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Abstract 

 

Background: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are 

pathological hallmarks of α- synucleinopathies, such as Parkinson’s disease (PD) and multiple system 

atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, 

as well as the activation of T and B cells. These immune changes point towards a dysregulation of both 

the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived 

from α-syn and altered populations of T cells have been found in PD and MSA patients, providing 

evidence that these cells can be key to the pathogenesis of the disease. Objective: To study the role 

of the adaptive immune system with respect to α-syn pathology. Methods: We injected human α-syn 

preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed 

accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and 

microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of 

adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. Results: 

Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in 

the substantia nigra. Reconstituting the T cell population decreased the accumulation of 

phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared 

to non-transplanted mice. Conclusion: Our work provides evidence that T cells play a role in the 

pathogenesis of experimental α-synucleinopathy.  

 

Keywords: 

Parkinson’s disease, multiple system atrophy, alpha-synuclein, phosphorylated alpha-synuclein, T 

lymphocytes, microglia 
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INTRODUCTION 

 

The pathogenesis of Parkinson’s disease (PD) and multiple system atrophy (MSA) are poorly 

understood, but neuroinflammation and α-synuclein (α-syn) aggregation are believed to play key 

roles[1–4]. Progressive spread of Lewy pathology is thought to contribute to clinical decline in PD and 

to be the result of cell-to-cell propagation of α-syn aggregates[5]. Neuroinflammation is believed to be 

involved in the initial formation and spread of α-syn aggregates[4,6–8]. Studies indicate that activated 

microglia and elevated neuroinflammatory markers in the central nervous system are present in MSA 

and PD[3,9–15]. Single nucleotide polymorphisms close to numerous immune system-related genes 

affect PD risk, further supporting a role for neuroinflammation in PD[16]. While the majority of studies 

exploring inflammation in PD have implicated changes in the innate immune system[4,17], the role of 

the adaptive immune system in PD has been explored to a lesser extent. Notably, peripheral immune 

cells enter the brain during neurodegeneration[18]. T lymphocytes are altered and infiltrate the brain in 

PD[19–26] and it has been reported that autoreactive T lymphocytes directed against α-syn are present 

in PD patients[27] decades prior to motor PD[28]. Recruitment of CD4+ T cells to the brain occurs in 

models of a-syn overexpression[29]. In PD models, T cell function has been linked to α-syn 

pathobiology[30–32] and to the death of dopamine neurons[8,33]. Specifically, T cells respond to α-syn 

variants associated with PD and then migrate into the brain where they affect the phenotype of 

microglia[32]. Overexpression of α-syn induces microglia to express major histocompatibility complex 

II (MHC II)[34] and to present antigens to CD4+ T cells[8,33]. These interactions between T cells, 

microglia, and pathogenic α-syn are, however, not well understood. It has been difficult to interrogate 

the roles of the different populations of immune cells in a model of α-synucleinopathy, as it has been 

done for other diseases (e.g., Multiple Sclerosis[35]). We addressed this gap in knowledge by triggering 

α-syn pathology in immunocompromised (NOD scid gamma: NSG, lacking T, B and Natural Killer cells) 

mice and reconstituting select populations of immune cells. Specifically, we triggered α-syn pathology 

by intrastriatal injection of human α-syn preformed fibrils (PFFs) in control mice, NSG mice and NSG 

mice where T or B cell populations had been reconstituted. We assessed pathological accumulation of 

phosphorylated α-syn in multiple brain regions and found that NSG mice displayed elevated pathology, 

while the reconstitution of T cells in NSG mice was associated with partial reduction of α-syn 

neuropathology.  

 

MATERIALS AND METHODS 

 

Study design 
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The goal of our study was to define whether a compromised immune system influences the 

accumulation of pathological α-syn in the brain in vivo. To this end, we assessed phosphorylated α-syn 

pathology following intrastriatal injections of human α-syn PFFs in immunocompromised and control 

mice. First, we established whether the PFFs injection in the striatum of immunocompromised mice 

resulted in altered α-syn pathology compared to when the PFFs were injected into wildtype mice. 

Second, we determined the effects on neuropathology of reconstituting T cells in immunocompromised 

mice that had received intrastriatal PFFs. 

 

Animals 

We utilized 10 to 12-week-old female C57BL/6J, NOD/ShiLtJ (non-obese diabetic) and NSG mice 

[immunocompromised, lacking T, B and Natural Killer (NK) cells] mice for injections, and additionally 

isolated T and B cells from female C57BL/6J mice (bred in our internal vivarium colony). Mice were 

housed at a maximum of five per cage under a 12-h light/12-h dark cycle with access to food and water 

ad libitum. The housing of the animals and all procedures were carried out in accordance with the Guide 

for the Care and Use of Laboratory Animals (United States National Institutes of Health) and were 

approved by the Van Andel Research Institute's Institutional Animal Care and Use Committee (AUP 

16-12-033). NSG mice carry two mutations on the NOD/ShiLtJ genetic background (severe combined 

immune deficiency (scid) and a complete null allele of the IL2 receptor common gamma chain –

IL2rgnull)[36]. The scid mutation renders the mice B and T cell deficient whereas the IL2rgnull mutation 

leads to a deficiency in functional NK cells. The immunodeficient NOD mice share a genetic background 

with NSG mice and have innate immune cells deficiencies[36,37]. 

 

Purification of recombinant α-synuclein and assembly of pre-formed fibrils  

Recombinant human α-syn was purified similarly to this previously published protocol[38,39]. Briefly, 

the protein was expressed in BL21 E.coli transformed with a plasmid expressing human α-syn. Once 

expressed, cells were collected and stored at -80˚C. For purification, cells were lysed by sonication and 

boiling, and centrifuged to remove cell debris. The α-syn-containing supernatant was dialyzed overnight 

in 10 mM Tris, pH 7.5, 50 mM NaCl, and 1 mM EDTA, using SnakeSkin Dialysis Tubing MWCO 7,000 

(Thermo Scientific). Chromatographic separation was performed using a Superdex 200 Column (GE 

Healthcare Life Sciences) and a Hi-trap Q HP anion exchange column (GE Healthcare Life Sciences). 

Fractions containing α-syn were identified by SDS-PAGE and Coomassie staining, and then dialyzed 

overnight into PBS buffer (Life Sciences). A NanoDrop 2000 (Thermo Fisher) was used to determine 

the protein concentration by OD280 reading and protein was concentrated to 5 mg/mL using a Vivaspin 

protein concentrator spin column with a MWCO of 5kDa (GE Healthcare). Aliquots of 500 μL were 
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stored at -80˚C until use. For amyloid fibril assembly, purified recombinant α-syn was thawed and 

subjected to continuous shaking at 1,000 r.p.m at 37˚C in a Thermomixer (Eppendorf) for 7 days. The 

monitoring of fibril assemblies was performed by Thioflavin T (Sigma) fluorescence reading (data not 

shown). Fibrils were aliquoted and frozen at -80˚C until use.   

 

Stereotactic injections 

Prior to injection, human α-syn PFFs were thawed and sonicated at RT in a water-bath cup-horn 

sonicator (Misonix XL2020, 50% power, 120 pulses 1 s ON, 1 s OFF for two minutes). Following 

sonication, we then prepared transmission electron microscope grids and stained the PFFs negatively 

with 1% uranyl acetate to control the morphology of the fibrils prior to injection. Grids were imaged 

using a Tecnai G2 Spirit TWIN transmission electron microscope at 120kV (FEI Company, Figure 1a). 

Mice were anesthetized with an isoflurane/oxygen mixture and injected unilaterally with either 2 μL of 

PFFs (5 μg/μL ) or 2 μL of saline as a control in the dorsal striatum[40] (coordinates from bregma: AP: 

+ 0.2 mm; ML: -2.0 mm; DV: - 2.6 mm from dura) at a rate of 0.2 μL/min using a glass capillary attached 

to a 10 μL Hamilton syringe. After injection, the capillary was left in place for 3 minutes before being 

slowly removed. 

 

Adoptive transfer 

Splenocytes obtained from wildtype mice were transferred i.p. (1x107 cells/mouse) into NSG mice 4 

weeks post PFFs injection. The optimal number of T and B cells for adoptive transfer ranges from 1x106 

- 1x107 cells/mouse[41–46]. Purification of T and B cells from total splenocytes was carried out by 

negative selection using Dynabeads untouched mouse T cells and Dynabeads untouched CD43 B cells 

isolation kits according to the manufacturer’s instruction (Invitrogen). Successful transfer of splenocytes 

was confirmed by flow cytometric analysis of blood and spleen at the conclusion of the study.  

 

Euthanasia  

Mice were deeply anesthetized with sodium pentobarbital at 12 weeks post PFFs-injection. First, the 

spleen was rapidly collected and kept on ice and blood was collected in 0.5 mM EDTA/100 μL of blood. 

and kept at RT until flow cytometric analysis. Mice were then transcardially perfused with 0.9% saline 

followed by 4% paraformaldehyde in phosphate buffer. Brains were collected and post-fixed for 24 

hours in 4% PFA, and then stored at 4˚C in 30% sucrose in phosphate buffer until sectioning.  

 

Flow cytometric analysis 
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Immunophenotyping of isolated blood and splenocytes was performed. Blood was collected by cardiac 

puncture using a 26G needle. A minimum of 300 μL was collected into microfuge tubes containing 0.5 

mM EDTA/100 μL of blood. Blood was lysed using 1x RBC lysis buffer (eBioscience), spun 300 x g for 

10 mins, and the pellet was resuspended in flow buffer: PBS (minus Ca2+/ Mg2+, 2% fetal bovine serum) 

to bring cell number to ~5x106 cells/mL. Staining of blood cells were performed on 50 μL of blood 

incubated with antibodies for 30 mins, RT; SuperBright 702 anti-mouse CD45.1 (clone A20 , 0.5 μg, 

Invitrogen) or PE-Dazzle595 anti-mouse CD45.1 (clone A20, 0.5 μg, BioLegend), monoclonal anti-

mouse CD45.2 APC (clone 104, 0.125 μg, BioLegend), FITC anti mouse CD3ε (1 μg, Clone 145-2C11, 

BioLegend) and PE anti-mouse CD19 (clone 6D5, 0.5 μg, BioLegend). For splenocyte isolation and 

staining, spleens were isolated from mouse and kept on ice. In cold 1x RBC lysis buffer (eBioscience), 

spleens were macerated with the base of a 3 mL syringe plunger on a 70 μm cell strainer in a 10 cm 

petri dish on ice. 30 mL of PBS was added to stop the reaction. Cells were spun at 350 x g for 5 mins 

at 4˚C. Pellet was resuspended in 1 mL of PBS for ~5x106 cells/mL. Staining of splenocyte cells was 

performed on 100 μL cells as described for blood. Following antibody incubation, blood and spleen 

cells were washed in flow buffer and spun at 300 x g for 10 mins. Pellets were resuspended in 300 μL 

of flow buffer with 1 μg/mL DAPI. Samples were acquired on a CytoFLEX S (BeckmanCoulter). Data 

analysis was performed using FlowJo v10.5.3. After gating on single live cells, T cells and B cells were 

identified in plots of CD3 vs SSC and CD19 vs SSC respectively. The mouse origin of the B and T cell 

susbsets was confirmed by looking at the presence of CD45.1 vs CD45.2 in each population. 

 

Histology 

Brains were sectioned into 40 μm-thick free-floating coronal sections using a freezing microtome. Brain 

sections were stored in cryoprotectant and quenched with sodium peroxide. During the staining 

protocols, sections were incubated at room temperature overnight with primary antibodies directed 

against phosphorylated α-syn (rabbit anti-pS129, Abcam) at 1:10000 dilution, microglia (rabbit anti-Iba-

1, WAKO) at 1:500 dilution, and an antibody to tyrosine hydroxylase (TH, rabbit, 1:1600, EMD Millipore). 

To detect proteinase K resistant phosphorylated α-syn, free-floating sections were incubated with 

proteinase K for 10 min, 10ug/mL in PBS prior to primary antibody incubation. Sections containing the 

substantia nigra were stained for TH and mounted onto gelatin coated slides for stereological 

assessment of cell counts, and counter-stained with Cresyl violet for assessment of Nissl+ cells. To 

detect CD3+ and MHC II in the striatum, substantia nigra and frontal cortex of mice, we used a heat 

induced antigen retrieval protocol using a Universal HIER antigen retrieval reagent (Abcam). Sections 

were incubated with rat anti-CD3 (Abcam) at 1:100 dilution or rabbit anti MHC II at 1:500 dilution 

(Thermo Fisher). Sections were incubated with rabbit or rat biotinylated secondary antibodies (Vector 
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Laboratories) and conjugated with an ABC-HRP biotin/avidin complex kit (Vector Laboratories). 

Staining was developed with 3,3′-diaminobenzidine then sections were mounted for imaging and 

analysis. Representative images of phosphorylated α-syn pathology and microglia were acquired at 

20x magnification using a Nikon Eclipse Ni-U microscope.  

 

Immunofluorescence 

To detect CD4+ cells we used heat induced antigen retrieval (as detailed above). Sections were 

incubated with rabbit anti-CD4 (Abcam) at 1:100 dilution. Next, sections were treated with donkey anti-

rabbit Alexa 594 (1:500 dilution, Invitrogen) with DAPI (1:10000 dilution) added to the secondary 

solution. Sections were mounted and coverslipped using Vectashield mounting medium (Vector 

Laboratories) Representative images of CD4+ were acquired at 20x magnification using a Nikon Eclipse 

Ni-U microscope.  

 

Image J analysis of phosphorylated α-syn pathology, MHC II and CD4+ immunofluorescence. 

We investigated phosphorylated α-syn pathology in the ipsilateral hemisphere to the PFF injection and 

in the contralateral striatum, substantia nigra and frontal cortex of mice injected with human α-syn PFFs 

by densitometry. Briefly, we acquired photomicrographs from slides at 20x magnification on three 

consecutive sections, three images per section, distanced by a 240 µm interval. Striatal images, were 

captured at the level of bregma +0.26 mm, the images from the substantia nigra were captured from 

bregma -3.08 mm and the frontal cortex images from bregma +3.20 mm. The images of phosphorylated 

α-syn and MHC II stained tissue were then analyzed in ImageJ64 (Rasband WS (1997) ImageJ 

(modified in 2016) NIH, Bethesda, Maryland, USA). Images were converted to 8-bit grayscale. We set 

thresholds for each image  and analyzed particles in order to obtain the size of the area and the mean 

grey value (A.U.) of the phosphorylated α-syn-positive regions. We determined the average grey value 

in each brain region and animal. We then normalized to the PFFs injected wildtype mice (value as 1) 

and plotted the groups as a fold change from the PFFs injected wildtype group. For CD4+ 

immunofluorescence, 20x images were analyzed by Image J. Images were converted to 8-bit 

grayscale. We set a threshold for each section  using the triangle setting, and then converted images  

to black background (of binary masks). We recorded the fraction of  each area (striatum, substantia 

nigra and frontal cortex) that was positive and expressed it as a percentage.  

 

Assessment of microglial morphology 

Microglia morphology was assessed as previously described[47]. Color (RGB) images of Iba-1-stained  

striatum, substantia nigra and frontal cortex tissues were acquired bilaterally at 60x magnification (oil 
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immersion 1.40 N.A.) using a Nikon Eclipse Ni-U microscope. A total of nine images/animal were 

analyzed; three images from three sequential brain sections through the striatum (as described above). 

To assess the morphology of microglia in the samples, RGB color images were processed by a custom 

MATLAB (Mathworks) script. Cell bodies and other large regions were segmented first. Dynamic 

thresholds were determined for both the blue intensity and saturation channels of the image. Upper 

and lower bounds of the thresholds were set to match the full width at half maximum of curves fit to the 

histograms of each channel. If the signal met the required criteria for either the blue channel or the 

saturation channel thresholds, it was selected for further analysis. Segmented regions were filtered to 

remove small (under 2,000-pixel) areas and to remove objects that touched the borders of the image. 

The segmented areas were eroded to more accurately conform to cell bodies. The ratio of 

area:perimeter (referred to as hydraulic radius) was calculated and used as a measure for microglial 

activation; activated microglia are amoeboid in shape and therefore exhibit a larger index score. 

 

Stereological counting 

We used a computer-assisted cell quantification program (StereoInvestigator, MBF Bioscience) 

coupled to a Nikon Eclipse Ni-U microscope (Nikon). In each mouse (3–4 animals per group), we 

analyzed 5–7 sections containing substantia nigra. They were spaced by 240 μm (section interval = 6). 

Contours of the region were drawn at 10x magnification (air immersion, N.A. 0.45). Quantifications were 

performed at 60x (oil immersion, N.A. 1.40) using a counting frame of 100 μm × 100 μm, grid size set 

to 200 × 200 μm, with a guard zone of 2 μm, and dissector height set at 12 μm.  

  

Statistical analysis 

All values are expressed as mean ± SEM. Differences in means between the groups were analyzed 

using a Pairwise Wilcoxon Rank Sum Tests or one-way ANOVA test by using R software (v 3.6.2) and 

GraphPad Prism software, respectively. A p value < 0.05 was considered statistically significant.  

 

RESULTS 

Increased phosphorylated α-syn inclusions in NSG PFFs injected mice 

To determine the influence of a compromised immune system in the accumulation of phosphorylated 

α-syn following injection of fibrillar α-syn into the striatum, we compared NSG mice to NOD/ShiLtJ and 

to wildtype mice[37]. The timeline of the experiment is represented in Figure 1a. The sizes of the PFFs 

were verified by transmission electron microscopy (Figure 1b), which were consistent with the PFFs 

used in our previous studies[39]. 
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The accumulation of phosphorylated α-syn inclusions in wildtype, NOD and NSG mice four weeks after 

a single intrastriatal injection with recombinant human α-syn PFFs are presented in Figure 1. Pathology 

in three brain regions (ipsilateral to the PFF injection), i.e. the striatum, substantia nigra and frontal 

association cortex (referred to as frontal cortex from hereon, see Figure 1c for representative images 

of pathology), was selected for quantification. In all graphs, the levels of phosphorylated α-syn were 

normalized to the average level of pathology in the wildtype mice injected with α-syn PFFs (this is set 

to 1) and plotted as a fold change.  

 

In the striatum and substantia nigra, NSG mice inoculated with α-syn PFFs displayed significantly more 

pathology compared to wildtype mice injected with α-syn PFFs. In the frontal cortex, the levels of 

phosphorylated α-syn pathology showed a non-significant trend for an increase in PFF-injected NSG 

mice compared to wildtype PFFs-injected mice (p = 0.0539, Figure 1d).  

 

We observed phosphorylated α-syn pathology in PFFs injected NOD mice (Figure 1c and 1d) that was 

not different to that seen in NSG mice (p >0.05, Figure 1c and 1d). NOD/ShiLtJ mice have multiple 

immune cell dysfunctions including defects in innate immunity, like reduced dendritic cell function, lack 

of mature NK cells and defective macrophage activity, as well as neuroinflammatory 

changes[36,37,48]. They also spontaneously develop type I diabetes (43%-80% by 30 weeks of 

age)[37,49–51]. The phosphorylated α-syn load in the NOD/ ShiLtJ mice was not significantly different 

to that which we observed in NSG PFFs-injected mice, which supports the hypothesis that immune 

defects can lead to increased phosphorylated α-syn pathology. To avoid the potential complication of 

NOD/ShiLtJ mice developing type I diabetes, we injected NSG mice with PFFs for the remainder of the 

study, which aimed to address whether T or B cells influence the accumulation of phosphorylated α-

syn inclusions. We used wildtype mice as the donors of the T and B cells for the remainder of the study.  

 

Decreased phosphorylated α-syn in NSG mice reconstituted with T cells  

In the results described above, we established that there is increased α-syn related pathology following 

intrastriatal PFFs injection in NSG mice compared to wildtype mice. In our next set of experiments, we 

investigated whether reconstituting the T cell population in PFFs-injected NSG mice would alter the 

levels of phosphorylated α-syn in the striatum, substantia nigra or frontal cortex. Throughout the 

manuscript, we refer to NSG mice injected with human α-syn PFFs and reconstituted with T cells as 

NSG PFF T and NSG mice injected with human α-syn PFFs and reconstituted with B cells as NSG PFF 

B. We conducted the reconstitution of T cells in two separate experiments and the results were pooled 

after we determined that there was no difference in the neuropathological outcomes between the two 
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experiments (data not shown). Mice were injected with PFFs in the striatum; four weeks later, the 

adoptive transfer of immune cells was performed. Pathology was assessed 12 weeks post PFFs 

injection. Flow cytometry plots from the blood and splenocytes isolated from the reconstituted NSG 

mice were positive for CD3+ CD45.2+ T cells. C57Bl/6J mice express the CD45.2 allele while NSG mice 

express the CD45.1 allele (representative plots in Figure 2a), therefore CD45.2 positive cells 

demonstrated the successful uptake of donated T cells. The gating strategy is provided in 

supplementary Figure 1. Supplementary Tables 1 and 2 contain individual counts of T cells/µL in blood 

and spleen flow samples (Tables 1 and 2, respectively). We observed CD3+ cells in the striatum, 

substantia nigra and frontal cortex in PFFs injected mice that were reconstituted with T cells (Figure 

2b). As CD3 is also expressed on NK cells, we confirmed the presence of CD4+ T cells in the striatum, 

substantia nigra and frontal cortex by immunofluorescence and quantified the CD4+ signal in the 

striatum, substantia nigra and frontal cortex collectively (Figures 2c, d).  

 

The PFFs-injected NSG mice exhibited clearly increased phosphorylated α-syn pathology compared to 

PFFs-injected wildtype mice in the substantia nigra and frontal cortex and not in the striatum (Figure 

3b, c, p < 0.05). Because the phosphorylated α-syn pathology in the contralateral hemisphere 

(Supplementary Figure 2 a, b) was not as robust as the ipsilateral side within the experimental timeline 

(Figure 3a), which would make it difficult to evaluate the changes caused by reconstituted T or B cells, 

we focused our analyses on the ipsilateral hemisphere. Notably, reconstituting T cells in NSG PFFs 

injected mice significantly decreased levels of phosphorylated α-syn in the substantia nigra when 

comparing NSG PFFs to NSG PFF T mice (Figure 3b, c, p < 0.05). The levels of phosphorylated α-syn 

in the striatum and frontal cortex following T cell reconstitution decreased, but did not reach significance 

(Figure 3c, p > 0.05).  

 

As a control experiment for the reconstitution of T cells, we reconstituted a different group of NSG mice 

with B cells (timeline of experiment represented in Figure 4a). Since B cells on their own are not 

expected to affect pathology as they need T cells to work in concert for an antibody response[52,53], 

we used this experiment as a control to determine the effect of the reconstitution per se. The transfer 

of B cells was confirmed by flow cytometry (Figure 4b, supplementary Tables 3 and 4). Consistent with 

the above results, there was an increase in phosphorylated α-syn in the ipsilateral substantia nigra in 

PFFs-injected NSG mice compared to PFFs-injected wildtype mice (p < 0.05, Figure 4c, d). There was 

a significant increase in phosphorylated α-syn pathology in the ipsilateral striatum and substantia nigra 

in the wildtype PFFs-injected mice compared to NSG PFF B  (Figure 4c, d, p < 0.05). In the ipsilateral 

striatum, substantia nigra and frontal cortex, the levels of phosphorylated α-syn pathology in the PFFs-
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injected NSG mice following the transfer of B cells did not significantly change (Figure 4c, d). The levels 

of phosphorylated α-syn in the contralateral hemisphere did not significantly differ between the groups 

(supplementary Figure 2 c, d). 

 

We also evaluated the presence of proteinase K resistant phosphorylated α-syn as a readout for 

aggregated α-syn[54,55]. In all groups injected with PFFs, we observed proteinase K-resistant 

phosphorylated α-syn (supplementary Figure 3). Proteinase K-resistant phosphorylated α-syn was also 

present in the striatum, substantia nigra and frontal cortex.  

 

Microgliosis in mice reconstituted with T cells 

To understand whether microglia were involved in the reduction of phosphorylated α-syn pathology in 

NSG mice reconstituted with T cells, we analyzed the morphology of microglia. We immunostained for 

Iba-1 to compare microglial morphology between all groups (Figure 5). We compared the morphology 

of Iba-1 immunoreactive microglia from the same anatomical level of the ipsilateral and contralateral 

striatum, substantia nigra and frontal cortex in mice from each experimental group. Specifically, we 

used a MATLAB script to define the ratio between the perimeter and surface area of Iba-1-

immunoreactive microglia, allowing us to calculate the hydraulic radius of each cell as an index of the 

activation state as previously[47]. The area:perimeter index (hydraulic radius) measures microglial 

activation as activated microglia are amoeboid in shape. Thus, these activated cells have a large area 

and small perimeter, increasing the index score. The hydraulic radius was significantly increased in 

microglia from within the striatum of NSG PFFs injected mice that received T cells relative to wildtype 

Saline, wildtype PFFs, NSG Saline, NSG PFFs, NSG PFF T and NSG PFF B cell injected mice (Figure 

5b, p < 0.05) indicating that microglia in the NSG PFF T group are activated. The hydraulic radius of 

microglia analyzed from the substantia nigra was not significantly different between the groups (Figure 

5b, p > 0.05). In the frontal cortex, the hydraulic radius of microglia in the NSG PFF B mice was 

significantly reduced compared to the NSG PFF T mice (Figure 5b, p < 0.05). Microglia morphology in 

the contralateral striatum, substantia nigra and frontal cortex did not significantly change between 

groups (Figure 5b, p>0.05).  

 

Several single nucleotide polymorphisms associated with PD risk are found in and around the human 

leukocyte antigen (HLA) locus coding for MHC II[56]. MHC II is used by antigen presenting cells (e.g. 

microglia) to interact with T cells. We evaluated the levels of MHC II by immunohistochemistry on 

sections through the striatum, substantia nigra and frontal cortex (Figure 5d). There was an absence 

of signal in the NSG Saline and NSG PFF mice. There were no significant changes in the MHC II signal 
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in the striatum (Figure 5d, p> 0.05). In the substantia nigra, MHC II signal was significantly higher in 

the NSG PFF B group compared to NSG Saline (Figure 5d, p< 0.05). In the frontal cortex, there was a 

significant increase in the MHC II signal in the wildtype PFF group compared to the NSG Saline group 

(Figure 5d, p< 0.05). 

 

To determine whether adoptive transfer of T cells altered the number of surviving dopamine neurons in 

the substantia nigra, we performed stereological cell counts on TH-immunostained sections from 

wildtype saline, wildtype PFFs-injected and NSG saline and NSG PFFs-injected mice and from NSG 

mice reconstituted with T and B cells. We determined that PFFs injection resulted in significant cell loss 

in TH-positive neurons (Figure 5d, significant main effect of hemisphere, p <0.05) and that 

reconstitution of T or B cells was not significantly different from the cell loss observed in the NSG PFFs-

injected mice (Figure 5d, p >0.05).  

 

DISCUSSION 

 

We explored the role of T cells in the accumulation of α-syn following intracerebral inoculation with α-

syn fibrils in immunocompromised mice (NSG) that lack B, T and natural killer cells[36]. Compared to 

wildtype mice injected with α-syn fibrils into the striatum, NSG mice injected with PFFs injections 

developed greater accumulation of phosphorylated α-syn in the striatum, substantia nigra and frontal 

cortex. To identify whether the absence of T lymphocytes was driving this elevation in phosphorylated 

α-syn inclusions, we reconstituted NSG mice with T cells via adoptive transfer four weeks after 

intrastriatal injections of α-syn PFFs. To control for the injection of immune cells via adoptive transfer, 

we injected a separate group of mice with B cells isolated from wildtype mice. Notably, the transfer of 

T cells resulted in a significant decrease in phosphorylated α-syn immunostaining in the substantia 

nigra, but not in the striatum and frontal cortex, where only a trend was observed. Our data imply that 

a critical number of T cells are required to alter the presence of α-syn pathology in vivo, as with the 

adoptive transfer, significantly more T cells were found in the brain than in PFFs injected mice. Such 

an increase in the number of infiltrating T cells could mediate the decrease in phosphorylated α-syn 

pathology in the substantia nigra. This complements several reports associating altered T cell function 

with PD and MSA[21–26,57] and studies demonstrating activation of immune cells by pathogenic α-

syn[27,31,58]. One such study measuring nigral neurodegeneration as the readout supports the 

hypothesis that immune cells can modulate neuroinflammation and neurodegeneration in PD mouse 

models[59]. Overexpression of human α-syn in the substantia nigra of immune competent mice results 

in microglial activation, MHC II activation, T cell and monocyte entry into the brain and consequently, 
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loss of substantia nigra neurons[33,60,61]. Our findings support these prior studies by showing that 

intrastriatal injection of human α-syn PFFs leads to elevated phosphorylated α-syn pathology in 

immunodeficient compared to wildtype mice[62]. The exacerbation of pathology observed in PFFs 

injected immunocompromised mice was partially mitigated by adoptive transfer of T cells. Further, 

following adoptive transfer we observed CD4+ T cells invading the striatum, substantia nigra and frontal 

cortex, which supports previous work showing infiltration of T cells in PD brains and in a neurotoxin 

model of nigral neurodegeneration[19,20]. We observed CD3+ CD4+ cells throughout the structures we 

studied, however due to the small number of infiltrating cells, it was difficult to determine absolute 

numbers and their distribution. The regional distribution of the cells in the brain may account for why T 

cells were more effective in reducing nigral pathology, but not striatal or cortical pathology. Although 

we could not determine regional differences in T cell infiltration in the brain, our findings of CD3+ and 

CD4+ T cells in the brain align well with a growing body of evidence that T cells invade the central 

nervous system in neurodegenerative conditions[29,63,64].  

 

We also investigated whether the decrease in pathology observed following adoptive transfer of T cells 

could be due to cytotoxic T cells killing neurons that exhibit phosphorylated α-syn, leading to an 

apparent reduction of α-syn staining as a consequence. This idea would be consistent with an earlier 

study showing that mice lacking CD4+ T cells are relatively resistant to MPTP-induced degeneration of 

substantia nigra dopamine neurons[19]. However, we did not find this to be the explanation for the 

reduction in α-syn pathology. Stereological counts of dopaminergic neurons of the substantia nigra 

revealed similar reductions in nigral TH-immunoreactive neurons following intrastriatal injection of α-

syn PFFs in mice lacking T cells as those having their T cell population reconstituted (Figure 5d).  

 

An alternative mechanism for the significant decrease in phosphorylated α-syn following T cell 

reconstitution is that the infiltration of T cells leads to the activation of microglia and that these resident 

macrophages are involved in removing phosphorylated α-syn. Earlier studies have also shown that T 

cells invading the brain can activate microglia[63–65]. Indeed, we also found microglia morphology was 

significantly altered in the striatum of mice that received adoptive transfer of T cells following intrastriatal 

injection of α-syn PFFs. The microgliosis that we observed was restricted to the striatum, in line with 

previous work in immunocompetent rats[66]. Microglia are heterogenous and have distinct region-

dependent transcriptional identities, probably because the local environment influences their molecular 

and morphological profiles[67–69]. It is therefore possible that the response to human α-syn is region-

specific, with striatal microglia becoming more highly activated than microglia in the substantia nigra 

and frontal cortex in this paradigm. We also observed no increase in MHCII signal in PFF-injected NSG 
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mice that received an adoptive transfer of T cells. This is in contrast to what has been reported recently, 

in where T cells are necessary for the upregulation of MHC II in microglia, which then leads to loss of 

dopamine neurons in the substantia nigra in response to viral overexpression of α-syn in rats[34]. The 

absence of MHC II upregulation in response to α-syn PFFs (in contrast to the model with viral 

overexpression) could be due to recombinant adeno-associated virus being inflammatory itself[67–70]. 

Alternatively, the α-syn species generated by the recombinant adeno-associated virus compared to 

PFFs are different. In contrast to PFFs, vector overexpressing models do not efficiently generate stable, 

seeding assemblies, and the toxic effects are believed to be mediated via overexpression of soluble α-

syn[71]. Therefore the α-syn that is generated by models using recombinant adeno-associated virus 

and PFFs can stimulate the immune system differently. 

 

Our study did not address the influence of NK cells in the accumulation of phosphorylated α-syn 

inclusions. NK cell function is altered in peripheral lymphocytes obtained from PD patients as the levels 

of inhibitory receptors on NK cells are significantly lowered in PD patients, rendering the NK cells more 

susceptible to activation[72]. NK cells are one of the first lines of defense of the innate immune 

system[73]. They respond rapidly to a variety of insults with cytolytic activity and cytokine secretion[74]. 

They are implicated in diseases of autoimmunity and within the CNS, and can interact with 

microglia[74]. Recently, it was reported that systemic depletion of NK cells in a preclinical model of PD 

exacerbated α-syn pathology[75]. That particular preclinical model utilized α-syn transgenic mice that 

over-express human α-syn with the A53T mutation, and combined it with  an injection of human α-syn 

PFFs into the dorsal striatum. The depletion of NK cells in this model of α-syn-induced pathology 

suggests that NK cells can contribute to the clearance of α-syn aggregates, or prevent their 

formation[75]. The mice we used in our study also have deficiencies in NK cells. Mice that have a 

mutation in the interleukin-2 receptor common gamma chain, such as the NSG mice used in this study, 

have interrupted cytokine signaling networks for multiple cytokines, in particular Interleukin-15, which 

contributes to a complete lack of NK cells[76]. Thus, the NOD/ShiLtJ mice have dysfunctional NK cells 

and NSG mice lack NK cells all together[36,37,76]. Notably, we found that phosphorylated α-syn was 

increased in multiple brain regions in both NOD/ShitLtJ mice and NSG mice when compared to wildtype 

mice in Figure 1. In light of the findings mentioned above[75], a driver of this difference between 

wildtype and the mice on the NOD background could also be the dysfunction or absence of NK cells. 

Thus,  we can be speculate that both arms of immunity are involved in modulating accumulation of 

phosphorylated α-syn. To clarify the specific role of NK cells in α-synucleinopathy, future studies are 

needed where NK cells are reconstituted in the immunocompromised mice. 
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While our results highlight the role for the adaptive immune system, and specifically T cells, in the 

accumulation of α-syn, we did not investigate the dynamics of the microglial response and accumulation 

of phosphorylated α-syn. To further delineate the role for T and B cells in the accumulation of α-syn in 

a paradigm relevant to PD, experiments transferring T and B cells from wild type PFFs-injected mice 

that have been previously exposed to human α-syn PPFs would be informative. This would also allow 

us to define the role of B cells, as B cells require T cells for their maturation and for the production of 

antibodies[53]. In the current study, we injected naïve B-cells from wild-type mice that had never been 

exposed to human α-syn PFFs, therefore the B cells lack the specific receptors for different antigens 

present in the mixture of α-syn assemblies that PFFs contain to mount a mature antibody response.  

 

CONCLUSION 

Compared to wildtype mice injected with PFFs into the striatum, NSG immunocompromised mice 

injected with PFFs exhibited increased phosphorylated α-syn levels in the substantia nigra, and not in 

the striatum and frontal cortex. The accumulation of phosphorylated α-syn in the substantia nigra was 

reduced when we used adoptive transfer to reconstitute the T cell population in the 

immunocompromised mice. We observed signs of elevated microglia activation in the striatum in mice 

that received the T cell adoptive transfer. Taken together, our study provides direct in vivo evidence 

that T cells modulate accumulation of phosphorylated α-syn and supports an important role for the 

immune system in PD pathogenesis. 
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Figure legends 

Figure 1. Increased phosphorylated α-syn pathology in immunocompromised mice injected with 

human α-syn pre-formed fibrils. a. Timeline of the experiment. b. PFFs were sonicated and validated 

by transmission electron microscopy. c. α-Syn pathology in the injected striatum was detected in the 

ipsilateral hemisphere to PFF injection in the striatum, substantia nigra and ipsilateral frontal cortex at 

4 weeks post injection, by an antibody against phosphorylated α-syn at serine 129. d. Densitometry 

performed on 4-10 animals per group in the striatum, substantia nigra and frontal cortex (wildtype 

Saline, n = 4; wildtype PFFs, n = 4; NOD PFFs, n = 6; NSG PFFs n = 10). Statistical analyses were 

performed by Pairwise Wilcoxon Rank Sum Tests analysis* p < 0.05, ** p < 0.01, Scale bar: 100 µm.   

 

Figure 2. T cells in the blood, spleen and brain following adoptive transfer. a. Flow cytometric 

analysis. Wildtype mice contained populations of T and B cells that are CD45.2 positive. NSG mice did 

not contain T and B cell populations. Following adoptive transfer of T cells to NSG mice, CD45.2+ CD3+ 

T cells were detected. Representative plots are shown for each treatment condition. b. Representative 

images from the mouse striatum, substantia nigra and frontal cortex staining positive for CD3+T cells in 

mice that received adoptive transfer of T cells. c. Immunofluorescent staining for CD4+ T cells in the 

striatum, substantia nigra and frontal cortex. d. Percentage area of tissue that is positive for CD4 signal 

in striatum, substantia nigra and frontal cortex combined. Scale bar: 100 µm.   

 

Figure 3. Reduced phosphorylated α-syn pathology in immunocompromised mice that received 

adoptive transfer of T cells.  a. Timeline of experiment. b. Phosphorylated α-syn was detected in the 

ipsilateral hemisphere to PFF injection in the striatum, substantia nigra and frontal cortex. The 

reconstitution of T cells was conducted in two separate experiments and the results pooled after results 

of the reduction in phosphorylated α-syn were shown to be consistent between the two experiments. c. 
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Densitometry of 5-9 mice per group to determine the fold change in phosphorylated α-syn levels in the 

ipsilateral striatum, substantia nigra and frontal cortex. Wildtype Saline, n=5; NSG Saline n=5, wildtype 

PFF, n=6; NSG PFF, n=6; NSG PFF T n=7). d. Statistical analyses were performed by Pairwise 

Wilcoxon Rank Sum Tests analysis * p<0.05, ** p<0.01. Scale bar: 100 µm.   

 

Figure 4. Adoptive transfer of B cells alone did not alter phosphorylated α-syn pathology in 

immunocompromised mice. a. Timeline of experiment. b. Flow cytometric analysis of mouse spleen 

and blood following adoptive transfer demonstrated that wildtype mice contain populations of T and B 

cells that are CD3 and CD19 positive. NSG mice do not have T and B cell populations. Following 

adoptive transfer of B cells, NSG mice contained CD45.2+ CD19+ B cells. Representative plots are 

shown for each treatment condition. c. Phosphorylated α-syn was detected in the ipsilateral striatum, 

substantia nigra and frontal cortex. d. Densitometry of 3-9 mice per group to determine the fold change 

in phosphorylated α-syn levels in the ipsilateral striatum, substantia nigra and frontal cortex. Wildtype 

Saline, n = 5; NSG Saline n = 3, wildtype PFFs, n = 3; NSG PFFs, n = 3; NSG PFF B n = 9). The error 

bars represent S.E.M. Statistical analyses were performed by Pairwise Wilcoxon Rank Sum Tests 

analysis ** p < 0.01. Scale bar: 100 µm.   

 

Figure 5. Microgliosis and dopaminergic cells death in the brain of α-syn PFFs injected mice. 

a. Representative images of Iba-1 immunoreactive microglia were present in the ipsilateral striatum, 

substantia nigra and frontal cortex of saline and PFFs injected mice. b. Quantification of microglia 

morphology in the ipsilateral hemisphere to PFF injection and in the contralateral striatum, substantia 

nigra and frontal cortex (area/perimeter). Wildtype Saline, n = 5; NSG Saline n = 4, wildtype PFFs, n 

= 10; NSG PFFs, n = 3; NSG PFF T n = 4; NSG PFF B n = 4). c. Representative images of MHC II 

immunoreactive cells in the ipsilateral striatum, substantia nigra and frontal cortex of saline and PFFs 

injected mice. d. Densitometry of 3-7 mice per group to determine MHCII levels in the ipsilateral 

substantia nigra. Wildtype Saline, n = 3; NSG Saline n = 3, wildtype PFFs, n = 5; NSG PFFs, n = 4; 

NSG PFF T n = 7; PFF B n = 4). e. Stereological counts of saline and PFFs injected wildtype and 

NSG mice. There was no main effect of genotype (p > 0.05), but a significant main effect of 

hemisphere (p < 0.05) in the total number of TH-expressing cells in the substantia nigra between 

contralateral substantia nigra (black bars) and ipsilateral substantia nigra (grey bars). The error bars 

represent S.E.M. Statistical analyses were performed by one and two-ANOVA analysis * p <0.05, ** p 

< 0.01, *** p < 0.001. Scale bar: 100 µm. 
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Supplementary Figure 1. Flow cytometry gating strategy. Live single cells were gated for T cells 

based on CD3 or B cells using CD19. The WT-mouse origin of cells was confirmed by the presence 

of CD45.2. NSG-derived cells would express CD45.1. 

 

Supplementary Figure 2. Phosphorylated α-syn is found in the contralateral hemisphere in 

PFFs-injected mice. a. Tissue from the contralateral hemisphere of the striatum, substantia nigra and 

frontal cortex from wildtype saline, NSG saline, wildtype PFF, NSG PFF and NSG PFF T mice were all 

positive for phosphorylated α-syn.  b. Densitometry of 5-7 mice per group to determine the fold change 

in phosphorylated α-syn levels in the contralateral striatum, substantia nigra and frontal cortex. Wildtype 

Saline, n = 5; NSG Saline n = 5, wildtype PFFs, n = 9; NSG PFFs, n = 4; NSG PFF T n = 7). c. Tissue 

from the contralateral hemisphere of the striatum, substantia nigra and frontal cortex from wildtype 

saline, NSG saline, wildtype PFF, NSG PFF and NSG PFF B mice were all positive for phosphorylated 

α-syn.  d. Densitometry of 5-7 mice per group to determine the fold change in phosphorylated α-syn 

levels in the contralateral striatum, substantia nigra and frontal cortex. Wildtype Saline, n = 5; NSG 

Saline n = 5, wildtype PFFs, n = 9; NSG PFFs, n = 4; NSG PFF B n = 7). The error bars represent 

S.E.M. Statistical analyses were performed by Pairwise Wilcoxon Rank Sum Tests analysis ** p < 0.01. 

Scale bar: 100 µm.   

 

Supplementary Figure 3. Proteinase K resistant phosphorylated α-syn is found in PFFs-

injected mice. Tissue from the striatum, substantia nigra and frontal cortex from wildtype saline, 

NSG saline, wildtype PFF, NSG PFF, NSG PFF T and NSG PFF B mice were all positive for 

phosphorylated α-syn following proteinase K treatment.  Scale bar: 100 µm. 

 

Supplementary Table 1. 45.2+ B cells/μL in flow blood sample 

Supplementary Table 2- 45.2+ B cells/μL in flow spleen sample 

Supplementary Table 3- 45.2+ T cells/μL in flow blood sample 

Supplementary Table 4- 45.2+ T cells/μL in flow spleen sample 
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