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Abstract 27 

Designing covalent inhibitors is a task of increasing importance in drug discovery. Efficiently 28 
designing irreversible inhibitors, though, remains challenging. Here, we present covalentizer, a 29 
computational pipeline for creating irreversible inhibitors based on complex structures of targets 30 
with known reversible binders. For each ligand, we create a custom-made focused library of 31 
covalent analogs. We use covalent docking, to dock these tailored covalent libraries and to find 32 
those that can bind covalently to a nearby cysteine while keeping some of the main interactions of 33 
the original molecule. We found ~11,000 cysteines in close proximity to a ligand across 8,386 34 
protein-ligand complexes in the PDB. Of these, the protocol identified 1,553 structures with 35 
covalent predictions. In prospective evaluation against a panel of kinases, five out of nine predicted 36 
covalent inhibitors showed IC50 between 155 nM - 4.2 µM. Application of the protocol to an 37 
existing SARS-CoV-1 Mpro reversible inhibitor led to a new acrylamide inhibitor series with low 38 
micromolar IC50 against SARS-CoV-2 Mpro. The docking prediction was validated by 11 co-crystal 39 
structures. This is a promising lead series for COVID-19 antivirals. Together these examples hint 40 
at the vast number of covalent inhibitors accessible through our protocol.  41 

  42 
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Introduction 43 
 44 

Covalent irreversible inhibitors have become increasingly popular over the last decade as 45 
chemical probes and drugs. Most often these inhibitors target a cysteine residue to form the 46 
covalent bond. Several rationally-designed irreversible inhibitors targeting cysteines were 47 
approved by the FDA in recent years, with notable examples such as  Ibrutinib1, Afatinib2 and 48 
Osimertinib3. Irreversible binding offers a variety of advantages, including prolonged residence 49 
time4 and an ability to compete with high-affinity natural substrates5–7. Another important 50 
advantage of covalent inhibitors is their improved selectivity when targeting non-conserved 51 
cysteine residues8,9. Moreover, covalent binding can enable targeting of especially challenging 52 
targets such as the G12C oncogenic K-Ras mutation10–12.  53 

Historically, most covalent inhibitors were designed by the addition of an electrophile to 54 
an already known reversible inhibitor that suitably binds next to a cysteine residue13–18. More 55 
recently, covalent inhibitors are also being discovered by empirical screening of covalent fragment 56 
libraries19–25 and by covalent virtual screening10,26–32. While covalent fragment and virtual 57 
screening can potentially discover new scaffolds, the binding affinity of primary hits may be 58 
relatively low, and often require laborious medicinal chemistry to reach suitable potency.  59 

Covalent derivatization of an already known reversible binder, can endow the compound 60 
with added benefits of irreversible binding such as time dependent inhibition, longer duration of 61 
action, improved selectivity towards proteins that contain the target cysteine compared to 62 
homologs without a cysteine at that position, and possibly improved potency.  Still, this approach 63 
is far from trivial. Three crucial questions have to be answered: 1. Which electrophilic moiety to 64 
use? 2. What is the optimal vector on the scaffold to attach through? 3. What linker, if any, would 65 
optimize the placement of the electrophile with respect to the binding mode of the scaffold and the 66 
position of the target cysteine residue? There are numerous possible answers for these questions. 67 
Furthermore, the “covalentized” (derivative containing the electrophile) version of the reversible 68 
inhibitor should be synthetically accessible. Therefore, tools that would enable to address this 69 
design problem algorithmically, would significantly simplify covalent inhibitor design and has the 70 
potential to discover many potent covalent binders for a large variety of targets.  71 

Computational approaches to address this challenge are scarce. DUckCov29 a covalent 72 
virtual screening method, begins with non-covalent docking of a library of covalent compounds, 73 
while using pharmacophoric constraints for hydrogen bonds, as well as for the covalent warhead. 74 
This is followed by covalent docking of the ligands with the strongest non-covalent affinities. 75 
CovaDOTS33 uses a set of synthetic schemes and available building blocks, to create covalent 76 
analogs of existing non-covalent ligands, but was only assessed retrospectively. Cov_FB3D34 77 
constructs de novo covalent ligands and was retrospectively assessed on recapitulation on known 78 
covalent inhibitors.  79 
 Here we present a computational pipeline to identify potential existing reversible binders 80 
for covalentization (creation of a covalent analog). Given a complex structure or model of a ligand 81 
in the vicinity of a cysteine residue, we elaborate the ligand or its substructures with various 82 
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electrophiles. This ad hoc library of covalent analogs is covalently docked to the target protein and 83 
the original (non-covalent) structure is used as a filter to identify high-confidence covalent 84 
candidates. We applied this protocol - covalentizer - to the entire PDB to identify thousands of 85 
potential candidates amenable for irreversible inhibition, and made both the protocol and the 86 
database of pre-computed candidates publicly available to the community 87 
(https://covalentizer.weizmann.ac.il). We have prospectively synthesized and tested several 88 
predictions of various covalent kinase inhibitors proposed by the protocol and succeeded in five 89 
out of nine designs with IC50’s of 155 nM - 4.2 µM. 90 
 In early February 2020, the COVID-19 pandemic started to spread globally35,36. We turned 91 
to the pre-compiled database of covalentizer results, to look for possible candidate inhibitors for 92 
SARS-CoV-2 proteins. The search found a reversible small molecule inhibitor designed against 93 
the main protease of the SARS-CoV-1 virus (PDB: 3V3M37), which has 96% sequence identity to 94 
the main protease of SARS-CoV-2, with a promising covalent prediction. We synthesized the 95 
prediction and validated irreversible binding to the SARS-CoV-2 main protease (Mpro). We further 96 
optimised the non-covalent affinity of the compound, resulting in improved analogs. Co-crystal 97 
structures confirmed the computational model. This example highlights the strength of our method 98 
- the design was already available, and enabled very rapid development. The database suggests 99 
that hundreds more such examples await testing.  100 
  101 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.299776doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.299776
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 102 
  103 
The covalentizer pipeline 104 
 105 

For a given complex structure with a reversible ligand in the vicinity of a target cysteine 106 
residue, the pipeline (Fig. 1) comprises four consecutive steps: fragmentation, electrophile 107 
diversification, covalent docking and RMSD filtering.  108 
 109 

 110 
Figure 1. An overview of the covalentizer computational protocol. 111 
The protocol comprises four consecutive steps. A. Fragmentation: the molecule is broken and divided into fragments 112 
(red arrows) using synthetically accessible bonds38. Murcko scaffolds39 of the fragments (blue arrows) are also added 113 
to the list of fragments. B. Electrophilic diversification: for each substructure, a library of potential electrophilic 114 
analogs is generated, a few hundred compounds in size. We used four kinds of nitrogen-based electrophiles ranging 115 
in reactivity: vinyl sulfones, chloroacetamides, acrylamides and propynamides. We also considered various linkers 116 
between the fragment and the electrophile. C. Docking: The target structure is then docked against its appropriate 117 
analog library using all available cysteine rotamers. Finally, RMSD calculation: For each docked compound, an 118 
RMSD is calculated between the MCS (maximal common substructure) of the reversible compound and the new 119 
covalent analog. We show examples of predictions with increasing RMSDs, for binders of 1. Nitrate reductase from 120 
Ulva prolifera (PDB: 5YLY) 2. Human mineralocorticoid receptor (PDB: 5HCV) and 3. Human progesterone receptor 121 
(PDB: 1A28). 122 
 123 
A. Fragmentation: In this step, the ligand is broken-down and divided into two parts via 124 
synthetically accessible bonds38. Doing this recursively, results in a list of substructures (Fig. 1A). 125 
For each substructure, we augment the list with its corresponding Murcko scaffold39 (the naked 126 
ring system, without any decoration) to allow more exit vectors from which the electrophile can 127 
be added next. The motivation for this fragmentation step is three-fold. First, as mentioned, 128 
fragmenting the molecule exposes new vectors on which to install the electrophile (see Fig. 1C 129 
example 2). Second, the additional constraint of forming the covalent bond might cause a slight 130 
shift to the molecule’s binding mode from the original crystal structure. Such a shift may propagate 131 
and cause a steric clash between the protein and a ligand moiety distal to the electrophile. Since 132 
adding the covalent bond is expected to increase the overall potency, we ‘sacrifice’ parts of the 133 
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molecule to enable the addition of an electrophile. The final ranking of candidate covalent analogs 134 
relies on covalent docking which is sensitive to sub-Å shifts. Hence, occasionally, a truncated 135 
version of the ligand will dock well, while the full ligand will not. Thus, including the sub-136 
structures and their scaffolds maximizes the number of candidates. Since covalent docking 137 
accuracy was shown to deteriorate with ligand size and number of rotatable bonds26, we filter the 138 
final list of substructures, to those with 8-25 heavy atoms and up to five rotatable bonds. 139 
 140 
B. Electrophile diversification: For each substructure or scaffold, we generate a library of potential 141 
electrophilic analogs, typically resulting in a few hundred analogs (Fig. 1B). We consider four 142 
kinds of electrophiles ranging in reactivity: vinyl sulfonamides, chloroacetamides, acrylamides 143 
and propynamides, that can all be installed in one step onto a free amine. We add these 144 
electrophiles to the substructures using simple connection rules which, however, do not guarantee 145 
synthetic accessibility (see methods section for more details). We also consider various linkers 146 
between the fragment and the electrophile. In our application below, we considered either a 147 
methylene linker or various di-amine linkers (Supp. Fig. 1).  148 
 149 
C. Covalent docking: The structure of the complex is prepared for docking, using all available 150 
cysteine rotamers. We use DOCKovalent26 to dock the electrophile library we described above 151 
against the protein (after removing the crystallographic ligand). 152 
 153 
D. RMSD filtering: Compounds that are able to form a covalent bond with the target cysteine while 154 
still maintaining the same binding mode of the original reversible ligand are likely candidates for 155 
covalent analogs. To assess this, we evaluate the RMSD (root mean square deviation) between 156 
each docking prediction and the crystallographic ligand. Due to the fact that RMSD is calculated 157 
between two sets of matching atoms, and the reversible ligand is different from the irreversible 158 
one, it was calculated based on the maximal common substructure (MCS) between the two 159 
molecules. Figure 1C exemplifies predictions with varying RMSDs.  For a PDB wide application 160 
of the pipeline, we focused on covalent analogs with a docking position of < 1.5 Å RMSD from 161 
the crystallographic ligand. 162 
 163 
Covalent kinase inhibitors benchmark 164 
 165 
To benchmark the pipeline, we wanted to test whether it is able to find known covalent inhibitors, 166 
given only their reversible part as input. To achieve this, we used the kinase subset of a recently 167 
published covalent docking benchmark30. This set included 35 kinase covalent inhibitor complex 168 
structures with either acrylamides, chloroacetamides or vinyl sulfonamides (after excluding seven 169 
inhibitors with uncommon electrophiles). To form the input for covalentizer, we removed the 170 
electrophiles while leaving only a free amine. For substituted acrylamides we removed β-171 
substitutions as well. 172 
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Out of the 35 structures, the pipeline identified the crystallographic covalent inhibitor in 173 
14 (40%) of the cases, with a threshold of 1.5 Å MCS-RMSD (Fig. 2; Supp. Table 1). 174 

 175 

 176 
Figure 2. Covalentizer successfully recapitulates known covalent kinase inhibitors.  177 
Examples of covalent kinase inhibitors (green) for which covalentizer was able to find a substructure match (magenta) 178 
under the 1.5 Å threshold. A. ERK2, PDB: 4ZZO. B. EphB3, PDB: 5L6P. C. EGFR (T790M), PDB: 4I24. D. JAK3, 179 
PDB: 5TOZ. The electrophiles span acrylamides (A,D), a substituted acrylamide (C) and chloroacetamide (B). 180 
 181 
Covalentizing the PDB 182 
 183 

Encouraged by the results in recapitulating known covalent kinase inhibitors we aimed to 184 
apply our protocol to the entire PDB. We started from the set of all the protein-small molecule X-185 
ray structures (< 3.0 Å resolution) that contained a small molecule with a molecular weight greater 186 
than 300 Da, and no DNA/RNA chains. As of the date of the search (July 4th, 2019) this resulted 187 
in 44,990 structures. We filtered these to structures in which a ligand has one of its atoms within 188 
6 Å of the sulphur atom of a free cysteine residue. Disulfides or covalently modified cysteines 189 
were excluded. After applying this filter, we ended up with 8,386 such structures, and ~11,000 190 
cysteines. 191 

These structures, which constitute the target space for our protocol, contain significant 192 
redundancy. Clustering them with a threshold of 90% sequence identity, results in 2,227 193 
representatives. 38% of the structures are of human proteins and the rest span many other 194 
organisms including rodents, bacteria and yeast. They also span seven different enzyme classes, 195 
with the most prevalent being transferases (41.4%). 928 structures (11.1% of the entire dataset) 196 
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are kinases. These ~8,400 proteins contain 3,673 different ligands, each binding next to a cysteine. 197 
The ligand that is most abundant in this database is Flavin-Adenine Dinucleotide occurring in 504 198 
structures, whereas 3,058 ligands (83% of the compounds) occur only in a single structure. The 199 
most common ligands were nucleotide or nucleotide-like molecules.  200 

After running the aforementioned algorithm against the ~8,400 structures that passed our 201 
filtering (Fig 3A), 1,553 structures produced at least one candidate below the 1.5 Å RMSD cutoff. 202 
These structures represent roughly 380 proteins (representative set at 95% sequence identity). 203 
1,051 structures are of human proteins, 338 are structures of kinases. 80 of the structures had 204 
produced a covalent analog prediction that was docked < 0.5 Å from the original ligand, 205 
representing very high-confidence candidates (Fig. 3B). The distribution of selected electrophiles 206 
is almost uniform (Fig. 3C). All of the predictions are made available through a public website 207 
(https://covalentizer.weizmann.ac.il) which is automatically updated weekly with new PDB 208 
entries. 209 
 210 

 211 
Figure 3. PDB wide application of covalentizer identifies candidate irreversible inhibitors for more than 1,500 212 
structures. A. We filtered the protein data bank (PDB) for structures that had only protein chains (no DNA/RNA), 213 
and contained a small molecule of at least 300 Da. This threshold was set to ensure some minimal initial fit/binding 214 
affinity to the target, as well as to filter out non-ligand small molecules like crystallization reagents. We used a pymol 215 
based script to filter only the structures in which at least one ligand atom is < 6 Å away from the sulfur atom of a 216 
cysteine residue. This cysteine also has to be free (no disulfide or other covalent modifications). After running the 217 
covalentizer protocol and filtering only for results with < 1.5 Å RMSD of the maximal common substructure (MCS) 218 
between the reversible ligand and the covalent analog generated by covalentizer, there were 1,553 structures for which 219 
at least one such prediction was obtained. B. The top 1% of results have an RMSD under 0.5 Å. 23% are between 0.5 220 
Å and 1 Å, and 76% are between 1 Å and 1.5 Å. C. The distribution of the four electrophiles used is balanced, with 221 
29% chloroacetamides, 27% acrylamides, 24% vinylsulfones, and 20% propynamides. 222 
 223 
Exploring additional linkers 224 
 225 

As mentioned above, the entire database was processed using direct attachments of the 226 
electrophiles to atoms of the sub-structures, as well as with a methylene linker. The use of longer 227 
and more diverse linkers for the addition of an electrophile would allow the targeting of cysteines 228 
further from the ligand thus increasing the available target space, as well as diversifying the 229 
introduced chemistry. To investigate this further, we searched the covalent inhibitor discovery 230 
literature40–43 for the most common di-amine linkers used in the last decade which led to the 231 
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selection of 7 aromatic linkers and 17 aliphatic linkers (Supp. Fig. 1). Since including all of these 232 
linkers increases the computational demands of the pipeline, we restricted its application to the 233 
subset of liganded kinase structures in the PDB. Since these linkers can enable ligands to reach 234 
further cysteines at extended distances, the search criteria was extended to a distance of up to 10 235 
Å from the ligand (instead of 6 Å, previously).  236 

The final subset includes 1,880 PDB structures that contain a Cys residue of up to 10 Å 237 
away from one of 1,398 various ligands. The size of the custom-made libraries of electrophilic 238 
analogs for a particular reversible ligand, containing these linkers, now extends to a few thousand 239 
compounds. Overall, we generated in silico over 3 million electrophilic compounds with di-amine 240 
linkers for the kinase subset. The results show candidates of < 1.5 Å MCS-RMSD between the 241 
original reversible ligand and the electrophilic candidate for 411 protein structures. 186 of these 242 
structures (45%) were not found in the previous run, showing the potential of using these more 243 
sophisticated linkers to reach farther cysteines and to covalentize more ligands.  244 
 245 
Novel covalent inhibitors for various kinases 246 
 247 

Kinase inhibitors comprise 22% of the covalentizer results. We selected a subset of these 248 
for prospective validation. We chose the candidates based on three features: 1. Low RMSD relative 249 
to the parent reversible ligand. 2. The addition of the electrophile is not predicted to interfere with 250 
the kinase hinge binding region. 3. Ease of synthesis. This required manual inspection of pre-251 
selected low RMSD results. Overall, we made and tested nine compounds (Fig. 4) targeting five 252 
different kinases. In some cases, addition of the electrophile required removal of large parts of the 253 
parent reversible ligand (Supp. Fig. 2). The compounds were each tested in a kinase activity assay 254 
against the target kinase in the structure from which the covalentizer result was derived. The assay 255 
was performed at ATP concentration equal to the Km of the kinase in question, with a 2 h pre-256 
incubation of the inhibitor at 25 °C. 257 
  258 
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 259 
Figure 4. Prospective prediction identifies novel irreversible kinase inhibitors. A. Chemical structures and in vitro 260 
kinase activity assay IC50s for nine prospective covalentizer predictions. See Supp. Fig. 2 for the parent compounds, 261 
pose predictions and RMSD values. B. Dose response curves for each of the nine compounds (see additional 262 
repetitions for 1 and 2 in Supp. Fig. 3). Each compound was tested against its corresponding target kinase. C. 263 
Deconvoluted mass spectra obtained by intact protein LC/MS of recombinant ERK2 (2 µM)  incubated with equimolar 264 
1 or 2 for 1 h at room temperature, identifies significant irreversible binding by both compounds.   265 
 266 

Four of the nine compounds did not show inhibition under the assay conditions (IC50 > 10 267 
µM). Three compounds targeting ERK2 showed IC50 values of 3 - 4.24 µM. For two of these 268 
inhibitors, 1 and 2, we assessed irreversible binding to ERK2 by intact protein mass spectrometry 269 
(2 µM ERK2, 2 µM compound, 1 h incubation at 25 °C). The expected protein-compound adducts 270 
were detected (25% and 33% labeling respectively; peak-to-peak Δm 265-270 Da for both 271 
compounds; Fig. 4B) with no additional adducts derived from multiple reactions, highlighting the 272 
moderate reactivity of the designed α-chloroacetamides. The remaining covalentizer hits included 273 
a 2.01 µM inhibitor (3) of FGFR4 derived from the non-selective kinase inhibitor ponatinib, and a 274 
155 nM inhibitor (4) of GSK3β. 275 
 276 
A covalent SARS-CoV-2 main protease inhibitor 277 
 278 

Upon the release of the first structure of the new SARS-CoV-2 Mpro protease (PDB: 279 
6LU744) we noticed that the active site is nearly identical to that of SARS-CoV-1. The entire 280 
protein is highly conserved with 96% sequence identity. This prompted us to search the database 281 
for covalent versions of SARS-CoV-1 Mpro ligands. One such prediction was available based on a 282 
reversible inhibitor ML188 (IC50= 4.8 ± 0.8 µM, racemate; 1.5 ± 0.3 µM, (R)-enantiomer) of the 283 
SARS-CoV-1 main protease (PDB: 3V3M37; Fig. 5A). We re-synthesized and tested racemic 284 
ML188 against SARS-CoV-2 Mpro which showed an IC50 of 3.14 µM (Supp. Fig. 4A), similar to 285 
what has been reported for SARS-CoV-1. ML188 was synthesized using the Ugi four-component 286 
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reaction (4-CR), and the covalent prediction was easily accessible by replacing one reactant (2-287 
furoic acid to acrylic acid) to give 10, synthesized and isolated as the racemate (Fig. 5D). We 288 
initially assessed irreversible binding of 10 towards recombinant SARS-CoV-2 Mpro using intact 289 
protein mass spectrometry (2 µM protein, 1.5 h incubation with electrophile at 25 °C; Fig. 5F). 290 
The expected adduct was detected with 19% labeling at 2 µM compound, and up to 88% labeling 291 
at 200 µM compound (Fig. 5F). 292 

 Despite the irreversible binding, this initial compound did not show strong inhibition in a 293 
fluorescence-based enzymatic assay (IC50 > 99 µM, 13% inhibition at 20 µM; 15 min pre-294 
incubation; Fig. 5H). However, it was a promising starting point for additional optimization. Due 295 
to the modular nature of the Ugi 4-CR procedure, it was possible to synthesize and test large 296 
libraries of analogs by systematically varying each reactant to target different pockets. We 297 
designed those libraries based on computational modelling of in silico generated Ugi products, as 298 
well as an exhaustive screen of commercially available isocyanides (see Supp. Dataset 1). A few 299 
of the early combinatorial synthetic results, which had low biochemical potency (comparable to 300 
our starting Ugi compound), allowed for crystallographic analysis in the presence of Mpro. In these 301 
cases, the expected binding mode was recapitulated experimentally and showed low deviation 302 
from the non-covalent starting point (Fig. 5B, 5C, Supp. Fig. 5), thus proving the covalentizer 303 
prediction to be correct. In all crystal structures, the electrophile formed the expected covalent 304 
bond with the catalytic cysteine residue. 305 

To optimize 10, we have made and tested close to 140 analogs (Supp. Dataset 1; Fig. 5. 306 
Supp. Fig. 7,8), exploring all three components of the Ugi reaction while keeping the acrylamide 307 
fixed.  We explored a variety of replacements for the initial p-tert-butylphenyl motif protruding 308 
into the S2 pocket (Fig. 5), most of them did not result in improved potency (Supp. Fig. 7C). 309 
Similarly, independent optimization of binding to the S1 pocket only led to the identification of 310 
one beneficial change (23, IC50 65.58 µM), with a meta chloro-substitution of the pyridine (Supp. 311 
Fig. 7A). Other substituents (-Br, -OMe, -OEt, -CF2CH3) led to inactive compounds.  312 

Beyond further optimization of the S1 and S2 pocket binding it was clear that extension of 313 
the ligand towards the S3 and S4 pockets should prove fruitful. For example, a reversible-covalent 314 
α-ketoamide inhibitor46 (biochemical IC50 0.67 µM ± 0.18 µM) probes the S3/4 region with an 315 
additional hydrogen bond to the backbone of Glu166. In a large scale fragment screen, numerous 316 
fragments were able to bind in these pockets47. In this case, we exhaustively synthesized analogs 317 
of 10, using 34 available isocyanides. Starting from 10, simple alkyl chain extension resulted in 318 
compounds with improved potency (Fig. 5D). In particular compound 11, harboring a 319 
phenethylamide motif, was particularly potent with an IC50 of 2.95 µM (Fig. 5G) and Kinact/Ki of 320 
18.4 M-1s-1 (Supp. Fig. 6). 321 

 322 
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 323 
Figure 5. Computational prediction and experimental validation of an irreversible SARS-CoV-2 Mpro inhibitor. 324 
A. The covalentizer prediction of 10 (magenta) overlaid on the non-covalent compound it is based on (ML18845; 325 
green; PDB:3V3M). The protocol suggested to substitute the furanyl moiety of ML188 with an acrylamide to bind the 326 
catalytic cysteine. The RMSD between the covalent fragment and the original reversible inhibitor is 0.65 Å. B. The 327 
crystal structure of one of the covalent analogs of 10 (PDB: 5RH5; cyan) overlaid on ML188 (green). C. Overlay of 328 
all the 11 crystal structures of compound 10 analogs, all exhibiting the same predicted binding mode. PDBs: 5RGT, 329 
5RH5, 5RH6, 5RH7, 5RH9, 5RL0, 5RL1, 5RL2, 5RL3, 5RL4, 5RL5. For individual structures see Supp. Fig. 5. D. 330 
The chemical structures of ML188 and 10. E. Chemical structure of Ugi compounds exploring the S3 pocket, with the 331 
R group that is shown in the crystal structure in (B). F. Deconvoluted mass spectra obtained by intact protein LC/MS 332 
of recombinant SARS-CoV-2 Mpro 2µM incubated with 2 µM - 200 µM 10 for 1.5 h at room temperature. G. Further 333 
analogs of 10 with their associated biochemical potencies. H. The dose response curves for the seven compounds 334 
shown in G. 335 
 336 

It appears that relief of steric strain around the amide nitrogen also plays a part, since 337 
change to a methyl amide (in 12, relative to 10) also resulted in increased potency. Opposed to our 338 
initial assumption of independent optimization of S1-3 pocket binding, the combination of 339 
beneficial structural motifs in a third generation of Ugi products led to inhibitors with diminished 340 
potency compared to 11 (see Supp. Fig. 7B; Supp. Dataset 1). One explanation for this behaviour 341 
is the high plasticity of Mpro, leading to induced fit effects.  342 
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Removal of the furanyl in ML188 and replacement with an electrophile in 10 initially led 343 
to a loss in potency, which in this case was overcome by optimization of the non-covalent affinity 344 
in the S3 region to give compound 11. Re-installing the furanyl ring in combination with the S3-345 
optimized phenethylamide motif led to compound 17 with a similar IC50 (2.72. µM; Supp. Fig. 346 
4B), suggesting that the marked improvement of this side-chain is particular to the covalently 347 
bound conformation.  348 

In conclusion, we successfully executed a mode of action change towards irreversible 349 
targeting of the catalytic cysteine residue in Mpro which may have improved activity in cells as 350 
well as long-term strategic benefits to safeguard against viral evolution.  351 
  352 
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Discussion 353 
 354 
 Designing new covalent inhibitors is challenging. Here we leveraged the subset of protein 355 
targets for which a structure of a known binder is available, to computationally enumerate and 356 
evaluate exhaustive sets of covalent derivatives. Automating the protocol allowed us to apply it to 357 
the entire PDB and assess the applicability of this approach. Prospective testing against six real-358 
world targets demonstrated that irreversible ligands can be reached with little synthesis, and 359 
structures validated the binding-pose prediction.  360 
 361 

A main advantage of our work is the wide exploration of X-ray structures which produced 362 
an extensive list of candidates waiting to be explored. This allowed us to quickly find a promising 363 
lead series against SARS-CoV-2 Mpro. This prediction, which was based on a historic non-covalent 364 
SARS-CoV-1 Mpro inhibitor45 was pre-calculated, and ready for synthesis at a moment's notice. 365 
We have made thousands of such predictions available through a public website 366 
(https://covalentizer.weizmann.ac.il) which updates weekly with the release of new structures to 367 
the PDB. It also allows covalentizing of user uploaded structures. We believe this would enable 368 
wide application and experimental testing of new covalent inhibitors.  369 
 370 

Despite the success of our protocol, several caveats remain. First is the fact that currently 371 
the protocol does not take into account the synthetic feasibility of the proposed designs. When 372 
selecting candidates for prospective evaluation, we found that some of the molecules required 373 
complicated synthesis. Incorporating into our pipeline a strategy such as DOTS33,48, other 374 
retrosynthesis algorithms49–51 or even the use of synthetic feasibility scores52–54, can significantly 375 
improve the quality of proposed candidates in the future.  376 

 377 
 Another point for improvement is the relatively weak potency of our prospective designs 378 
in comparison to their parent compounds. One likely explanation for these lower affinities is the 379 
removal of non-covalent affinity elements which are not sufficiently compensated by the gains 380 
from covalent bond formation. For example, in compound 2 (derived from PDB: 4QTA) more 381 
than 350 Da of the original compound55 is removed (Supp. Fig. 2), resulting in three orders of 382 
magnitude loss in potency. However the remaining covalent fragment still shows significant 383 
inhibition of ERK2. Another example is compound 1, its parent compound (PDB: 4QP9) has an 384 
IC50 of 71 nM, however the propyl-pyrazole group we have omitted in order to accommodate the 385 
electrophile (Supp. Fig. 2) improved the parent reversible binder by more than 150-fold. Lastly 386 
the loss of a hydrogen bond between the Mpro backbone NH of Gly143 and the furanyl oxygen of 387 
ML188 (PDB: 3V3M), decreased potency, under our assay conditions of 15 min. pre-incubation, 388 
by more than 30-fold. These results suggest that a careful examination of the binding energy 389 
contribution is required for the parts that are omitted in order to accommodate the new electrophile. 390 
 391 
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However, as we saw for both ERK2 (1 vs. 5) and Mpro (10 vs. 11), improving reversible 392 
recognition is able to improve potency, and even to surpass the parent compound in the case of 11. 393 
For this series we believe that further structure-based optimization of binding to the S3 pocket, 394 
including H-bonding to Glu166 and chiral separation of the active enantiomer can pave the way 395 
for sub-micromolar Ugi-type covalent Mpro inhibitors. Thus, in many cases where irreversible 396 
binding is needed our protocol can provide a promising starting point for optimization.  397 
 398 

Another possible explanation for the relatively low affinity of the irreversible binders are 399 
slight inaccuracies in the covalent warhead positioning which results in sub-optimal covalent bond 400 
formation. Perhaps due to the fact that the docking program does not take into account the actual 401 
formation of the covalent bond, and ignores for instance the transition state energy of the rate-402 
determining step of the organosulfide bond formation, but rather evaluates the binding energy of 403 
the adduct. Better understanding of the steric and electronic constraints of the covalent bond 404 
formation, and hence a better docking software should improve the results. 405 

 406 
The docking software also ignores the intrinsic reactivity of the proposed designs. It is 407 

interesting to note in this regard the similar activity of a methylene-chloroacetamide (1), compared 408 
to its acrylamide analog (6). Such electrophile replacements can be very useful in rational design 409 
of irreversible inhibitors, especially if they prove to work across various scaffolds. Geometrically, 410 
the additional methylene before the chloroacetamide makes the distance from the ring to the thiol 411 
similar to that of the acrylamide (Supp. Fig. 2). In terms of reactivity, however, the acrylamide, 412 
conjugated to the azaindole is activated56 and thus is likely closer in reactivity to the 413 
chloroacetamide.  Indeed, a methylene linker would be the minimal linker element required to 414 
insulate against 𝜋-conjugation, allowing easier prediction of intrinsic reactivity. No-linker designs 415 
connected to extended 𝜋-systems such as heteroarenes often exhibit a range of intrinsic 416 
reactivities20,56 which remain challenging to predict computationally57–59 and thus require careful 417 
evaluation.  418 
 419 

Many additional designs remain to be discovered beyond the more than 1,500 we made 420 
available through the covalentizer server. New electrophiles and linkers which will enable new 421 
geometric trajectories between the cysteine and the molecule, can considerably expand the design 422 
space. We tested this idea computationally using a library of linkers curated from the literature 423 
(Supp. Fig 1), on a subset of kinases from our database, showing an increase in the number of 424 
structures that can be covalentized. New covalent ‘warheads’, including reversible covalent 425 
warheads, such as cyanoacrylamides60, and clorofluoroacetamides61 become available, both for 426 
cysteine residues62, but also for other amino acids63–65. These can be incorporated with little effort 427 
into the covalentizer pipeline. Since cysteine is one of the least abundant natural amino acids, 428 
additional covalent chemistries will significantly expand the number of ligands that can be 429 
potentially addressed. 430 

 431 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.299776doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.299776
http://creativecommons.org/licenses/by-nc-nd/4.0/


In summary, we show that using covalent docking we were able to make irreversible 432 
analogs of ligands for which a complex structure is available. We made our discoveries public in 433 
the form of a database of the results we obtained by running our protocol on the entire PDB which 434 
is automatically updated weekly with newly released entries, as well as a web-tool for applying 435 
the protocol on new targets given by users. Using the protocol, we discovered new covalent kinase 436 
inhibitors and optimised a potent covalent COVID-19 protease inhibitor, with a low-cost, modular 437 
and fast synthesis. We hope our results will encourage researchers to apply covalent inhibitors for 438 
a wide range of targets. 439 
  440 
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Methods 441 
 442 
Programs and libraries 443 

RDKit was used for 2D molecular handling, conformation generation and RMSD 444 
calculation. RDKit: Open-source cheminformatics; RDKit.org. Marvin was used in the process of 445 
preparing the molecules for docking, Marvin 17.21.0, ChemAxon (https://www.chemaxon.com). 446 
DOCKovalent 26 was used for virtual covalent docking. 447 
 448 
Curating target structures from the PDB 449 

Using pymol scripts (The PyMOL Molecular Graphics System, Version 2.0.4 Schrödinger, 450 
LLC), we filtered only the structures that have a ligand in which one of its atoms is within 6 Å 451 
cysteine residue. We further filtered the list to include only cysteines with a free thiol group 452 
(defined as a sulfur atom that is only connected to the residue’s Cβ). By doing this, we discarded 453 
any disulfides, as well as cysteines that are already covalently attached to a ligand. We further 454 
removed any ligands which had more than one copy per chain in the structure, and ligands on 455 
which processing of the ligand’s SMILES failed. 456 

  457 
Enumerating substructures for covalentization 458 

Fragmentation and scaffold extraction was done using RDKit’s implementation of the 459 
Recap algorithm 38 and the MurckoScaffold 39 functionality respectively. 460 
  461 
Covalentizing a substructure 462 

For each substructure or scaffold, we generated a library of potential electrophilic analogs 463 
using SMARTS based reactions. The reaction rules were: 1. Adding an electrophile (including the 464 
nitrogen) to any non-substituted aromatic carbon, as well as all aliphatic carbons with one or two 465 
bonded atoms, excluding carbons which are already connected to nitrogen. 2. Adding an 466 
electrophile to a free amine, either primary or secondary. In this case the nitrogen is completed 467 
with the rest of the electrophile. The first rule will usually require more complicated synthesis, 468 
whereas the second rule, will allow to use the same ligand as a starting material for a nucleophilic 469 
substitution of the acyl form of the electrophile with the free amine. 470 
 471 
Docking and RMSD calculation 472 

RDKit and Marvin were used to create 250 conformations for each electrophilic analog. 473 
Covalent docking was done using DOCKovalent – a virtual screening program. We docked the 474 
appropriate analog library for each target, while saving 10 structures for each analog to increase 475 
the number of final candidates. When docking the larger linker based libraries we only used the 476 
top scoring structure for each analog, due to the large number of structures for analysis. Alternative 477 
rotamers for the cysteine residue were generated with pymol based scripts. We used RDKit to filter 478 
only for results with a MCS that has an RMSD of less than 1.5 Å to the original ligand. 479 
 480 
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Computational optimisation of the Mpro inhibitor 481 
 We used the RDKit reaction functionalities, as well as OpenBabel 482 
(http://openbabel.org/wiki/Main_Page) to prepare virtual libraries of analogs of compound 10. The 483 
Ugi reaction has three reactants: amine, isocyanide, aldehyde and carboxylic acid. The carboxylic 484 
acid is set constant to acrylic acid, since we didn’t want to change the electrophilic component. In 485 
the virtual libraries, we left it as the reversible furan moiety for convenience in modeling. We thus 486 
created three such libraries, each one by replacing one of the three other Ugi reactants with 487 
commercially available building blocks. Using RDKit, we generated up to 100 constrained 488 
conformations of each molecule, by fixing the conformation of three components as in the crystal 489 
structure, and changing only the conformation of the variable part. We then used the Rosetta 490 
modeling suite in order to choose the best conformation for each compound, when bound to the 491 
protease. For each molecule, we then defined this set of constrained conformations as an extra 492 
residue for Rosetta, and used Rosetta Packer66 to choose the best conformation, while allowing 493 
side-chain flexibility. Eventually, we chose analogs only for the amine and the isocyanide 494 
components, as the aldehyde component was highly optimised already. We chose 9 isocyanide 495 
replacements and 14 amine replacements (one of them was not based on docking). Most 496 
combinations of these components were made by Enamine and tested as part of the Covid-497 
Moonshot effort47,67. 498 
 499 
Intact protein LC/MS 500 

Mpro was incubated for 90 minutes in 50 mM Tris pH 8 300 mM NaCl in room temperature. 501 
ERK2 was incubated for 60 minutes in 10 mM Hepes pH 7.5 500 mM NaCl and 5% glycerol in 502 
room temperature. The LC/MS runs were performed on a Waters ACUITY UPLC class H 503 
instrument, in positive ion mode using electrospray ionization. UPLC separation used a C4 column 504 
(300 Å, 1.7 µm, 21 mm × 100 mm). The column was held at 40 °C and the autosampler at 10 °C. 505 
Mobile solution A was 0.1% formic acid in water, and mobile phase B was 0.1% formic acid in 506 
acetonitrile. The run flow was 0.4 mL/min with gradient 20% B for 4 min, increasing linearly to 507 
60% B for 2 min, holding at 60% B for 0.5 min, changing to 0% B in 0.5 min, and holding at 0% 508 
for 1 min. The mass data were collected on a Waters SQD2 detector with an m/z range of 509 
2−3071.98 at a range of 1000−2000 m/z. The mass data were collected on a Waters SQD2 detector 510 
with an m/z range of 2–3071.98 at a range of 900–1500 m/z for ERK2 and 1000–2000 m/z for 511 
Mpro. The desolvation temperature was 500 °C with a flow rate of 1000 L/h. The voltages used 512 
were 0.69 kV for the capillary and 46 V for the cone. Raw data were processed using openLYNX 513 
and deconvoluted using MaxEnt (20 - 60 kDa window, 1 Da/channel resolution). 514 

 515 
 Kinase activity assays 516 

Biochemical Kinase inhibition assays were carried out at Nanosyn, Santa Clara. Test 517 
compounds were diluted in 100% DMSO using 3-fold dilution steps.  Final compound 518 
concentration in assay ranged from 10 µM to 0.0565 nM. Compounds were tested in a single well 519 
for each dilution, and the final concentration of DMSO in all assays was kept at 1%. Reference 520 
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compound, Staurosporine, was tested in an identical manner. Compounds were preincubated in 521 
25C for 2 hours before the measurements, and the kinase reactions were then performed for an 522 
additional 3 hours. For ERK2, the kinase concentration was 0.25-0.35 nM, the ATP concentration 523 
was 25 µM. For MELK, the kinase concentration was 0.06 nM, the ATP concentration was 30 524 
µM. For VEGFR2, the kinase concentration was 0.25 nM, the ATP concentration was 80 µM. For 525 
GSK3B, the kinase concentration was 0.09 nM, the ATP concentration was 10 µM. For FGFR4, 526 
the kinase concentration was 0.17 nM, the ATP concentration was 250 µM. 527 
 528 
Biochemical Mpro inhibition assay 529 
 Compounds were seeded into assay-ready plates (Greiner 384 low volume 784900) using 530 
an Echo 555 acoustic dispenser, and DMSO was back-filled for a uniform concentration in assay 531 
plates (maximum 1%). Reagents for Mpro assay were dispensed into the assay plate in 10 µl 532 
volumes for a final of 20 µl. Final reaction concentrations were 20 mM HEPES pH=7.3, 1mM 533 
TCEP, 50 mM NaCl, 0.01% Tween-20, 10% glycerol, 5 nM Mpro, 375 nM fluorogenic peptide 534 
substrate ([5-FAM]-AVLQSGFR-[Lys(Dabcyl)]-K-amide). Mpro was pre-incubated for 15 535 
minutes at room temperature with compound before addition of substrate. Protease reaction was 536 
measured continuously in a BMG Pherastar FS with a 480/520 ex/em filter set. Data was mapped 537 
and normalized in Genedata Screener.  538 
 539 
Mpro Crystallography 540 
 Mpro protein was expressed and purified as discussed previously47. Apo Mpro crystals were 541 
grown using the sitting drop vapour diffusion method at 20 °C by adding 150 nl of protein (5 542 
mg/ml in 20 mM Hepes pH 7.5, 50 mM NaCl) to 300 nl of crystallisation solution (11% PEG 4K, 543 
6% DMSO, 0.1M MES pH 6.7) and 50 nl of seed stock prepared from initial crystal hits. 55 nl of 544 
a 100 mM compound stock solution in DMSO was added directly to the crystallisation drops using 545 
an ECHO liquid handler (final concentration 10% DMSO) and drops were incubated for 546 
approximately 1 hour prior to mounting and flash freezing in liquid nitrogen. Data were collected 547 
at Diamond Light Source on beamline I04-1 at 100K and processed using XDS68 and either xia269, 548 
autoPROC70 or DIALS71.  Further analysis was performed with XChemExplorer72: electron 549 
density maps were generated with Dimple73; ligand-binding events were identified using 550 
PanDDA74 (both the released version 0.2 and the pre-release development version 551 
(https://github.com/ConorFWild/pandda)); ligands were modelled into PanDDA-calculated event 552 
maps using Coot75; restraints were calculated with GRADE76; and structures were refined with 553 
BUSTER77. Coordinates, structure factors and PanDDA event maps for all data sets are deposited 554 
in the Protein Data Bank under PDB IDs 5RGT, 5RH5, 5RH6, 5RH7, 5RH9, 5RL0, 5RL1, 5RL2, 555 
5RL3, 5RL4 and 5RL5. Data collection and refinement statistics are summarised in Supplementary 556 
Table 2. The ground-state structure and all corresponding datasets are deposited under PDB ID 557 
5R8T. 558 
 559 
  560 
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