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ABSTRACT 
 
The single-cell assay for transposase accessible chromatin (scATAC) is an invaluable asset to 
profile the epigenomic landscape of heterogeneous cells populations in complex tissue and organ 
systems. However, the lack of tools that enable the use of scATAC data to discriminate between 
malignant and non-malignant cells has prevented the widespread application of this technique 
to clinical tumor samples. Here we describe Copy-scAT, a new computational tool that uses 
scATAC data to infer both large-scale and focal copy number alterations. Copy-scAT can call both 
clonal and subclonal copy number changes, allowing identification of cancer cells and cell 
populations that putatively constitute the tumor microenvironment. Copy-scAT therefore 
enables downstream chromatin accessibility studies that focus on malignant or non-malignant 
cell populations in clinical samples that are profiled by scATAC. 
 
 
INTRODUCTION 
 
Single-cell genomic tools have been invaluable in efforts to deconvolute complex and 
heterogeneous cellular systems, including cancer1. Single-cell RNA sequencing (scRNA-seq) 
generates data on transcriptional profiles of individual cells and has been robustly and widely 
implemented2. The sequencing-based single-cell assay for transposase-accessible chromatin 
(scATAC-seq) produces a snapshot of the genomic areas that are in accessible (i.e. “open”) 
chromatin, a conformation normally associated with active regulatory regions and with gene 
transcription3. Whereas numerous computational tools have been developed over the years for 
scRNA-seq applications4, downstream analysis platforms for scATAC-seq datasets are still limited, 
posing significant challenges to more widespread implementation of this epigenomic approach. 
 
scATAC-seq can be used to dissect mechanisms of transcriptional regulation in discrete cell 
populations. These mechanisms can be inferred by mapping active putative regulatory regions - 
like enhancers and super enhancers - or footprints associated with occupancy of transcription 
factors (TFs) and TF families that are active in specific cell types. When applied to heterogeneous 
tissues, these techniques can deconvolute the transcriptional and chromatin states that are 
responsible for the emergence and maintenance of specific cell fates. When deployed in the 
context of heterogeneous cancer types, they can provide information on the epigenomic states 
that define populations with disparate functional properties, including putative cancer stem cells 
and more differentiated cell types with limited self-renewal. 
 
One major challenge in the application of scATAC-seq to investigations of cancer is sample 
heterogeneity and inability to reliably distinguish between neoplastic and non-neoplastic cells. 
As most neoplastic cells have some degree of chromosomal instability, they typically will have at 
least some large-scale copy number variants (CNVs) or chromosomal gains or losses, which are 
typically absent from normal cells. Analysis of CNVs in single-cell data has been approached by 
multiple groups in a number of different sample types. For full-length single-cell RNA-seq data, 
the Suvà group used binning of transcript values over different regions of chromosomes to 
impute CNVs5,6. CONICSmat is an R package designed to perform similar analyses, with the option 
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to combine allele haplotypes and windowed gene transcription from scRNA-seq expression 
matrices7. CONICSmat was also used more recently to infer CNVs from ATAC-seq data, by using 
imputed gene activity scores generated with Snap-ATAC8 in lieu of an expression matrix9. 
 
Algorithms have been developed to impute CNVs from single-cell DNA-sequencing data. Early 
approaches included read depth assessment with variable bins10, and a method by Ning et al 
leveraging GC bias correction11. More recent methods include SCAN-SNV, which leverages allelic 
imbalance to call CNVs in scDNA-seq data12, and CHISEL, which again leverages single-cell 
haplotypes to call CNVs in single cells and cell subpopulations13. However, to date, no dedicated 
method has been developed to call CNVs using scATAC-seq data, limiting its potential 
applications to the study of complex tumor types. scATAC-seq datasets are challenging as they 
are quite sparse, preferentially sample accessible chromatin only, and have a certain degree of 
bias due to the sequence preferences of the Tn5 transposase. We set out to develop a tool that 
enables reliable calling of CNVs using scATAC-seq datasets. To this end, we describe Copy-scAT 
(copy number inference using single-cell ATAC), an R package that uses a combination of Gaussian 
segmentation and changepoint analysis14 to identify large-scale gains and losses and regions of 
focal loss and amplification in individual cells. We provide proof-of-principle validation of the 
functionalities of this tool using scATAC-seq datasets we generated from adult glioblastoma 
(aGBM; n = 3), pediatric GBM (pGBM; n = 6), and multiple myeloma (MM; n = 10) clinical 
specimens. 
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RESULTS 
 
Copy-scAT identifies chromosome-arm level copy number variation and focal amplifications in 
scATAC-seq data using read depth analysis 
 
We designed Copy-scAT, an R package that uses scATAC-seq information to infer copy number 
alterations. Copy-scAT uses fragment files generated by cellranger-atac (10xGenomics) as input 
to generate chromatin accessibility pileups, keeping only barcodes with a minimum number of 
fragments (defaulting to 5,000 fragments). It then generates a pileup of total coverage (number 
of reads × read lengths) over bins of determined length (1 million bp as default) (Figure 1A). 
Reads are then normalized along linear scales (i.e. they are not log-normalized) over the total 
signal in each cell to account for differences in read depth, and chromosomal bins which consist 
predominantly of zeros (at least 80% zero values) are discarded from further analysis. All 
parameters, including reference genome, bin size, and minimum length cut-off are user-
customizable. Copy-scAT then implements different algorithms to detect focal amplifications and 
larger-scale copy number variation. 
To call focal amplifications (Figure 1B), Copy-scAT generates a linear scaled profile of density over 
the normalized 1 Mbp bins along each chromosome on a single-cell basis, centering on the 
median and scaling using the range. We use changepoint analysis (see Methods) to identify 
segments of abnormally high signal (Z-score > 5) along each chromosome in each single cell. 
These calls are then pooled together to generate consensus regions of amplification, in order to 
identify putative double minutes and extrachromosomal amplifications. Each cell is scored as 
present/absent for each region.  
Segmental losses are called in a similar fashion, by calculating a quantile for each bin on a 
chromosome, running changepoint analysis to identify regions with abnormally low average 
signal, and then using Gaussian decomposition of total signal in that region to identify distinct 
clusters of cells.  
For larger copy number alterations, Copy-scAT pools the bins further at the chromosome arm 
level using a trimmed mean, while normalizing the data on the basis of length of CpG islands 
contained in each bin (Figure 1C). Data is then scaled for each chromosome arm, compared to a 
pseudodiploid control, and cluster assignments are generated using Gaussian decomposition. 
Cluster assignments are then normalized to get an estimate of copy number for each cell. These 
assignments are then optionally combined with clustering information to generate consensus 
genotypes for each cluster of cells and further filter false positives. For full details regarding the 
execution of Copy-scAT, see Methods. 
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Figure 1. Overview of the Copy-scAT workflow.  
(A) Initial sample processing.  
(B) Pipeline for detection of focal amplifications and losses.  
(C) Pipeline for detection of large-scale CNVs. 
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Copy-scAT highlights segmental amplifications and losses in solid tumours 
 
By implementing Copy-scAT, we were able to detect both amplifications and large-scale copy 
number events using scATAC-seq datasets we generated from surgically resected GBM samples. 
Some copy number events were subclonal (see for instance chromosome 10p loss in Figure 2A). 
However, the majority of the putative copy number events that were detected appeared in 
nearly all tumour cells, were not detected in adjoining normal cells (inferred by the lack of called 
CNVs), and were therefore deemed to be clonal (Figure 2B-2C). As an example, we found that 
amplifications of the distal region of chromosome 1q involving MDM4 appeared to be clonal in 
sample 4349 (Figure 2D).   
However, Copy-scAT also called subclonal focal amplifications at the PDGFR and EGFR loci in this 
tumor. PDGFRA and EGFR focal amplifications were mutually exclusive (Figure 2E-2F), a result 
that is in agreement with previous observations in aGBM15. In contrast, only one subclone of 
sample 4218 showed loss of chromosome 18, along with a distinct gain of chromosome 1p, the 
latter not being detected in whole-genome sequencing (WGS) data (Figure 2G-I). This type of 
information would be difficult to obtain through conventional WGS, in part because of underlying 
sample heterogeneity and the relatively small size of some subclones. These results suggest that 
new information on clonal architecture can be gleaned through implementation of Copy-scAT 
compared to more traditional bulk sequencing technologies. 
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Figure 2. Identification of amplifications and copy number alterations on single-cell data with 
Copy-scAT.  
(A-C) Identification of GBM-specific copy number variants in neoplastic cells in a primary aGBM 
sample.  
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(D-F) Clonal amplification at MDM4, and subclonal amplifications of PDGFRA and EGFR detected 
in a GBM sample. 
(G-I) Subclonal gains in 1p and loss of 18q in aGBM 4218. 
(J-L) Performance of Copy-scAT with scATAC-seq datasets generated from aGBM samples 
compared to WGS for gains, losses and amplification events, respectively.  
______________________________________________________________________________ 
 
 
 
Copy-scAT effectively calls clonal and subclonal CNVs 
 
Overall, in 3 aGBM samples and 6 pGBM samples (diagnostic/relapse pairs from 3 patients), Copy-
scAT detected the majority of copy number alterations detected by WGS, with a sensitivity of 1.0, 
0.79 and 1.0 for gains, losses and focal amplifications in adult samples, and lower sensitivity of 
0.73 and 0.73 for gains and losses in pediatric samples (Figure 2J-K;  Figure 3A-B; Table 1). 
Specificity of the calls was greater than 0.89 in all cases. Some of the differences in sensitivity 
may have to do with input sample characteristics, as the pGBM samples had both a lower average 
read count per filtered cell (average pGBM count: 36,062; average aGBM count: 54,797) and 
were generated from snap-frozen archival tissue rather than cryopreserved cells, possibly leading 
to a lower quality of transposition (Table 1). Examples of copy number variants detected in a 
paired pGBM sample (pGBM-1) showed some variants identified in both matched samples, with 
others only being detected in one of the two samples (Figure 3C-F). 
Our tool was also tested in a cohort of 10 MM samples, which had been profiled with single-cell 
copy number (scCN) assays (10xGenomics). There was reasonable concordance between gains 
and losses determined by Copy-scAT and the scCN assay (Figure 4A, 3B) in all 10 samples, and 
similar numbers of gains and losses were detected by both methods (Figure 4C, 4D). Sensitivity 
in the 10 MM samples was slightly lower than for GBMs, with 0.51 and 0.67 for gains and losses, 
respectively (Table 1). These samples had a much lower average read counts and more cells per 
dataset than the GBM samples. Concordance between methods was not associated with overall 
read counts per cell and number of cells per sample (Figure 4E-H), although there was a trend 
towards improved detection of CNVs in samples with larger numbers of cells. Concordance was 
reasonable even in samples with 10,000-20,000 reads per cell. Examples of unfiltered CNV calls 
from one sample (MM1555) show detection of multiple variants also detected in the scCN 
experiments. There was clear distinction between one large cluster and two smaller clusters, with 
a few small clusters lacking the CNVs, consistent with non-neoplastic hematopoietic cells (Figure 
4I-K). 
 
 
Table 1. Sensitivity and Specificity of Copy-scAT in aGBM, pGBM and MM samples 

 Gains Losses Amplifications 
Samples Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
aGBM (n = 3) 1.0 0.94 0.79 0.89 1.0 1.0 
pGBM (n= 6) 0.73 0.93 0.73 0.95 N/A 0.975 
MM (n = 10) 0.51 0.94 0.67 0.89 N/A N/A 
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Figure 3. Performance of Copy-scAT with pGBM samples.  
(A-B) Comparison of scATAC versus WGS datasets in calling large-scale copy number gains and 
losses in patient-matched diagnostic (D) and relapse (R) samples.  
(C) UMAP plot of scATAC data for patient-matched diagnostic (D) and relapse (R) pGBM 
specimens.  
(D-F) Examples of copy number alterations detected in both samples (D,E) or in one sample only 
(F).
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Figure 4. Performance of Copy-scAT in calling copy number alterations in MM samples 
compared to the scCN assay.  
(A-B) Number of events detected in each specimen by Copy-scAT, scCN or both, for copy 
number gains and losses. 
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(C-D) Comparison of total number of events detected for copy number gain and loss events by 
number of cells in sample.  
(E-F) CNVs detected by both Copy-scAT and scCN analysis versus sample size.  
(G-H) CNVs detected by both Copy-scAT and scCN analysis versus average reads per cell in 
scATAC sample.  
(I-K) CNVs detected in sample MM1555, all of which were also identified by scCN. 
______________________________________________________________________________ 
 
 
 
DISCUSSION 
 
We have developed Copy-scAT, a novel tool which leverages Gaussian decomposition and 
changepoint analysis to call focal amplifications and large-scale CNVs using scATAC-seq datasets. 
This is accomplished without the need for a non-neoplastic control. We benchmarked Copy-scAT 
using scATAC-seq datasets we generated from clinical samples, but it should be widely applicable 
to the study of cell lines and other systems characterized by inherent epigenomic and genomic 
heterogeneity. Our data demonstrate that Copy-scAT can identify clonal and subclonal CNVs in 
primary cancer samples, enabling the discrimination between malignant and non-malignant cells 
in clinical specimens. 
We were able to use Copy-scAT to effectively identify CNVs in both solid tumors (GBM samples) 
and liquid malignancies (MM samples) using scATAC data. CNV calls by Copy-scAT were 
benchmarked against (i) CNV calls made with WGS data for GBM samples and (ii) CNV calls made 
by scCN technology (10xGenomics) for MM samples. In general, Copy-scAT performed well on 
samples with at least 20,000 reads per cell and was able to detect some CNVs with samples having 
as few as 10,000 reads per cell. In samples with high read counts, Copy-scAT identified more 
putative CNVs than were identified using WGS, some confined to small clusters of cells. Some of 
these calls represented smaller changes in signal, which may represent either true segmental 
changes, or may simply reflect significant changes in accessibility (such as compartment status) 
in particular regions of the genome and may not be associated with an underlying copy number 
alteration. These observations suggest that higher per-cell sequencing depth (approximately 
30,000 reads per cell) enable more reliable detection of alterations such as CNVs and 
amplifications. Importantly, Copy-scAT can detect both clonal and subclonal copy number events, 
thereby significantly expanding the downstream applications of scATAC experiments compared 
to what is currently possible.  
There are some limitations to our approach. First, in our GBM samples, as we used a whole-
genome reference, we were not able to validate the CNV status of individual cells. In addition, 
our benchmarking results could be impacted by our inability to perform WGS and scATAC on the 
same cell populations in pGBM samples. It is therefore possible that some of the discrepancies 
in calling CNVs between WGS and scATAC-seq/Copy-scAT may reflect true differences in 
subclonal compositions of the cells that were assayed with these two technologies. This is 
supported by the better performance of our tool with aGBM samples, where the WGS reference 
sequencing was performed on residual nuclei from the same tissue fragment that was used for 
scATAC, which resulted in sampling the same underlying cell populations with both methods. 
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Moreover, normalization of CpG content in ATAC samples is imperfect and may be affected by 
the overall enrichment in the sample and the sample type. This may lead to an irregular baseline 
signal for different chromosomes and may lead to inaccurate assignments of some chromosomes 
as lost or gained. The optimal settings for our algorithm are also variable, especially with regard 
to the pseudodiploid control cells, and may need to be adjusted for different sample types and 
sample cellularity. In general, the algorithm works best with samples that are heterogenous, with 
at least 5-10% non-tumour cells. In addition, as we do not leverage haplotype data, our approach 
is unable to detect copy-neutral loss of heterozygosity. And lastly, while CNVs are typically 
associated with neoplastic cells, there are tissue types, such as the developing and normal brain, 
where mosaicism is common, and thus populations of cells with CNVs may be seen that are not 
cancer cells16–18. 
Overall, Copy-scAT is a tool that will enable new types of epigenomic investigations of complex 
tissues and model systems. It will expand the downstream applications of scATAC, especially in 
the context of cancer studies, by allowing the identification of malignant and non-malignant cells 
in clinical samples. 
 
 
 
 
METHODS 
 
Ethics and consent statement 
All samples were collected and used for research with appropriate informed consent and with 
approval by the Health Research Ethics Board of Alberta. 
 
scATAC-seq sample processing 
scATAC libraries were prepared from GBM and MM samples using a Chromium controller 
(10xGenomics), as per protocol. Samples were sequenced on NextSeq 500 or Novaseq 6000 
instruments (Illumina) at the Centre for Health Genomics and Informatics (CHGI; University of 
Calgary) using the recommended settings. 
 
scATAC-seq initial data analysis 
The raw sequencing data was demultiplexed using cellranger-atac mkfastq (Cell Ranger ATAC, 
version 1.1.0, 10x Genomics). Single cell ATAC-seq reads were aligned to the hg38 reference 
genome (GRCh38, version 1.1.0, 10x Genomics) and quantified using cellranger-atac count 
function with default parameters (Cell Ranger ATAC, version 1.1.0, 10x Genomics). 
 
Single-cell CNV analysis 
Fragment pileup and normalization 
The fragment file was processed and signal was binned into bins of a preset size (default 1 Mb) 
across the hg38 chromosomes to generate a genome-wide read-depth map. Only barcodes with 
a minimum of 5000 reads were retained, in order to remove spurious barcodes. This flattened 
barcode-fragment matrix pileup was cleaned by removal of genomic intervals which were 
uninformative (greater than 80% zeros) and barcodes with greater than a certain number of zero 
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intervals. Cells passing this first filter were normalized with counts-per-million normalization 
using cpm in the edgeR package19. 
 
Chromosome arm CNV analysis 
The normalized barcode-fragment matrix was collapsed to the chromosome arm level, using 
chromosome arm information from the UCSC (UCSC table: cytoBand), centromeres were 
removed, and signal in each bin was normalized using the number of basepairs in CpG islands in 
the interval using the UCSC CpG islands table (UCSC table: cpgIslandExtUnmasked). The signal 
was then summarized using a quantile-trimmed-mean (between the 50th and 80th quantiles). 
Only chromosome arms with a minimum trimmed mean signal were kept for analysis. 
The chromosome arm signal matrix is mixed with a generated set proportion of pseudodiploid 
control cells, defined using the mean of chromosome segment medians with a defined standard 
deviation. This cell-signal matrix is then scaled across each chromosome arm and centered on 
the median signal of all chromosomes. Each chromosome arm segment is then analyzed using 
Gaussian decomposition with Mclust20. The subsequent clusters are filtered based on Z scores 
and mixing proportions, and redundant clusters are combined. These Z scores are then translated 
into estimated copy numbers for each segment for each barcode. The barcode CNV  assignments 
can be optionally used to assign consensus CNVs to clusters generated in other software packages 
such as Loupe or Seurat/Signac.  
 
De novo amplification detection 
The normalized barcode-fragment matrix was scaled and mean-variance changepoint analysis 
using the Changepoint package was performed for each cell and each chromosome to identify 
areas of abnormally high signal (Z score greater than 5)14. The consensus coordinates of each 
amplification region were generated across all cells and only abnormalities affecting a minimum 
number of cells were kept for analysis. 
 
De novo loss of heterozygosity detection 
The normalized barcode-fragment matrix was scaled as above. As overall coverage levels in these 
samples are quite sparse, a chromosome-wide coverage profile was generated for the entire 
sample in bulk, using the 30% quantile as a cut-off, and then changepoint analysis was used to 
find inflection points. This was followed by Gaussian decomposition of the values using Mclust to 
identify putative areas of loss or gain, thresholded by a minimum difference in signal between 
the clusters identified by Mclust. 
 
Whole genome sequencing 
DNA was extracted from residual nuclei from the same samples and tissue fragments used for 
scATAC-seq of adult GBM samples, using the Qiagen DNEasy Blood and Tissue DNA extraction kit 
(Qiagen # 69504).  Libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit 
(#E7645) and sequenced on the Novaseq 6000 (Illumina) at the CHGI (University of Calgary), in 
paired-end mode.  
 
Whole genome data processing 
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Genome data was aligned to the hg38 assembly using bwa mem (bwa  0.7.17)21. Samtools was 
used to extract high-quality reads (Q > 30) and picard tools (Broad Institute) was used to remove 
duplicates22.  
 
Whole genome SNV and CNV detection 
Gatk mutect2 (Broad Institute) was run on the filtered data to detect SNVs with low stringency 
using the following settings: --disable-read-filter 
MateOnSameContigOrNoMappedMateReadFilter. CNVkit was subsequently used to call copy 
number variants using the following parameters: --filter cn -m clonal –purity 0.723. Adjacent 
segments were further combined and averaged using bedtools24. 
 
Data visualization and clustering 
Data was visualized and UMAP plots were generated using Seurat 3.0.0 and Signac 1.0.0 (Github: 
https://github.com/timoast/signac)) and Cell Loupe version 4.0.025.  
 
Data and code availability: 
The package and a sample tutorial for Copy-scAT is available on Github at 
http://github.com/spcdot/CopyscAT . Processed single-cell ATAC-seq data files will be made 
available upon publication. 
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