the course of a single generation (Extended Data Fig. 1), such that the averaged recombinant

advantage during that first generation is:

¯̄sr = −σXY
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3 The products of natural selection promote recombination

3.1 General setting: m loci, n genotypes

Let n and m be two positive integers. Let (Xi,j)16i6n;16j6m be a rectangular array of independent random

variables. For our purposes, each X quantifies a fitness-related phenotype encoded at one locus. Each row

represents an individual’s haploid genome and each column represents a locus on that genome. See Extended

Data Fig. 10. We shall denote by X(1) = (Xi,j)16j6m the i-th row of the array (the i-th individual in a

population). Let φ be a measurable function from Rm into R. For i = 1, . . . , n, denote by Z [1] the image by

φ of the i-th row of the array.

Z [1] = φ(X(1)) .

Z [1] represents the total fitness of individual i. Denote by σ ∈ Sn the random permutation such that

n
min
i=1

Z [1] = Sσ(1) 6 · · · 6 Sσ(n) =
n

max
i=1

Z [1] .

The permutation σ is uniquely defined up to the usual convention of increasing order for indices corresponding

to ties. Deterministically, natural selection will cause the genome of highest fitness (Sσ(n) = maxni=1 Z
[1])

to fix. We are interested in the statistical properties of the Xσ(n),j ; in particular, we are interested in any

associations that might arise across loci (across different values of j) in this winning genotype. If these

associations are negative, recombination – which alleviates negative associations across loci – should be

favored.

For 1 6 i 6 n and 1 6 j 6 m, define:

Ai,j = Xσ(i),j .

For 1 6 i 6 n, Ai = (Ai,j)16j6m is that row in the array (Xi,j) which ranks i-th in the order of images by φ.

3.1.1 Density

Proposition 0. Assume that for j = 1, . . . ,m, Xi,j has pdf fj, for all i = 1, . . . , n. Denote by H the

common cdf of Z [1]’s and assume that H is continuous over its support. The joint pdf of Ai is:

n f1(x1) · · · fm(xm)

(
n− 1

i− 1

)
Hi−1(φ(x1, . . . , xm))(1−H(φ(x1, . . . , xm)))n−i .

Proof. For any continous bounded function Ψ of m variables:

E(Ψ(Ai)) =

n∑
`=1

1

n
E(Ψ(X`) |σ(i) = `)

= E(Ψ(X1) |σ(i) = 1) .

Thus the distribution of Ai and the conditional distribution of X1 given that Φ(X1) ranks i-th, are the

same. The pdf of X1 is f1(x1) · · · fm(xm). The probability of the event σ(i) = 1 is 1/n. Conditioning on

X1 = (x1, . . . , xm), the probability that X1 ranks i-th is the probability that among S2, . . . , Sn, i−1 are below
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φ(x1, . . . , xm) and n − i are above. The probability for S` to be below φ(x1, . . . , xm) is H(φ(x1, . . . , xm)).

Hence the result.

Observe that the average of the densities of Ai’s is the common density of all X(1)’s, i.e. f1(x1), . . . , fm(xm).

This was to be expected, since choosing at random one of the Ai’s is equivalent to choosing at random one of

the X(1)’s. The question is whether the Ai’s are negatively associated in the sense of Joag-Dev and Proschan

[7]; this seems a reasonable conjecture in light of Theorems 2.8 and also examples (b) and (c) of section

3.2 in that reference. However we have not been able to prove it. We now focus on the simplest possible

scenario:

3.2 Two loci, two genotypes

No hypothesis on the ranking function φ is made at this point, apart from being measurable. Notations will

be simplified as follows: (X1, Y1, X2, Y2) are i.i.d.; (X(1), Y(1)) (the infimum) denotes that couple (X1, Y1) or

(X2, Y2) whose value by φ is minimal; (X(2), Y(2)) (the supremum) denotes that couple (X1, Y1) or (X2, Y2)

whose value by φ is maximal.

Proposition 1. Let ψ be any measurable function from R2 into R. Then: 1
2E(ψ(X(1), Y(1)))+

1
2E(ψ(X(2), Y(2))) =

E(ψ(X1, Y1)) . In particular, the arithmetic mean of E(X(1)) and E(X(2)) is E(X1).

Proof. Consider a random index I, equal to “(1)” or “(2)” each with probability 1/2, independent from

(X1, Y1, X2, Y2). By an argument used in the previous section, the couple (XI , YI) is distributed as (X1, Y1).

Hence, E(ψ(XI , YI)) = E(ψ(X1, Y1)) , however,

E(ψ(XI , YI)) = E(E(ψ(XI , YI) | I))

=
1

2
E(ψ(X(1), Y(1))) +

1

2
E(ψ(X(2), Y(2))) .

Proposition 2. We have: Cov(X(1), Y(1)) + Cov(X(2), Y(2)) = −(Cov(X(1), Y(2)) + Cov(X(2), Y(1))) =

− 1
2E(X(2) −X(1))E(Y(2) − Y(1)) .

Proof. Consider again the same random index I, equal to “(1)” or “(2)” each with probability 1/2, in-

dependent from (X1, Y1, X2, Y2). The couples (XI , YI) and (XI , Y3−I) are both distributed as (X1, Y1).

Therefore their covariances are null. These covariances can also be computed by conditioning on I (see

e.g. formula (1.1) in [7]). For (XI , YI): Cov(XI , YI) = E(Cov(XI , YI |I)) + Cov(E(XI |I),E(YI |I)) . On

the right-hand side, the first term is: E(Cov(XI , YI |I)) = 1
2Cov(X(1), Y(1)) + 1

2Cov(X(2), Y(2)) . The sec-

ond term is: Cov(E(XI |I),E(YI |I)) = 1
4E(X(2) −X(1))E(Y(2) − Y(1)) . Similarly, we have: Cov(XI , Y3−I) =

E(Cov(XI , Y3−I |I))+Cov(E(XI |I),E(Y3−I |I)) . The first term in the right-hand side is: E(Cov(XI , Y3−I |I)) =
1
2Cov(X(1), Y(2)) + 1

2Cov(X(2), Y(1)) . The second term in the right-hand side is: Cov(E(XI |I),E(Y3−I |I)) =

− 1
4E(X(2) −X(1))E(Y(2) − Y(1)) . Hence the result.
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Proposition 3. Assume that the ranking function φ is symmetric: φ(x, y) = φ(y, x). Then the couple

(X(1), Y(2)) has the same distribution as the couple (Y(1), X(2)).

As a consequence, X(1) and Y(1) have the same distribution, so do X(2) and Y(2). Thus: E(X(2) −X(1)) =

E(Y(2) − Y(1)) = 1
2E(Z [2] − Z [1]) . Another consequence is that: Cov(X(1), Y(2)) = Cov(X(2), Y(1)) . Thus by

Proposition 2: Cov(X(1), Y(2)) = Cov(X(2), Y(1)) = 1
16E2(Z [2] − Z [1]) .

Proof. Since φ is symmetric, the change of variable (X1, Y1, X2, Y2) 7→ (Y1, X1, Y2, X2) leaves unchanged the

couple (S1, S2).

Proposition 4. Assume that the ranking function φ is the sum: φ(x, y) = x + y. Then: E(X(1)) =

E(Y(1)) , E(X(2)) = E(Y(2)) , and E(X(1)) < E(X(2)) .

Proof. The first two equalities come from Proposition 3. By definition, E(X(1) + Y(1)) < E(X(2) + Y(2)).

Hence the inequality.

Proposition 5. Assume that the ranking function φ is the sum, and that the common distribution of

X1, Y1, X2, Y2 is symmetric: there exists a such that f(x− a) = f(a− x). Then (a−X(1), a− Y(1)) has the

same distribution as (X(2) − a, Y(2) − a).

As a consequence, Cov(X(1), Y(1)) = Cov(X(2),Y(2)).

Proof. The change of variable (X1, Y1, X2, Y2) 7→ (2a−X1, 2a− Y1, 2a−X2, 2a− Y2) leaves the distribution

unchanged. It only swaps the indices i and s of minimal and maximal sum.

If we summarize Propositions 1, 2, 3, 4, 5 for the case where the ranking function is the sum, and the

distribution is symmetric, one gets:

Cov(X(1), Y(1)) = Cov(X(2), Y(2)) < 0

Cov(X(1), Y(2)) = Cov(X(2), Y(1)) > 0

|Cov(X(1), Y(1))| = Cov(X(1), Y(2)) =
1

16
E2(Z [2] − Z [1]) .

4 The process of natural selection promotes recombination

4.1 Two loci, two genotypes

4.1.1 Dynamics of partitioned covariance:

We let p(t) and q(t) = 1 − p(t) denote the frequencies of superior and inferior genotypes, respectively, in a

large population at time t. These frequencies are functions of genic fitnesses and are thus dependent on the

vector (X1, Y1, X2, Y2). We define:

p(t) := p(t|X1, Y1, X2, Y2)
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and

q(t) := q(t|X1, Y1, X2, Y2)

If the population at time zero consists of half superior and half inferior genotypes, then we know from

developments elsewhere that:

p(t|X1, Y1, X2, Y2) =
eZ

[2]t

eZ[1]t + eZ[2]t

and

q(t|X1, Y1, X2, Y2) =
eZ

[1]t

eZ[1]t + eZ[2]t

Dynamics of total covariance are:

σ∗XY (t) = E[p(t)X(2)Y(2) + q(t)X(1)Y(1)]− E[p(t)X(2) + q(t)X(1)]E[p(t)Y(2) + q(t)Y(1)] (27)

t→∞−−−→ Cov(X(2), Y(2)) = − 1

16
E2[Z [2] − Z [1]]

If the (X1, Y1, X2, Y2) are iid normal, then:

σ∗XY (t)
t→∞−−−→ σ2

Xσ
2
Y (β2 − 1)

σ2
X + σ2

Y

Dynamics of within-population covariance are:

σXY (t) = E[p(t)q(t)(X(2) −X(1))(Y(2) − Y(1))]
t→∞−−−→ 0 (28)

Across-population covariance dynamics are:

σaXY (t) = E[(p(t)X(2) + q(t)X(1))(p(t)Y(2) + q(t)Y(1))] (29)

− E[p(t)X(2) + q(t)X(1)]E[p(t)Y(2) + q(t)Y(1)] (30)

t→∞−−−→ Cov(X(2), Y(2)) = − 1

16
E2[Z [2] − Z [1]]

If the (X1, Y1, X2, Y2) are iid normal, then:

σaXY (t), σ∗XY (t)
t→∞−−−→ σ2

Xσ
2
Y (β2 − 1)

σ2
X + σ2

Y

4.2 Time-integrated covariance: a measure of total recombinant advantage

As we have shown in Section 2, and more specifically in Subsection 2.10, covariance times minus one equals

immediate recombinant advantage, where “immediate” is more precisely defined as the advantage that

builds over the first generation of growth. Here we derive the time-integral of covariance within an evolving

population as a measure of total recombinant advantage within that population: If time-integrated covariance

is positive, this implies that on average natural selection creates conditions that oppose recombination within

the evolving population. On the other hand, if time-integrated covariance is negative, this implies that
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natural selection creates conditions that favor recombination within the evolving population, and the more

strongly negative the time-integrated covariance, the more advantageous recombinants are.

Proposition 6. Within-population covariance integrated over time is:∫ ∞
0

σXY (t)dt =

∫ ∞
0

E[p(t)q(t)(X(2) −X(1))(Y(2) − Y(1))]dt

= (1− p)E[
(X(2) −X(1))(Y(2) − Y(1))

(Z [2] − Z [1])
]

= (1− p)E[
(X2 −X1)(Y2 − Y1)

|Z2 − Z1|
] (31)

where p is the initial frequency of the superior genotype.

We note that the integrand, within-population covariance, is immediate (it can be written down from first

principles or derived from our pde approach) and does not rely on any assumptions about the parent dis-

tribution from which fitnesses are drawn. This fact allows us to implement any distribution, as we do in

Extended Data Fig. 2.

Proof. We let p denote initial frequency of the superior of the two genotypes, and we let q = 1 − p denote

initial frequency of the inferior genotype. The dynamic equation for within-population covariance may be

written out as:

σXY (t) =
pqe(Z[1]+Z[2])t(
peZ[2]t + qeZ[1]t

)2 (X(2) −X(1))(Y(2) − Y(1))

and the time-integral of covariance is:

∫ ∞
0

σXY (t)dt = (X(2) −X(1))(Y(2) − Y(1))

∫ ∞
0

pqe(Z[1]+Z[2])t(
peZ[2]t + qeZ[1]t

)2 dt
We focus our attention on the integral in the right-hand side. We will show that:

∫ ∞
0

pqe(Z[1]+Z[2])t(
peZ[2]t + qeZ[1]t

)2 dt =
q

Z [2] − Z [1]
,

hence giving Eq (31). We can expand the integrand as follows:

pqe(Z[1]+Z[2])t

(peZ[2]t + qeZ[1]t)2
=

q

Z [2] − Z [1]

(
(pZ [2]eZ

[2]t + qZ [1]eZ
[1]t)eZ

[1]t

(peZ[2]t + qeZ[1]t)2
− Z [1]eZ

[1]t

peZ[2]t + qeZ[1]t

)
(32)

We now define:

f := eZ
[1]t and g :=

−1

peZ[2]t + qeZ[1]t

so that:

f ′ = Z [1]eZ
[1]t and g′ =

pZ [2]eZ
[2]t + qZ [1]eZ

[1]t

(peZ[2]t + qeZ[1]t)2
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where the prime indicates derivative with respect to t. We note that the terms inside the parentheses in Eq

(32) are fg′ and f ′g. We know from the product rule (integration by parts) that∫
fg′ +

∫
f ′g = fg

so that the integral over time of everything inside the parentheses in Eq (32) reduces to:

fg =
−eZ

[1]t

peZ[2]t + qeZ[1]t

∣∣∣∣∣
∞

t=0

= 0− (−1) = 1

Hence the result: ∫ ∞
0

pqe(Z[1]+Z[2])t(
peZ[2]t + qeZ[1]t

)2 dt =
q

Z [2] − Z [1]
,

so that: ∫ ∞
0

σXY (t)dt = qE[
(X(2) −X(1))(Y(2) − Y(1))

Z [2] − Z [1]
]

where q in Prop 6 is written as 1− p.

We observe that

(X(2) −X(1))(Y(2) − Y(1)) = (X(1) −X(2))(Y(1) − Y(2)) = (X2 −X1)(Y2 − Y1)

and that

Z [2] − Z [1] = |Z2 − Z1|

from which we have:

E[
(X(2) −X(1))(Y(2) − Y(1))

Z [2] − Z [1]
] = E[

(X2 −X1)(Y2 − Y1)

|Z2 − Z1|
]

Proposition 7. We define spacings ∆X = X2 −X1, ∆Y = Y2 − Y1, and ∆Z = Z2 − Z1 = ∆X + ∆Y . If

the pairs (Xi, Yi) are independently drawn from a given distribution, then ∆X and ∆Y are symmetric about

zero. Moreover, if E[
√
|∆X∆Y |] <∞, then∫ ∞

0

σXY (t)dt = E

[
∆X∆Y

|∆Z|

]
≤ 0.

Proof: The fact that (∆X,∆Y ) is symmetric about zero is a direct consequence of the fact that (X1, Y1)

and (X2, Y2) are independent and have the same distribution. Note that, since |x| + |y| ≥ 2
√
|xy| for all

x, y ∈ R, we have

E

[
1∆X∆Y >0

∆X∆Y

|∆X + ∆Y |

]
≤ 1

2
E[
√
|∆X∆Y |] <∞.
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Hence, E [∆X∆Y /|∆X + ∆Y |] is well-defined and given by

E

[
∆X∆Y

|∆X + ∆Y |

]
= E

[
1∆X∆Y >0

∆X∆Y

|∆X + ∆Y |

]
+ E

[
1∆X∆Y <0

∆X∆Y

|∆X + ∆Y |

]
,

where, on the right-hand side, the first term is positive and finite and the second term is negative. If the

latter is −∞, the resut follows; if it is finite, since (−∆X,∆Y ) has the same distribution as (∆X,∆Y ), then

E

[
∆X∆Y

|∆X + ∆Y |

]
= E

[
1∆X∆Y >0

∆X∆Y

|∆X + ∆Y |

]
+ E

[
1(−∆X)∆Y <0

(−∆X)∆Y

|∆Y −∆X|

]
= E

[
1∆X∆Y >0∆X∆Y

(
1

|∆X + ∆Y |
− 1

|∆Y −∆X|

)]
.

Since for x and y having the same sign, we have |x+y| > |y−x|, the right-hand side in the previous sequence

of identities is less than or equal to zero, which concludes the proof. �

Remark: The same proof works for the generalized linear fitness function φ(X,Y ) = a + bX + cY with

b, c > 0. Note also that the proof tell us that E[∆X∆Y/|∆Z|] = 0 if and only if P(∆X∆Y = 0) = 1.

Corollary 1. For any real number κ, let us consider a fitness function of the form φκ(x, y) = a + bX +

cY + κg(X,Y ), where b, c > 0 and g is a function independent of κ. Let Z(κ) = φκ(X2, Y2) − φκ(X1, Y1).

Assume that for some ε > 0,

E

[
sup
|κ|<ε

|∆X∆Y |
|Z(κ)|

]
<∞, (33)

and that P(∆X∆Y = 0) < 1. Then, there is ε0 ∈ (0, ε), such that for all κ ∈ (−ε0, ε0), we have

E

[
∆X∆Y

|Z(κ)|

]
< 0.

Proof: Condition (33) implies that the function h : (−ε, ε)→ R defined via

h(κ) = E

[
∆X∆Y

|Z(κ)|

]
is continuous. Moreover, since P(∆X∆Y = 0) < 1, proceeding as in the proof of Proposition 7, we obtain

that h(0) < 0. Hence, by continuity of h, we infer that there is ε0 ∈ (0, ε) such that h is negative in (−ε0, ε0),

which concludes the proof. �

Let us now focus our attention on the fitness function φκ(X,Y ) = aX + bY + κXY with a, b > 0 and

κ ∈ R. As before, let Z(κ) = φκ(X2, Y2) − φκ(X1, Y1) = (a + κY1)∆X + (b + κX2)∆Y . The case where

the random variables (|∆X∆Y |/|Z(κ)|)κ∈(−ε,ε) are uniformly integrable (i.e. condition (33) is satisfied) is

covered already by Corollary 1. As a counterpart, the next result considers the case where the expectation of
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|∆X∆Y |/|Z(κ)| is infinite, and provides a simple condition to assure that the expectation of ∆X∆Y /|Z(κ)|
is negative (in fact, equal to −∞).

Remark: This corollary tells us that Prop 7 holds in the presence of a certain amount of epistasis (the

degree depends on the fitness function φ) and that, significantly, the interval that constrains the epistatic

parameter always contains, and is centered about, zero. The implication is that additive effects are the

driving force in creating conditions that favour recombination. The reasons for this fact can be intuited by

the following heuristic argument:

Time-integrated covariance
∫∞

0
σX,Y (t)dt = E[∆X∆Y

|∆Z| ] is dominated by what happens when

|∆Z| is small. A first order expansion of φ,

Z2 = φ(X2, Y2) ≈ φ(X1, Y1) + ∆X∂xφ(X1, Y1) + ∆Y ∂yφ(X1, Y1)

becomes increasingly accurate as |∆Z| becomes smaller. We note that φ(X1, Y1) = Z1 and we

can thus rewrite the expansion as:

∆Z ≈ ∆X∂xφ(X1, Y1) + ∆Y ∂yφ(X1, Y1)

We define kx = ∂xφ(X1, Y1) and ky = ∂yφ(X1, Y1) and

E[
∆X∆Y

|∆Z|
] = E[

∆X∆Y

|kx∆X + ky∆Y |
]

As long as kx > 0 and ky > 0 (which can be assured simply by defining X and Y appropriately),

the proof of Proposition 7 is not changed. Thus the relation∫ ∞
0

σXY (t)dt = E[
∆X∆Y

|∆Z|
] ≤ 0

holds primarily because of the additive component of whatever φ may be.

Corollary 2. Assume that the distribution of (Xi, Yi) has finite support, i.e. there is K > 0 such that

P(Xi ∈ [−K,K], Yi ∈ [−K,K]) = 1 and that |κ| < (a ∧ b)/K, where a ∧ b denotes the minimum between a

and b. If we have

E

[
|∆X∆Y |
|Z(κ)|

]
=∞, (34)

then

E

[
∆X∆Y

|Z(κ)|

]
= −∞.
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Proof: Note first that, if |κ| < (a ∧ b)/K, then P( a+ κY1 ≥ a− |κK|, b+ κX2 ≥ b− |κK|) = 1, and hence

E

[
∆X∆Y 1∆X∆Y >0

|Z(κ)|

]
= E

[
∆X∆Y 1∆X∆Y >0

|(a+ κY1)∆X + (b+ κX2)∆Y |

]
= E

[
∆X∆Y 1∆X∆Y >0

|(a+ κY1)∆X|+ |(b+ κX2)∆Y |

]
≤ 2

(a ∧ b)− |κK|
E

[
|∆X∆Y |
|∆X|+ |∆Y |

]
≤ 1

(a ∧ b)− |κK|
E
[√
|∆X∆Y |

]
≤ K

a ∧ b
<∞.

Therefore, condition (34) implies that

E

[
|∆X∆Y |1∆X∆Y <0

|Z(κ)|

]
=∞,

and thus,

E

[
∆X∆Y

|Z(κ)|

]
= E

[
∆X∆Y 1∆X∆Y >0

|Z(κ)|

]
− E

[
|∆X∆Y |1∆X∆Y <0

|Z(κ)|

]
= −∞,

achieving the proof. �

Alternative proof 1

Let f(x, y) denote the probability density governing random variables ∆X and ∆Y . The only restrictions

we place on f(x, y) is that it be symmetric about zero in both x and y directions and that its tails be not

too heavy so that the following integral exists in each quadrant of the x-y plane. Both of these restrictions

seem quite reasonable from a biological standpoint. The expectation may be thus be written as follows:

E[
∆X∆Y

|∆Z|
] =

∫ +∞

−∞

∫ +∞

−∞

xy

|x+ y|
f(x, y)dxdy

Symmetry about zero (f(x, y) = f(−x, y) and f(x, y) = f(x,−y)) allows us to integrate quadrant-by-

quadrant as follows:

E[
∆X∆Y

|∆Z|
] =

∫ ∞
0

∫ ∞
0

(
xy

|x+ y|
+

(−x)y

|(−x) + y|
+

(−x)(−y)

|(−x) + (−y)|
+

x(−y)

|x+ (−y)|

)
f(x, y)dxdy

=

∫ ∞
0

∫ ∞
0

(
2xy

x+ y
− 2xy

|x− y|

)
f(x, y)dxdy

=

∫ ∞
0

∫ ∞
0

(
1

x+ y
− 1

|x− y|

)
2xyf(x, y)dxdy (35)
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We are now integrating over positive values of x and y, for which:

(x+ y)2 = x2 + 2xy + y2 ≥ x2 − 2xy + y2 = (x− y)2√
(x+ y)2 ≥

√
(x− y)2

x+ y ≥ |x− y|

so that:
1

x+ y
− 1

|x− y|
≤ 0

implying that Eq (35) is non-positive, hence giving the result:∫ ∞
0

σXY (t)dt ≤ 0

Alternative proof 3.

Define: X = u|X| and Y = v|Y |, where u, v are independent +/− 1 random variables, independent of |X|
and |Y |. Then: |u|X|+ v|Y || = w(|X|+ |Y |) + (1− w)||X| − |Y ||, where w = uv. Again, w is independent

of |X| and |Y |.

And:

E[XY/|X + Y |)] = E[w|X||Y |/(w(|X|+ |Y |) + (1− w)||X| − |Y ||)]

=
1

2
E[|X||Y |/((|X|+ |Y |)]− 1

2
E[|X||Y |/||X| − |Y ||]

< 0

since |X|+ |Y | ≥ ||X| − |Y ||. �
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Addendum to alternative proof 3: Prop 7 holds generally for divergent expectations.

Remark: The proof of this addendum extends and succinctly generalizes the proof of Corollary 2.

Proof:

Set U = |X| and V = |Y |; M = Max(U, V ), m = Min(U, V ). Then you can rewrite the expectation as:

E[UV {1/(U + V )− 1/(|U − V |)}] = E[mM{−2m/(M2 −m2)}]

= −2E[Mm2/(M2 −m2)] ≤ 0

Indeed, if the expectation is infinity, we get a -infinity as our answer. This approach removes the need to

make the argument that U + V > |U − V | and avoids the need to take a difference of expectations. �

Metapopulation simulations illustrate how both products and pro-

cess of natural section promote recombination

Our mathematical analyses of across- and within-population covariance by themselves reveal something

fundamental about evolution: selection pressure for recombination is an unavoidable consequence of natural

selection. These results, however, derive from somewhat non-traditional approaches and abstract math. To

put our findings in perhaps a more familiar and tangible setting, we simulated the evolution of a structured

metapopulation (with no migration). To avoid introducing the complexities of mutation, which will be

addressed in a subsequent study, we here simply add uncorrelated gaussian noise to X and Y every one

hundred generations so that the population undergoes repeated bouts of selection. Extended Data Fig. 11

plots covariance and correlation dynamics from these simulations. The theory we have developed here (and

in the SI for the case of many alleles) makes quantitative and qualitative predictions about the change in

both across- and within-deme covariance over the course of each bout of selection. As our theory predicts,

1) within-deme covariance immediately plunges below zero despite starting out very strongly positive; put

differently, the process of natural selection favours recombination, and 2) across-deme covariance is reduced

in the first bout of selection but does not immediately go below zero; it is not until the third bout of selection

that it dips below zero; put differently, the products of natural selection favour recombination. (We note that

within-deme correlation does not go below zero in the first bout of selection, but this is due to an averaging

problem introduced by indeterminate correlations when covariance is near zero.)

Modifier evolution under selection and no mutation

Pertaining to:

• Extended Data Fig. 4

• Extended Data Fig. 5
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• Extended Data Fig. 6

• Extended Data Fig. 7

Notation:

• D denotes “donor”

• R denotes “recipient”

• superscript + indicates that the individual must be recombination competent ( rec+ )

• no superscript indicates that the individual can be either rec+ or rec−.

• one-way arrow indicates one-way gene transfer where the donor’s gene is duplicated and the recipient

acquires the duplicate copy.

• two-way arrow indicates a two-way gene transfer, or a gene swap between the two individuals.

• Example: D → R+ indicates a one-way gene transfer from donor to recipient, where the donor can

have either rec status but the recipient must be rec+.
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Extended Data Table 1
∣∣ Notation for m-locus case

Xi,j random variable quantifying a fitness-related phenotype encoded by the jth allele
of the ith genotype

Zi organismal fitness of the ith genotype

φ fitness function: Zi = φ(Xi,1, Xi,2, Xi,3, ..., Xi,m)

Z [k] kth-ranked genotype, ranked by fitness; k = 1 lowest fitness, k = n highest fitness,
to square with order-statistic notation (standard notation: Z [k:n])

X(k),j jth fitness-related phenotype (jth locus) of the kth-ranked genotype (jth concom-
mitant of order statistic Z [k])
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Extended Data Table 2
∣∣ Notation for 2-locus case

X, Y random variables quantifying two fitness-related phenotypes encoded by two loci

Z organismal fitness

φ fitness function: Z = φ(X,Y )

Xk, Yk random variables quantifying two fitness-related phenotypes encoded by two loci
in the kth genotype

Zk organismal fitness of kth genotype

Z [k] kth-ranked genotype, ranked by fitness; k = 1 lowest fitness, k = n highest
fitness, to square with order-statistic notation (standard notation: Z [k:n])

X(k), Y(k) quantified phenotypes contributing to the fitness of the kth-ranked genotype
(concommitants of order statistic Z [k])

Cov(X,Y ) = σXY covariance between fitness-related phenotypes X and Y

σ2
X , σ2

Y variance in X and Y , respectively

κi,j (i, j)th cumulant in (X,Y )

u(x, y, t) probability density in fitness-related phenotypes x and y at time t:∫
x,y

u(x, y, t) = 1

Φ(ϕ, θ, t) = Φt(ϕ, θ) characteristic function of density u(x, y, t) at time t

Φ(ϕ, θ) = Φ0(ϕ, θ) characteristic function of density u(x, y, t) at time t = 0

C(ϕ, θ, t) = Ct(ϕ, θ) log of the characteristic function (cumulant-generating function) of density
u(x, y, t) at time t

C(ϕ, θ) = C0(ϕ, θ) log of the characteristic function (cumulant-generating function) of density
u(x, y, t) at time t = 0

g(x, y, t) probability density of mutational effects in x and y (the DFE) at time t

g(x, y) time-invariant probability density of mutational effects in x and y (time-
invariant DFE)

M(ϕ, θ, t) characteristic function of density g(x, y, t) (the DFE) at time t

M(ϕ, θ) characteristic function of the time-invariant density g(x, y) (time-invaraint DFE)
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Extended Data Table 3
∣∣ Notation continued

•(i,j) ith and jth partial derivatives with respect to the first and second arguments of
•, respectively

∂• partial derivative with respect to •

U genomic mutation rate

n number of distinct genotypes in a population

N population size

mi,j (i, j)th raw (non-centralized) moment of the DFE

Φ̃(ϕ, θ, t) = Φ̃t(ϕ, θ) empirical characteristic function of fitness density at time t

Φ̃(ϕ, θ) = Φ̃0(ϕ, θ) empirical characteristic function of fitness density at time t = 0

C̃(ϕ, θ, t) = C̃t(ϕ, θ) log of the empirical characteristic function (empirical cumulant-generating func-
tion) of fitness density at time t

C̃(ϕ, θ) = C̃0(ϕ, θ) log of the empirical characteristic function (empirical cumulant-generating func-
tion) of fitness density at time t = 0

s̄X = −m1,0 mean deleterious effect of mutation on phenotype x.

s̄Y = −m0,1 mean deleterious effect of mutation on phenotype y.

x̄(t) = E[X(t)] mean X at time t

ȳ(t) = E[Y (t)] mean Y at time t

w̄r(t) predicted mean recombinant fitness at time t

s̄r(t) predicted mean recombinant selective advantage at time t

1A indicator function: 1 when condition A is met, 0 otherwise.
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Extended Data Fig 1
∣∣ Dynamics of recombinant advantage over one generation. A

population of size N = 500 was simulated using a Moran model of evolution. Every individual
in the population has unique values for X and Y : specifically, the ith individual has genic
fitnesses Xi and Yi. The Xi and Yi values are drawn at random from a bivariate distribution
with negative covariance σXY . Ten recombinants are introduced at time zero, and their fitness
advantage is recorded over the course of one generation. As predicted, recombinant advantage
increases to −2σXY over the course of one generation. This increase is observed here to be
linear, from which we surmise that mean recombinant advantage over this single generation is
−σXY .
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Extended Data Fig 2
∣∣ Time-integrated covariance as a function of distribution.

Time-integrated covariance as predicted by Eq (31). Values plotted were computed by Monte-
carlo integration, where X and Y are drawn from a bivariate distribution indicated above each
bar. For all distributions, E[X] = E[Y ] = −0.1, and V[X] = V[Y ] = 0.04, and correlation coef-
ficient was drawn at random from a uniform distribution over the interval (−1, 1). Montecarlo
integration sample size was 10, 000. With the exception of the normal distribution, all bivariate
distributions were computed as copula of two univariate distributions.
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Extended Data Fig 3
∣∣ Time-integrated recombinant advantage increases with num-

ber of genotypes. Time-integrated recombinant advantage computed as minus one times the
time-integrated covariance as predicted by Eq (31). Values plotted were computed by Mon-
tecarlo integration, where X and Y were drawn from a bivariate normal distribution with
E[X] = E[Y ] = −0.1, and V[X] = V[Y ] = 0.04, and initial covariance is indicated by color.
Montecarlo integration sample size was 10, 000 for each point.
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X Y rec

Extended Data Fig 4
∣∣ Three-locus model. To assess the effect of natural selection on a

recombination modifier under our simple setting with no mutation, we employ a 3-locus model,
two of which are fitness loci (X and Y ), and the third of which is a recombination modifier.
The recombination modifier has two states: rec+ or rec−. A population of n pairs of X and Y
fitnesses are drawn at random from a bivariate normal distribution with correlation indicated
by color. Half of those pairs of fitnesses are linked to a rec+ allele and the other half are linked
to a rec− allele. Natural selection acts on this variation until all fitness variation is purged.
Plotted is the average rec+ frequency of 100 simulated populations for each initial correlation.
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Extended Data Fig 5
∣∣ Reciprocal gene swap (two-way gene transfer) between two

rec-competent individuals. A population of n pairs of X and Y fitnesses are drawn at
random from a bivariate normal distribution with correlation indicated by color. Half of those
pairs of fitnesses are linked to a rec+ allele and the other half are linked to a rec− allele. Natural
selection acts on this variation until all fitness variation is purged. Plotted is the average rec+

frequency of 100 simulated populations for each initial correlation. To form a recombinant, two
rec+ individuals are chosen at random. One of the three genes is chosen at random and this
gene is swapped between the two individuals: R+ ↔ D+.

38 Return to Table of Contents



� �� ��� ���
���

���

���

���

���

���
� = �����

Time

re
c+
fr
eq

ue
nc
y

Extended Data Fig 6
∣∣ Rec-competent recipient, donor chosen at random (two-way

gene transfer). A population of n pairs of X and Y fitnesses are drawn at random from a
bivariate normal distribution with correlation indicated by color. Half of those pairs of fitnesses
are linked to a rec+ allele and the other half are linked to a rec− allele. Natural selection acts
on this variation until all fitness variation is purged. Plotted is the average rec+ frequency
of 100 simulated populations for each initial correlation. To form a recombinant, one rec+

individual is chosen at random to be the recipient (R), and a second individual is chosen at
random regardless of its rec status to be the donor (D). One of the three genes is chosen at
random and this gene is swapped between the two individuals: R+ ↔ D.
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Extended Data Fig 7
∣∣ Rec-competent donor, recipient chosen at random (one-way

gene transfer), Poisson number of genes transferred. A population of n pairs of X and
Y fitnesses are drawn at random from a bivariate normal distribution with correlation indicated
by color. Half of those pairs of fitnesses are linked to a rec+ allele and the other half are linked
to a rec− allele. Natural selection acts on this variation until all fitness variation is purged.
Plotted is the average rec+ frequency of 100 simulated populations for each initial correlation.
To form a recombinant, one rec+ individual is chosen at random to be the donor (D), and
a second individual is chosen at random regardless of its rec status to be the recipient (R).
A truncated Poisson number of genes with mean 0.1 is chosen at random, and the recipient
acquires this gene set from the donor (one-way transfer): D+ → R.
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Extended Data Fig 8
∣∣ Forecasting covariance evolution. Horizontal axis is time (genera-

tions). Vertical axis is covariance. Points are covariances measure from a completely stochastic,
individual-based, simulation. Solid curve is the covariance predicted by empirical cumulant-
generating function at time zero (the initial condition to the simulation), denoted C̃(ϕ, θ) and
defined in the main text.
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Extended Data Fig 9
∣∣ Covariance dynamics under drift only. Solid curve plots the

predicted dynamics given by Eq (9) and assuming n = N ; points plot the averages of 50
simulations. The initial state of the population was a set of 5000 (X,Y ) pairs (N = 5000)
drawn at random from a bivariate normal distribution with σXY (0) = −0.025.
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Extended Data Fig 10
∣∣ General formulation. The population here consists of n =

9 individuals (9 genomes) represented by the 9 rows, each of which carries a genome with
m = 10 loci represented by the 10 columns. Each dot represents a locus on an individual
genome and its color indicates its genic fitness. The total fitness of the ith individual is Zi =
φ(Xi,1, Xi,2, ..., Xi,m), where Xi,j is the genic fitness of jth locus in the ith individual. Strictly
speaking, φ can be any function, but our developments eventually require that it be some
increasing function of the genic fitnesses, Xi,j . To give a simple and useful example, φ may be
defined simply as the sum of its arguments. We employ this definition of φ extensively in the
main text and in our analyses, both because of its simplicity and because of its connection to
classical population genetics and notions of additive fitness. On the left-hand side, the genomes
are not sorted in any order; on the right-hand side, the same genomes are sorted (ranked) by
their total fitness, Z, such that Z [1] is the genome of lowest fitness and Z [n] is the genome
of highest fitness. If selection were deterministic, the fittest genome (Z [n], highlighted by a
frame) would eventually displace all other genomes. The statistical properties of the genic
fitnesses of this fittest genome are thus of special interest from an evolutionary perspective. In
particular, we are here interested in any statistical associations among these genic fitnesses: if
that association tends to be negative, then recombination will be favored.
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Extended Data Fig 11
∣∣ Covariance dynamics in a metapopulation. Simulated

metapopulations of size N = 500 begin with all individuals being assigned unique genic fitness
pairs, (X,Y ), drawn at random from a common bivariate normal distribution with correlation
coefficient 0.9, means −0.1 and variances 0.2. Every 100 generations, uncorrelated gaussian
noise was injected as follows: X ′ = X +Q and Y ′ = Y +Q, where Q ∼ N (−.1, .1). Plotted is
mean covariance (a) and mean correlation (b) of 2000 runs.
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