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Abstract 18 

A fundamental question in neuroscience is how brain organisation gives rise to humans’ unique 19 

cognitive abilities. Although complex cognition is widely assumed to rely on frontal and 20 

parietal brain regions, the underlying mechanisms remain elusive: current approaches are 21 

unable to disentangle different forms of information processing in the brain. Here, we introduce 22 

a powerful framework to identify synergistic and redundant contributions to neural information 23 

processing and cognition. Leveraging multimodal data including functional MRI, PET, 24 

cytoarchitectonics and genetics, we reveal that synergistic interactions are the fundamental 25 

drivers of complex human cognition. Whereas redundant information dominates sensorimotor 26 

areas, synergistic activity is closely associated with the brain’s prefrontal-parietal and default 27 

networks; furthermore, meta-analytic results demonstrate a close relationship between high-28 

level cognitive tasks and synergistic information. From an evolutionary perspective, the human 29 

brain exhibits higher prevalence of synergistic information than non-human primates. At the 30 

macroscale, we demonstrate that high-synergy regions underwent the highest degree of 31 

evolutionary cortical expansion. At the microscale, human-accelerated genes promote 32 

synergistic interactions by enhancing synaptic transmission. These convergent results provide 33 

critical insights that synergistic neural interactions underlie the evolution and functioning of 34 

humans’ sophisticated cognitive abilities, and demonstrate the power of our widely applicable 35 

information decomposition framework. 36 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.308981doi: bioRxiv preprint 

mailto:al857@cam.ac.uk
https://doi.org/10.1101/2020.09.22.308981
http://creativecommons.org/licenses/by/4.0/


 

2 
 

Synergistic and redundant interactions identify brain networks with distinct 37 

neurocognitive profiles 38 

In theoretical and cognitive neuroscience, considering the human brain as a distributed 39 

information-processing system has proven to be a powerful framework to understand the neural 40 

basis of cognition 1. Crucially, a deeper understanding of any information-processing 41 

architecture calls for a more nuanced account of the information that is being processed. 42 

As an example, let us consider humans’ two main sources of information about the world: the 43 

eyes. The information that we still have when we close either eye is called “redundant 44 

information” — because it is information that can be conveyed by either source (for instance, 45 

information about colour is largely redundant between the two eyes). Redundancy provides 46 

robustness: we can still see with one eye closed. However, closing one eye also deprives us of 47 

stereoscopic information about depth. This information does not come from either eye alone: 48 

ones needs both, in order to perceive the third dimension. This is called the “synergistic 49 

information” between two sources - the extra advantage that we derive from combining them, 50 

which makes them complementary 2,3. 51 

Thus, in addition to their own unique information, when multiple sources are considered 52 

together their information contribution can be identified as synergistic (only available when 53 

both sources are considered together) or redundant (available from either source 54 

independently). Every information-processing system — including the human brain — needs 55 

to strike a balance between these mutually exclusive kinds of information, and the advantages 56 

they provide: robustness and integration, respectively 4–7. Being fundamentally different, 57 

synergistic and redundant information cannot be adequately captured by traditional measures 58 

of macroscale information exchange (“functional connectivity”) in the human brain, which 59 

instead simply quantify the similarity between regional activity 2,8.  60 

Here, we reveal the distinct contributions of synergistic and redundant interactions to human 61 

cognition, and we delineate their large-scale organisation in the human brain. To this end, we 62 

leveraged the partial information decomposition (PID) framework 2,3,9 to quantify synergistic 63 

and redundant interactions between brain regions (Figure 1A,B), obtained from resting-state 64 

functional MRI data from 100 Human Connectome Project subjects (Methods). We ranked 65 

each brain region separately in terms of how synergistic and redundant its interactions with 66 

other brain regions are; the difference between these ranks (synergy minus redundancy) 67 
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determines the relative relevance of a given region for synergistic versus redundant processing, 68 

thereby defining a redundancy-to-synergy gradient across brain regions (Figure 1C). 69 

 70 

 71 

Figure 1. Synergistic and redundant networks exhibit distinct anatomical and cognitive profiles. Group-72 

average matrices of redundant (A) and synergistic (B) interactions between regions of the 232-ROI augmented 73 

Schaefer atlas. (C) Brain surface projections of regional redundancy-to-synergy gradient scores, obtained as the 74 

difference between each region’s rank in terms of synergy and in terms of redundancy; positive scores (red) 75 

indicate a bias towards synergy, and negative scores (blue) a bias towards redundancy. (D) Matrix of redundancy-76 

to-synergy gradient scores (synergy minus redundancy ranks) for each connection between brain regions. (E) 77 

Results of the NeuroSynth term-based meta-analysis, relating the distribution of redundancy-to-synergy gradient 78 

across the brain (discretised in 5% increments) to a gradient of cognitive domains, from lower-level sensorimotor 79 

processing to higher-level cognitive tasks. These results are robust to the use of different parcellations (cortical-80 

only, having lower or higher number of nodes, and obtained from anatomical rather than functional considerations; 81 

Figure S1A-C) and are also replicated without deconvolving the hemodynamic response function from the 82 

functional data (Figure S1D). 83 

 84 

Our results demonstrate that traditional FC mostly captures redundant, rather than synergistic, 85 

information exchange in the human brain (Figure S2).  Furthermore, they clearly show that 86 

redundant and synergistic interactions delineate networks with distinct neuroanatomical 87 

profiles (Figure 1A-D). In terms of Von Economo’s cytoarchitectonic classification 10, 88 

redundant interactions are especially prominent in primary sensory, primary motor and insular 89 

cortices (Figure S3), corresponding to the brain’s somatomotor and salience subnetworks 90 
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(Figure S4). In contrast, regions with higher relative importance for synergy predominate in 91 

higher-order association cortex, and are affiliated with the default mode (DMN) and fronto-92 

parietal executive control (FPN) subnetworks 11 (Figures S3-4).    93 

It is noteworthy that synergy, which quantifies the extra information gained by integrating 94 

multiple sources 3,12 is most prevalent in regions belonging to the DMN and FPN.  Functionally, 95 

these regions are recruited by complex tasks that rely on multimodal information, decoupled 96 

from immediate sensorimotor contingencies 13,14; anatomically, they receive multimodal inputs 97 

from across the brain 15 . Therefore, it has been speculated that these networks are devoted to 98 

the integration of information 13,15. Our findings about regional prevalence of synergy in DMN 99 

and FPN provide formal information-theoretic evidence to confirm this long-standing 100 

hypothesis. Furthermore, by considering a synergy-redundancy gradient in terms of 101 

connections instead of regions, we show that the most synergy-dominated connections 102 

correspond to links between DMN/FPN and other subnetworks, whereas redundancy-103 

dominated connections tend to occur within each subnetwork (Figure 1C). 104 

The distinct cytoarchitectonic profiles and subnetwork affiliations further suggest that 105 

redundant and synergistic interactions may be involved with radically different cognitive 106 

domains. To empirically validate this hypothesis, we performed a term-based meta-analysis 107 

using NeuroSynth. The redundancy-to-synergy gradient identified in terms of regional rank 108 

differences was related to 24 terms pertaining to higher cognitive functions (e.g. attention, 109 

working memory, social and numerical cognition) and lower sensorimotor functions (such as 110 

eye movement, motion, visual and auditory perception) adopted by previous studies 13,16. 111 

Supporting the inference from neuroanatomy to cognition, our results reveal that the regional 112 

gradient from redundancy to synergy corresponds to a gradient from lower to higher cognitive 113 

functions. Specifically, high-redundancy regions loaded strongly onto auditory, visual and 114 

multisensory processing and motion. In contrast, high-synergy regions had the strongest 115 

loadings onto social and numerical cognition, working memory and cognitive control (Figure 116 

1E). 117 

  118 

 119 
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Network organisation of synergy and redundancy support their distinct information-120 

processing roles 121 

Sensorimotor and higher-order cognitive functions impose distinct and opposite demands on 122 

cognitive architectures: specialised sensory processing benefits from segregation into modules, 123 

whereas integration of information demands high levels of interconnectedness 5,17. Contrasting 124 

the properties of the networks delineated by synergistic and redundant interactions reveals how 125 

the human brain resolves this tension.  126 

Across individuals, the network of synergistic interactions is more highly interconnected and 127 

globally efficient than the network of redundancy (Synergy: M=2.54, SD=0.06; Redundancy: 128 

M=0.14, SD=0.04; t(99)=-330.04, p<0.001, Hedge’s g=-46.67) (Figure 2A). In contrast, 129 

redundant interactions delineate a network characterised by a highly modular structure, which 130 

is virtually absent in synergistic networks (Synergy: M=0.005, SD=0.001; Redundancy: 131 

M=0.29, SD=0.06; t(99)=51.74, p<0.001, Hedge’s g=7.25) (Figure 2B). Thus, synergistic and 132 

redundant interactions exhibit distinct network organisation, supporting integrated and 133 

segregated processing, respectively - as demanded by the cognitive functions they support. 134 

It is also known that only a subset of regions are directly connected by white matter tracts 18; 135 

therefore, we reasoned that the more an organism’s survival depends on information exchange 136 

between regions X and Y, the more one should expect X and Y to be directly connected. Thus, 137 

direct physical connections in the brain reveal where the need for robust communication is 138 

highest. Consequently, if redundant interdependencies are representative of robust information 139 

exchange, they should be co-located with underlying direct anatomical connections - as 140 

quantified using diffusion-weighted imaging (DWI). Our results support this hypothesis: across 141 

subjects, the number of white matter streamlines was significantly more correlated with 142 

redundant (M=0.16, SD=0.028) than synergistic interactions between regions (M=0.025, 143 

SD=0.015; t(99)=39.85, p<0.001, Hedge’s g=6.29) (Figure 2C,D). These results are replicated 144 

using alternative network measures and parcellations (Figures S5-7 and Supplementary Tables 145 

1-3). 146 

Thus, whereas synergistic interactions are poised to facilitate high-level cognition through 147 

global integration, redundant interactions demarcate a structural-functional backbone in the 148 

human brain, ensuring robust sensorimotor input-output channels - both critical functions for 149 

successful information processing.  150 
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 151 

Figure 2. Synergy is integrated, redundancy is segregated and supported by anatomical connections. (A) 152 

The network organisation of synergistic interactions exhibits significantly higher integrative capacity (global 153 

efficiency) than redundant interactions. (B) The network organisation of redundant interactions exhibits 154 

significantly higher segregation (modularity) than synergistic interactions. (C) Structural connectivity of each 155 

subject was estimated from diffusion MRI, measured as the number of white matter tracts between regions of the 156 

232-ROI augmented Schaefer atlas, and Spearman correlation coefficient was used to assess the similarity of 157 

redundancy and synergy matrices with structural connectivity, after thresholding to ensure equal numbers of 158 

connections. (D) Networks of redundant interactions are significantly more correlated with underlying structural 159 

connectivity than synergistic interactions. Violin plots represent the distribution of values across 100 HCP subjects 160 

(colored circles). White circle: mean; blue line: median; grey box: interquartile range; *** p < 0.001. 161 

 162 

High-synergy brain regions are selectively potentiated by human evolution 163 

 The association between synergistic information processing and higher cognitive functions, 164 

raises the intriguing possibility that the human brain may enable humans’ uniquely 165 

sophisticated cognitive capacities in virtue of its highly synergistic nature. We pursued this 166 

hypothesis through three convergent approaches. 167 

First, we show that the human brain is especially successful at leveraging synergistic 168 

information, compared with the brains of non-human primates. Synergistic interactions account 169 

for a higher proportion of total information exchange in the human brain than in the macaque 170 

(Macaca mulatta); whereas the two species’ brains are equal in terms of proportion of total 171 

information exchange accounted for by redundancy (Synergy: Human M=0.478, SD=0.003; 172 
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Macaque M=0.466, SD=0.005; t(117)=14.24, p<0.001, Hedge’s g=3.54; Figure 3A; 173 

Redundancy: Human M=0.012, SD=0.005; Macaque M=0.011, SD=0.005; t(117)=0.90, 174 

p=0.372, Hedge’s g=0.22; Figure 3B). 175 

The patterns of synergy and redundancy in the macaque brain broadly resemble those observed 176 

in humans (Figure S8 and Supplementary Table 7), demonstrating their evolutionary stability 177 

- including the expected high redundancy in sensorimotor regions (Figure 3C). However, 178 

redundancy is more prevalent than synergy in the prefrontal cortex (PFC) of macaques, despite 179 

PFC being among the most synergy-dominated cortices in humans (Figure 3C). Intriguingly, 180 

prefrontal cortex underwent substantial cortical expansion in the course of human evolution 19.  181 

These findings suggest that the high synergy observed in human brains may be a specific 182 

outcome of evolutionary cortical expansion. To explore this hypothesis, we analysed cortical 183 

morphometry data from in vivo structural MRI, comparing humans and one of the closest 184 

evolutionary relatives of Homo sapiens: chimpanzees (Pan troglodytes)20. Supporting our 185 

hypothesis, we identified a significant positive correlation between relative cortical expansion 186 

in humans versus chimpanzees, and the gradient of regional prevalence of synergy previously 187 

derived from functional MRI (⍴ = 0.42, p = 0.001; Figure 3D). Thus, these findings suggest 188 

that the additional cortical tissue gained through human evolution is primarily dedicated to 189 

synergy, rather than redundancy.  190 

To provide further support for the evolutionary relevance of synergistic interactions, we 191 

capitalised on human adult brain microarray datasets across 57 regions of the left cortical 192 

mantle 20, made available by the Allen Institute for Brain Science (AIBS) 21. We demonstrate 193 

that regional dominance of synergy correlates with regional expression of genes that are both 194 

(i) related to brain development and function, including intelligence and synaptic transmission 195 

20; and (ii) selectively accelerated in humans versus non-human primates (“HAR-Brain genes”; 196 

⍴ = 0.40, p = 0.002; Figure 3E). Thus, the more important a brain region is in terms of synergy, 197 

the more likely it is to express brain genes that are uniquely human.  198 

Taken together, these findings provide converging evidence for the hypothesis that 199 

evolutionary pressures selectively potentiated the role of synergistic interactions in the human 200 

brain, both in terms of dedicated genes, (Fig. 3E) dedicated cortical real estate (Fig. 3D), and 201 

the end result: higher prevalence of synergy in human brains than non-human primates (Fig. 202 

3A,B). 203 
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 204 

205 
Figure 3. Human brain evolution favoured high synergy. (A) The proportion of synergistic information 206 

exchange across the brain is significantly higher in humans (Homo sapiens) than macaques (Macaca mulatta). (B) 207 

The proportion of redundant information exchange across the brain is equivalent in humans and macaques. (C) 208 

Surface projection of regional redundancy-to-synergy gradient scores for the macaque brain. (D) Significant 209 

correlation between human regional redundancy-to-synergy gradient scores and regional cortical expansion from 210 

chimpanzee (Pan troglodytes) to human (both on left hemisphere of DK-114 cortical atlas). (E) Significant 211 

correlation between human regional redundancy-to-synergy gradient scores and regional expression of brain-212 

related human-accelerated (HAR-Brain) genes (both on left hemisphere of DK-114 atlas). The results in (A) and 213 

(B) cannot be solely attributed to either the choice of bandpass filter, or the difference in TR between datasets 214 

(Figures S9-10). The results in (D) and (E) are also replicated using unadjusted scores (Figure S11). 215 

 216 

Neurobiological origins of synergy in the human brain 217 

These observations raise the question of how such high synergy in the human brain could have 218 

been attained. To address this question from a neurobiological perspective, we explored the 219 

association between the redundancy-to-synergy gradient and regional expression profiles of 220 

20,674 genes from AIBS microarray data 10,22. Using partial least squares (PLS) regression, we 221 

show that the first two PLS components explained 31% of the variance in the regional synergy-222 

redundancy values (Figure S12): significantly more than could be expected by chance 223 

(permutation test, p=0.007). For both components, gene expression weights were positively 224 

correlated with the redundancy-to-synergy regional gradient (PLS1: ⍴ = 0.37, p<0.001; PLS2: 225 

⍴ = 0.39, p<0.001; Figure 4A and Figure S13). These correlations indicate that a number of 226 
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genes are overexpressed in regions where synergy dominates over redundancy -- including 227 

significant overexpression of HAR-Brain genes, in line with the results presented above (PLS1: 228 

p=0.022; PLS2: p<0.001; Figure S14). 229 

We next sought to identify the role played by overexpressed genes related to brain synergy, for 230 

each PLS component. Analysis of gene ontology revealed that the transcriptional signature of 231 

PLS2 was significantly enriched in genes involved in learning or memory (in line with our 232 

meta-analytic results from NeuroSynth), as well as synapses, synapse components and synaptic 233 

transmission (all p<10-4 for significant enrichment). 234 

 235 

 236 

Figure 4. Neurobiological underpinnings of synergy in the human brain. (A) Second principal component of 237 

PLS (PLS2) relating the redundancy-to-synergy regional gradient to 20,647 genes from the Allen Institute for 238 

Brain Science, for the 308-ROI subdivision of the Desikan-Killiany cortical parcellation. (B) Dimensionality-239 

reduced gene ontology terms pertaining to biological processes that are significantly enriched in PLS2 (red ovals 240 

highlight psychologically- or neurobiologically-relevant terms). (C) Dimensionality-reduced gene ontology terms 241 

pertaining to cellular components that are significantly enriched in PLS2 (red ovals highlight psychologically- or 242 

neurobiologically-relevant terms). Note that semantic space axes indicate the relative distance between terms in 243 

multi-dimensional space, but have no intrinsic meaning. Corresponding gene ontology terms for PLS1 are shown 244 

in Figure S15. (D) Significant correlation between regional redundancy-to-synergy gradient scores and an 245 

anterior-posterior principal component of synaptic density from [11C]UCB-J PET, for the DK-66 cortical 246 

parcellation. Corresponding results for the first principal component of [11C]UCB-J binding potential are shown 247 

in Figure S16. 248 

 249 

Synapses are the key structures by which neurons exchange information; therefore they 250 

constitute a prime candidate for the neurobiological underpinning of synergistic interactions in 251 

the human brain, as suggested by our genetic analysis. To provide a more direct link between 252 

synaptic density and regional prevalence of synergy, we used positron emission tomography 253 

(PET) to estimate in vivo regional synaptic density based on the binding potential of the 254 
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synapse-specific radioligand [11C]UCB-J 23. This radioligand has high affinity for the synaptic 255 

vesicle glycoprotein 2A (SV2A) 24, which is ubiquitously expressed in all synapses throughout 256 

the brain 25. Supporting the notion that regional brain synergy is related to underlying synaptic 257 

density, we found that an anterior-posterior principal component of synaptic density derived 258 

from [11C]UCB-J PET is significantly correlated with the regional gradient from redundancy 259 

to synergy (⍴ = 0.26, p = 0.033; Figure 4D). 260 

Therefore, genetic and molecular evidence converge to indicate synapses and synaptic 261 

transmission as key neurobiological underpinnings of synergy in the brain - in line with the 262 

notion that synergy quantifies information integration, and its role in supporting higher 263 

cognition. 264 

Decomposing interactions between brain regions into synergistic and redundant components 265 

illuminates how the brain addresses the inherent trade-off between robustness and integration, 266 

providing powerful insights that are beyond traditional methods of studying brain interactions 267 

(e.g. FC). Having demonstrated the crucial role of synergistic interactions in human cognitive 268 

architecture via meta-analytic and graph-theoretical approaches, we proceeded to identify their 269 

neurobiological underpinnings by combining genetic, molecular and neuroanatomical 270 

evidence. 271 

Taken together, our findings reveal that basic sensorimotor functions are supported by a 272 

modular backbone of redundant interactions (Fig 1D, 2B). As the brain’s input-output systems, 273 

reliable sensorimotor channels are vital for survival, warranting the additional robustness 274 

provided by redundant interactions — as indicated by our structural-functional analysis (Fig. 275 

2D). In contrast, synergistic interactions are ideally poised to act as a global workspace, 276 

allowing the  integration of complementary information from across the brain in the service of 277 

higher cognitive functions (Fig 1D): they bridge across different modules (Fig 1C), form a 278 

globally efficient network (Fig 2A), and their neuroanatomical organisation coincides with 279 

synapse-rich association cortex (Fig 4D and Supplementary Fig 3).  280 

We further discovered that synergistic interactions were specifically enhanced in humans as a 281 

result of evolutionary pressures, with dedicated cortical real estate and dedicated genes, 282 

including those promoting synaptic transmission. This process  resulted in a neural architecture 283 

that is capable of leveraging synergistic information to a greater extent than other primates. 284 

Our findings suggest that regions of the default mode and executive control (sub)networks may 285 
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be able to support human higher cognition precisely thanks to their extensive involvement with 286 

synergistic processing.  287 

Intriguingly, the high-synergy DMN is involved in self-related cognitive processes 26,27, and it 288 

is also especially disrupted by loss of consciousness, whether caused by anaesthesia or severe 289 

brain injury 28. Indeed, the global workspace theory of consciousness posits that integration of 290 

information within a global workspace is necessary for consciousness 29 - and a formal link has 291 

also been established between synergy and the measure of consciousness known as integrated 292 

information 3,30. Therefore, decomposition of information exchange into synergy and 293 

redundancy may also shed light on the emergence of consciousness in the human brain – 294 

providing a framework to discover the information-processing principles that govern how 295 

mental phenomena emerge from neurobiology. 296 

 297 

 298 

 299 

 300 

MATERIALS AND METHODS 301 

 302 

 303 

Synergy and Redundancy calculation 304 

Shannon’s Mutual information (MI) quantifies the interdependence between two random 305 

variables X and Y. It is calculated as  306 

I(X;Y) =H(X)−H(X|Y) = H(X)+H(Y)−H(X,Y) , 307 

where H(X) stands for the Shannon entropy of a variable X. Above, the first equality states that 308 

the mutual information is equal to the reduction in entropy (i.e. uncertainty) about X after Y 309 

becomes accessible. Put simply, the mutual information quantifies the information that one 310 

variable provides about another 31. 311 
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Crucially, Williams and Beer (2010) 2 observed that the information that two source variables 312 

X and Y give about a third target variable Z, I(X,Y ; Z), should be decomposable in terms of 313 

different types of information: information provided by one source but not the other (unique 314 

information), or by both sources separately (redundant information), or jointly by their 315 

combination (synergistic information). Following this intuition, they developed the Partial 316 

Information Decomposition (PID 2) framework, which leads to the following fundamental 317 

decomposition: 318 

I(X,Y;Z) = Red(X,Y;Z) + Un(X;Z|Y) + Un(Y;Z|X) + Syn(X,Y;Z). 319 

Above, Un corresponds to the unique information one source but the other doesn’t, Red is the 320 

redundancy between both sources, and Syn is their synergy: information that neither X nor Y 321 

alone can provide, but that can be obtained by considering X and Y together. It is worth noticing 322 

that the unique information is fully determined after synergistic and redundant comments have 323 

been accounted for; hence, we focus our analyses on the two latter components.  324 

The simplest  example of a purely synergistic system is one in which X and Y are independent 325 

fair coins, and Z is determined by the  exclusive-OR function Z = XOR(X,Y):  i.e., Z=0 326 

whenever X and Y have the same value, and Z=1 otherwise. It can be shown that X and Y are 327 

both statistically independent of Z, which implies that neither of them provide - by themselves 328 

- information about Z . However, X and Y together fully determine Z: hence, the relationship 329 

between Z with X and Y is purely synergistic.  330 

While PID provides a formal framework, it does not enforce how the corresponding parts ought 331 

to be calculated. While there is ongoing research on the advantages of different decompositions 332 

for discrete data, most decompositions converge into the same simple form for the case of 333 

continuous Gaussian variables 32. Known as minimum mutual information PID (MMI-PID), 334 

this decomposition quantifies redundancy in terms of the minimum mutual information of each 335 

individual source with the target; synergy, then, becomes identified with the additional 336 

information provided by the weaker source once the stronger source is known. Since linear-337 

Gaussian models are sufficiently good descriptors of functional MRI timeseries (and more 338 

complex, non-linear models offer no advantage 33), here we adopt the MMI-PID 339 

decomposition, following previous applications of PID to neuroscientific data 34. 340 

In a dynamical system such as the brain, one can calculate the amount of information flowing 341 

from the system’s past to its future, known as time-delayed mutual information 342 
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(TDMI).  Specifically, by denoting  the past of variables as Xt-τ  and Yt-τ  and treating them as 343 

sources, and their joint future state (Xt, Yt), as target, one can apply the PID framework and 344 

decompose the information flowing from past to future as  345 

𝐼(𝑋𝑡−𝜏, 𝑌𝑡−𝜏;  𝑋𝑡, 𝑌𝑡 )  346 

=  𝑅𝑒𝑑(𝑋𝑡−𝜏, 𝑌𝑡−𝜏;  𝑋𝑡, 𝑌𝑡 )  +  𝑈𝑛(𝑋𝑡−𝜏; 𝑋𝑡, 𝑌𝑡|𝑌𝑡−𝜏) 347 

+  𝑈𝑛(𝑌𝑡−𝜏; 𝑋𝑡, 𝑌𝑡|𝑋𝑡−𝜏)   +  𝑆𝑦𝑛(𝑋𝑡−𝜏, 𝑌𝑡−𝜏;  𝑋𝑡, 𝑌𝑡 ) 348 

Recently, this equation has been refined to also distinguish between redundant, unique, and 349 

synergistic information shared with respect to the future variables Xt, Yt. Importantly, this 350 

framework, known as Integrated Information Decomposition (PhiID) 3, has identified 351 

𝑆𝑦𝑛(𝑋𝑡−𝜏, 𝑌𝑡−𝜏;  𝑋𝑡, 𝑌𝑡 ) with the capacity of the system to exhibit emergent behaviour 35 [CITE 352 

emergence]. Furthermore, PhiID introduced a stronger notion of redundancy, in which 353 

information is shared by X and Y in both past and future.  Accordingly, using the MMI-PhiID 354 

decomposition for Gaussian variables, we use 355 

Red(𝑋, 𝑌)  = min{ 𝐼(𝑋𝑡−𝜏;  𝑋𝑡), 𝐼(𝑋𝑡−𝜏;  𝑌𝑡), 𝐼(𝑌𝑡−𝜏;  𝑋𝑡), 𝐼(𝑌𝑡−𝜏;  𝑌𝑡)} 356 

Syn(𝑋, 𝑌)  =  𝐼(𝑋𝑡−𝜏, 𝑌𝑡−𝜏;  𝑋𝑡, 𝑌𝑡 )  −  𝑚𝑎𝑥{ 𝐼(𝑋𝑡−𝜏;  𝑋𝑡, 𝑌𝑡  ), 𝐼(𝑌𝑡−𝜏;  𝑋𝑡, 𝑌𝑡  )} 357 

 358 

 359 

Here, we used the Gaussian solver implemented in the JIDT toolbox 36 to obtain TDMI, synergy 360 

and redundancy between each pair of brain regions, based on their HRF-deconvolved BOLD 361 

signal timeseries (Supplementary Methods). 362 

 363 

Gradient of redundancy-to-synergy relative importance 364 

After building networks of synergistic and redundant interactions between each pair of regions 365 

of interest (ROIs), we determined the role of each ROI in terms of its relative engagement in 366 

synergistic or redundant interactions. We first calculated the nodal strength of each brain region 367 

as the sum of all its connections in the group-averaged matrix. Then, we ranked all 232 regions 368 

based on their nodal strength (with higher-strength regions having higher ranks). This 369 
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procedure was done separately for networks of synergy and redundancy. Subtracting each 370 

region’s redundancy rank from its synergy rank yielded a gradient from negative (i.e. ranking 371 

higher in terms of redundancy than synergy) to positive (i.e. having a synergy rank higher than 372 

the corresponding redundancy rank); note that the sign is arbitrary.  373 

It is important to note that the gradient is based on relative - rather than absolute - differences 374 

between regional synergy and redundancy. Consequently, a positive rank difference does not 375 

necessarily mean that the region’s synergy is greater than its redundancy; rather, it indicates 376 

that the balance between its synergy and redundancy relative to the rest of the brain is in favour 377 

of synergy - and vice versa for a negative gradient. 378 

The same procedure was also repeated for network edges (instead of nodes), using their weights 379 

to rank them separately in terms of synergy and redundancy and then calculating their 380 

difference. This produced a single connectivity matrix where each edge’s weight represents its 381 

relative importance, being higher for synergy (positive edges) or redundancy (negative edges). 382 

 383 

NeuroSynth term-based meta-analysis of redundancy-to-synergy gradient 384 

The regional redundancy-to-synergy gradient identified in terms of nodal rank differences was 385 

related to specific words using NeuroSynth, an online platform for large-scale, automated 386 

synthesis of fMRI data [https://neurosynth.org/]. For our analyses we employ 24 topic terms 387 

used by previous studies 13,16, which range from lower sensorimotor functions (such as eye 388 

movement, motion, visual and auditory perception) to higher cognitive functions (e.g. 389 

attention, working memory, social and numerical cognition).  390 

A meta-analysis analogous to the one implemented by previous studies 13,16, was conducted to 391 

identify topic terms associated with the redundancy-to-synergy gradient. Twenty binary brain 392 

masks were obtained by splitting the values of the redundancy-to-synergy gradient into five- 393 

percentile increments. These brain masks served as input for the meta-analysis, based on the 394 

chosen 24 topic terms. For visualisation, terms were ordered according to the weighted mean 395 

of the resulting Z-statistics. Note that the term “visual semantics” was excluded from 396 

visualisation, because it failed to reach the significance threshold of Z > 3.1, leaving 23 terms 397 

(Figure 1). The analyses were carried out using modified code made freely available at 398 

[https://www.github.com/gpreti/GSP_StructuralDecouplingIndex]. 399 
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Measures of network integration and segregation 400 

 401 

We quantified global integration in the networks of synergistic and redundant connections 402 

computing the networks global efficiency, a well-known measure that quantifies the ease of 403 

parallel information transfer in the network. More precisely, the global efficiency of a network 404 

corresponds to the average of the inverse of the shortest path length between each pair of nodes 405 

37: 406 

 407 

𝐺𝑒 =  
1

𝑛
 ∑

∑ (𝑑𝑖𝑗)
−1𝑛

𝑗≠𝑖

𝑛 − 1

𝑛

𝑖

 408 

Following Cruzat et al (2018) 38, segregation of brain networks was quantified by means of 409 

network modularity. Put simply, the modularity function quantifies the extent to which a 410 

network can be partitioned such that the number of within-group edges is maximised and the 411 

density of between-group edges is minimised. We employed an implementation of Newman’s 412 

spectral modularity algorithm 39 available in the Brain Connectivity Toolbox (BCT; 37,40.  413 

 414 

Structural-Functional Similarity 415 

Matrices of synergy and redundancy were thresholded proportionally using the same network 416 

density as the structural connectivity matrix of the same subject. This procedure was selected 417 

in order to ensure that the same number of edges would be present in both matrices, so that the 418 

two matrices can be compared. Then, the upper triangular portion of each connectivity matrix 419 

(structural and synergy/redundancy) was flattened into a vector, and the Spearman correlation 420 

coefficient between these two vectors was computed. We use this correlation as a measure of 421 

similarity between synergy or redundancy and structural connectivity. 422 

HAR-BRAIN genes.  423 

The maps of regional expression of human-accelerated genes for the DK-114 atlas were made 424 

available by Wei et al (2019), where the reader can find detailed information about how these 425 

data were generated. Briefly, genes located in a total of 2737 human accelerated regions 426 

(HARs) of the genome were taken as presented by comparative genome analysis representing 427 
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genomic loci with accelerated divergence in humans 41. Out of 2143 HAR-associated genes 428 

identified from this procedure, 1711 were described in the Allen Human Brain Atlas (AHBA) 429 

microarray dataset (human.brain-map.org) 21  and were used in the analyses by Wei and 430 

colleagues, referred to as HAR genes.  431 

HAR genes were subsequently subdivided into HAR-BRAIN and HAR-NonBRAIN genes. 432 

BRAIN genes were selected as the set of genes commonly expressed in human brain tissue 433 

using the Genotype-Tissue Expression (GTEx) database (data source: GTEx Analysis Release 434 

V6p; https://www.gtexportal.org/), which includes 56,238 gene expression profiles in 53 body 435 

sites collected from 7333 postmortem samples in 449 individuals. From these 56,238 genes, a 436 

total number of 2823 genes were identified as BRAIN genes showing significantly higher 437 

expressions in brain sites than non-brain sites (one-sided t-test and an FDR corrected q < 0.05 438 

were used). HAR-BRAIN genes were identified as the 405 genes that overlapped between the 439 

2823 BRAIN genes and the 1711 HAR genes, whereas the remaining HAR genes were labelled 440 

as HAR-NonBRAIN genes. Finally, the HAR gene expression data were mapped to the 114-441 

region subdivision of the Desikan-Killiany atlas [DK-114] 42,43. Since  only two of the six AHBA 442 

donors have data for the right hemisphere, Wei et al (2019) only considered HAR gene expression 443 

patterns for the left hemisphere.  444 

 445 

Cortical expansion  446 

The maps of evolutionary cortical expansion were made available by Wei et al (2019), 20 who 447 

describe in detail how these data were generated. Briefly, Wei and colleagues analysed in-vivo 448 

MRI data from 29 adult chimpanzees, as well as 30 adult human subjects from the Human 449 

Connectome Project. Pial surface reconstructions of chimpanzee and human T1-weighted MRI 450 

scans (processed with FreeSurefer v5.3.0; https://surfer.nmr.mgh.harvard.edu/) were used for 451 

both vertex-to-vertex mapping across chimpanzee and humans and also for subsequent 452 

computation of region-wise expansion for cortical morphometry. A regional-level cortical 453 

surface area (Si) was computed by summing up face areas within each cortical region, for all 454 

regions of the DK-114 atlas 42,43. Normalized cortical area was obtained by dividing the 455 

regional area by the area of the whole cortex. Cortical expansion between every pair of 456 

chimpanzee and human subjects was calculated based on both the raw (“unadjusted”) and 457 

normalized (“adjusted”) cortical surface area by 458 
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𝐸𝑖,𝑗  =  
𝑆ℎ𝑢𝑚𝑎𝑛,𝑖  −  𝑆𝑐ℎ𝑖𝑚𝑝,𝑗

𝑆𝑐ℎ𝑖𝑚𝑝,𝑗
 459 

with Ei,j denoting the expansion from chimpanzee j to human i. A group-level region-wise 460 

cortical expansion map was calculated by taking averages over the 870 chimpanzee-to-human 461 

comparisons. 462 

 463 

AIBS gene expression analysis 464 

Regional gene expression levels for 20,647 human genes were obtained from transcriptomic 465 

measurements in six post-mortem adult brains (age: 24-57 years), made available by the AIBS 466 

(human.brain-map.org) 21. We used code made freely available by Morgan et al (2019) 10 467 

https://github.com/SarahMorgan/Morphometric_Similarity_SZ) to obtain a 308 x 20,647 regional 468 

transcription matrix, matching gene expression data to each cortical region of the DK-308 atlas 469 

10,22,44,45 (Supplementary Methods). Each tissue sample was assigned to a cortical region using the 470 

AIBS MRI data for each donor, pooling samples between bilaterally homologous regions 10,45.  471 

 472 

Partial Least Squares 473 

To explore the association between the redundancy-to-synergy regional gradient and all 20,647 474 

genes measured in the AHBA microarrays, at each of 308 regions, we used partial least squares 475 

(PLS) as a dimensionality reduction technique 10,22,44,46.  PLS finds components from the predictor 476 

variables (308 × 20,647 matrix of regional gene expression scores) that have maximum covariance 477 

with the response variables (308 × 1 matrix of regional redundancy-to-synergy gradient). The PLS 478 

components (i.e. linear combinations of the weighted gene expression scores) are ranked by 479 

covariance between predictor and response variables, so that the first few PLS components provide 480 

a low-dimensional representation of the covariance between the higher dimensional data matrices. 481 

Goodness of fit of low-dimensional PLS components was tested non-parametrically by repeating 482 

the analysis 1000 times after shuffling the regional labels.  The error on the PLS weights associated 483 

with each gene were tested by resampling with replacement of 308 ROIs (bootstrapping); the ratio 484 

of the weight of each gene to its bootstrap standard error was used to Z-score the genes and rank 485 

their contributions to each PLS component 10,22,44. 486 
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 487 

Gene ontology and enrichment analysis 488 

We used GOrilla for enrichment analysis of the first two PLS components 22,47 GOrilla identifies 489 

enriched gene ontology (GO) terms in ranked gene list, leveraging a large online database of gene 490 

annotations corresponding to ‘biological processes’ and ‘cellular components’ 47 We identified GO 491 

terms that were over-represented among the genes with the strongest positive weightings on each 492 

PLS component (i.e. those most strongly associated with dominance of synergy over redundancy). 493 

For our analyses on the online GOrilla platform (http://cbl-gorilla.cs.technion.ac.il) we unchecked 494 

the “Run GOrilla in fast mode” option and used the “P-value threshold 10-4” setting in order to 495 

best approximate FDR correction with α = 0.05 22. 496 

We then used the online tool REViGO (http://revigo.irb.hr) to summarize the list of significant GO 497 

terms and visualize the results of whole-genome enrichment analysis. First, REViGO employs 498 

measures of semantic similarity between terms 48 to identify representative clusters of genes. Then, 499 

REViGO plots significant GO terms in semantic space, where semantically similar GO terms are 500 

represented clustered near one another and labelled in a representative manner. 501 

For our hypothesis-driven analysis, testing for enrichment of HAR-Brain genes, we also used non-502 

parametric permutation testing. Specifically, we randomly drew 1000 samples of the same number 503 

of genes and estimated their PLS weighting, and compared the PLS weights of the HAR-Brain 504 

genes to this permutation distribution. This provided an estimate of the probability of HAR-Brain 505 

gene enrichment of each PLS component under the null hypothesis 10,22. We note that this 506 

permutation procedure does not take into account the correlation between HAR-Brain genes; more 507 

sophisticated null models for permutation testing that controlled for these or other characteristics 508 

of candidate genes will be important to develop for computational inference in future studies. 509 

 510 

 511 

Synaptic Density from Positron Emission Tomography 512 

In-vivo estimates of regional synaptic density in the human brain were obtained from positron 513 

emission tomography (PET) with the radioligand [11C]UCB-J ((R)-1-((3-(methyl-11C)pyridin-514 

4-yl)methyl)-4- (3,4,5-trifluorophenyl)pyr-rolidin-2-one) 49. This ligand quantifies synaptic 515 
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density 23 based on its affinity for the presynaptic vesicle glycoprotein 2A (SV2A) 24 which is 516 

ubiquitously expressed in all brain synapses 25. 517 

 518 

PET/MR imaging protocol 519 

The research protocol was approved by an NHS Research Ethics Committee (REC: 520 

18/EE/0059) and the Administration of Radioactive Substances Advisory Committee 521 

(ARSAC), and all participants provided written informed consent in accordance with the 522 

Declaration of Helsinki. Participant recruitment and exclusion criteria are described in detail 523 

in the original publication 49. Here, we included data from the healthy volunteers (N=15, 8 524 

females; age: 68 ± 7 years).  525 

The radioligand [11C]UCB-J was synthesised at the Radiopharmacy Unit, Wolfson Brain 526 

Imaging Centre, Cambridge University, using the methodology previously described 24. All 527 

participants underwent simultaneous 3T MRI and [11C]UCB-J PET on a GE SIGNA PET/MR 528 

(GE Healthcare, Waukesha, USA). Dynamic PET data acquisition was performed for 90 529 

minutes starting immediately after [11C]UCB-J injection (median (range) injected activity: 408 530 

(192-523) MBq, injected UCB-J mass ≤ 10 𝜇g). Attenuation correction included the use of a 531 

multi-subject atlas method 50 and improvements to the MRI brain coil component 51. Each 532 

emission image series was aligned using SPM12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/) 533 

then rigidly registered to a T1-weighted MRI acquired during PET data acquisition (TR = 3.6 534 

msec, TE = 9.2 msec, 192 sagittal slices, in plane resolution 0.55 x 0.55 mm (subsequently 535 

interpolated to 1.0 x 1.0 mm); slice thickness 1.0 mm). Regional time-activity curves were 536 

extracted following the application of geometric transfer matrix partial volume correction 51 to 537 

each of the dynamic PET images. To quantify SV2A density (and therefore synaptic density), 538 

regional [11C]UCB-J non-displaceable binding potential (BPND) was determined for a 66-ROI 539 

subdivision of the Desikan-Killiany cortical atlas (DK-66), using a basis function 540 

implementation of the simplified reference tissue model 52, with the reference tissue defined in 541 

the centrum semiovale 53,54. 542 

 543 
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Principal components of synaptic density 544 

Principal Components Analysis (PCA) was subsequently employed to derive the principal 545 

components that explain most of the variance in regional [11C]UCB-J BPND across volunteers. 546 

Components were selected if their associated eigenvalue was greater than unity; two principal 547 

components satisfied this criterion, explaining 45% and 16% of the variance, respectively. 548 

 549 
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Data Availability 598 

The  HCP  DWI  data  in  SRC  format  are  available  online  599 

(http://brain.labsolver.org/diffusion-mri-data/hcp-dmri-data).  The  HCP  fMRI  data  are  600 

available  online  (https://www.humanconnectome.org/study/hcp-young-adult/data-releases).   601 

 602 

Macaque MRI data are available from the PRIMatE Data Exchange (PRIME-DE) through the 603 

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC; 604 

http://fcon_1000.projects.nitrc. org/indi/indiPRIME.html). 605 

 606 

The PET data that support the findings of this study are available from author NH 607 

(nda26@medschl.cam.ac.uk), upon reasonable request for academic (non-commercial) 608 

purposes. 609 

 610 

The macaque connectome is available online on Zenodo: 611 

https://zenodo.org/record/1471588#.X2JCjdZuJPY 612 

 613 

Cortical gene expression patterns were taken from the transcriptomic data of the Allen Human 614 

Brain Atlas (AHBA, http://human.brain- map.org/static/download). 615 

Region-wise maps of chimpanzee-to-human cortical expansion and HAR gene expression are 616 

available as Supplementary Materials from Wei et al (2019) 20.  617 

The NMT anatomical volume and associated probabilistic tissue segmentation maps (GM, 618 

WM and CSF) are freely available online: https://afni.nimh.nih.gov/pub/ 619 

dist/atlases/macaque/nmt and http://github.com/jms290/NMT. 620 
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 622 

 623 

Code Availability 624 

 625 

The Java Information Dynamics Toolbox is freely available online: 626 

(https://github.com/jlizier/jidt). 627 

The CONN toolbox is freely available online (http://www.nitrc.org/projects/conn).  628 

DSI Studio is freely available online (www.dsi-studio.labsolver.org). 629 

The Brain Connectivity Toolbox code used for graph-theoretical analyses is freely available 630 

online (https://sites.google.com/site/bctnet/). 631 

The code used for NeuroSynth meta-analysis is freely available online: 632 

(https://www.github.com/gpreti/GSP_StructuralDecouplingIndex). 633 

The HRF deconvolution toolbox is freely available online: 634 

(https://www.nitrc.org/projects/rshrf). 635 

The Pypreclin pipeline code is freely available at GitHub 636 

(https://github.com/neurospin/pypreclin).  637 

The code for PLS analysis of gene expression profiles is freely available online: 638 

https://github.com/SarahMorgan/Morphometric_Similarity_SZ. 639 
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