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ABSTRACT2

The histone group added to a gene sequence must be released during mitosis to halt3
transcription during the DNA replication stage of the cell cycle. However, the detailed mechanism4
of this transcription regulation remains unclear. In particular, it is not realistic to reconstruct all5
appropriate histone modifications throughout the genome from scratch after mitosis. Thus, it6
is reasonable to assume that there might be a type of “bookmark” that retains the positions7
of histone modifications, which can be readily restored after mitosis. We developed a novel8
computational approach comprising tensor decomposition (TD)-based unsupervised feature9
extraction (FE) to identify transcription factors (TFs) that bind to genes associated with reactivated10
histone modifications as candidate histone bookmarks. To the best of our knowledge, this is the11
first application of TD-based unsupervised FE to the cell division context and phases pertaining12
to the cell cycle in general. The candidate TFs identified with this approach were functionally13
related to cell division, suggesting the suitability of this method and the potential of the identified14
TFs as bookmarks for histone modification during mitosis.15
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1 INTRODUCTION
During the cell division process, gene transcription must be initially terminated and then reactivated17
once cell division is complete. However, the specific mechanism and factors controlling this process18
of transcription regulation remain unclear. Since it would be highly time- and energy-consuming to19
mark all genes that need to be transcribed from scratch after each cycle of cell division, it has been20
proposed that genes that need to be transcribed are “bookmarked” to easily recover these positions for21
reactivation (Festuccia et al., 2017; Bellec et al., 2018; Zaidi et al., 2018; Teves et al., 2016). Despite22
several proposals, the actual mechanism and nature of these “bookmarks” have not yet been identified.23
John and Workman (1998) suggested that condensed mitotic chromosomes can act as bookmarks, some24
histone modifications were suggested to serve as these bookmarks (Wang and Higgins, 2013; Kouskouti25
and Talianidis, 2005; Chow et al., 2005), and some transcription factors (TFs) have also been identified as26
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potential bookmarks (Dey et al., 2000; Kadauke et al., 2012; Xing et al., 2005; Christova and Oelgeschläger,27
2001; Festuccia et al., 2016).28

Recently, Kang et al. (2020) suggested that histone 3 methylation or trimethylation at lysine 4 (H3K4me129
and H3K4me3, respectively) can act as a “bookmark” to identify genes to be transcribed, and that a limited30
number of TFs might also act as bookmarks. However, there has been no comprehensive search of candidate31
“bookmark” TFs based on large-scale datasets.32

We here propose a novel computational approach to search for TFs that might act as “bookmarks”33
during mitosis, which involves tensor decomposition (TD)-based unsupervised feature extraction (FE)34
(Fig. 1). In brief, after fragmenting the whole genome into DNA regions of 25,000 nucleotides, the histone35
modifications within each region were summed. In this context, each DNA region is considered to be a36
tensor and various singular-value vectors associated with either the DNA region or experimental conditions37
(e.g., histone modification, cell line, and cell division phase) are derived. After investigating singular-value38
vectors attributed to various experimental conditions, the DNA regions with significant associations of39
singular-value vectors attributed to various experimental conditions were selected as potentially biologically40
relevant regions. The genes included in the selected DNA regions were then identified and uploaded to the41
enrichment server Enrichr to identify TFs that target the genes. To our knowledge, this is the first method42
utilizing a TD-based unsupervised FE approach in a fully unsupervised fashion to comprehensively search43
for possible candidate bookmark TFs.44

2 MATERIALS AND METHODS
2.1 Histone modification45

The whole-genome histone modification profile was downloaded from the Gene Expression Omnibus46
(GEO) GSE141081 dataset. Sixty individual files (with extension .bw) were extracted from the raw GEO47
file. After excluding six CCCTC-binding factor (CTCF) chromatin immunoprecipitation-sequencing files48
and six 3rd replicates of histone modification files, a total of 48 histone modification profiles were retained49
for analysis. The DNA sequences of each chromosome were divided into 25,000-bp regions. Note that the50
last DNA region of each chromosome may be shorter since the total nucleotide length does not always51
divide into equal regions of 25,000. Histone modifications were then summed in each DNA region, which52
was used as the input value for the analysis. In total, N = 123, 817 DNA regions were available for analysis.53
Thus, with approximately 120, 000 regions of 25, 000 bp each, we covered the approximate human genome54
length of 3× 109.55

2.2 Tensor Data Representation56

Histone modification profiles were formatted as a tensor, xijkms ∈ RN×2×4×3×2, which corresponds to57
the kth histone modification (k = 1: acetylation, H3K27ac; k = 2: H3K4me1; k = 3 : H3K4me3; and58
k = 4 :Input) at the ith DNA region of the jth cell line (j = 1 : RPE1 and j = 2 : USO2) at the mth phase59
of the cell cycle(m = 1 : interphase, m = 2 : prometaphase, and m = 3 : anaphase/telophase) of the sth60
replicate (s = 1, 2). xijkms was normalized as

∑
i xijkms = 0 and

∑
i x

2
ijkms = N (Table 1).61

2.3 Tensor Decomposition62

Higher-order singular value decomposition (Taguchi, 2020) was applied to xijkms to obtain the63
decomposition64

xijkms =
2∑

`1=1

4∑
`2=1

3∑
`3=1

2∑
`4=1

N∑
`1=1

G(`1`2`3`4`5)u`1ju`2ku`3mu`4su`5i, (1)
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where G ∈ RN×2×4×3×2 is the core tensor, and u`1j ∈ R2×2, u`2k ∈ R4×4, u`3m ∈ R3×3, u`4s ∈65
R2×2, andu`5i ∈ RN×N are singular-value matrices, which are all orthogonal matrices.66

2.4 TD-based unsupervised FE67

To select the DNA regions of interest (i.e., those associated with transcription reactivation), we first68
needed to specify the singular-value vectors that are attributed to the cell line, histone modification, phases69
of the cell cycle, and replicates with respect to the biological feature of interest, transcription reactivation.70
Consider selection of a specific index set `1, `2, `3, `4 as one that is associated with biological features of71
interest, we then select `5 that is associated with G with larger absolute values, since singular-value vectors72
u`5i with `5 represent the degree of association between individual DNA regions and reactivation. Using73
`5, we attribute P -values to the ith DNA region assuming that u`5i obeys a Gaussian distribution (null74
hypothesis) using the χ2 distribution75

Pi = Pχ2

[
>

(
u`5i
σ`5

)2
]
, (2)

where Pχ2 [> x] is the cumulative χ2 distribution in which the argument is larger than x, and σ`5 is the76
standard deviation. P -values are then corrected by the BH criterion (Taguchi, 2020), and the ith DNA77
region associated with adjusted P -values less than 0.01 were selected as those significantly associated with78
transcription reactivation.79

2.5 Enrichment analysis80

Gene symbols included in the selected DNA regions were retrieved using the biomaRt package (Durinck81
et al., 2009) of R (R Core Team, 2019) based on the hg19 reference genome. The selected gene symbols82
were then uploaded to Enrichr (Kuleshov et al., 2016) for functional annotation to identify their targeting83
TFs.84

3 RESULTS AND DISCUSSION
We first attempted to identify which singular-value vector is most strongly attributed to transcription85
reactivation among the vectors for cell line (u`1j), histone modification (u`2k), cell cycle phase (u`3m),86
and replicate (u`4s)(Fig. 2). First, we considered phase dependency. Fig. 3 shows the singular-value87
vectors u`3m attributed to cell cycle phases. Although u2m and u3m were associated with reactivation, we88
further considered only u3m since it showed a more pronounced reactivation profile. Next, we investigated89
singular-value vectors u`2m attributed to histone modification (Fig. 4). There was no clearly interpretable90
dependence on histone modification other than for u1k, which represents the lack of histone modification,91
since the values for H3K27ac, H3K4me1, and H3K4me3 were equivalent to the Input value that corresponds92
to the control condition; thus, u2k, u3k, and u4k were considered to have equal contributions for subsequent93
analyses. By contrast, since u1j and u1s showed no dependence on cell line and replicates, respectively, we94
selected these vectors for further downstream analyses (Fig. 5).95

Finally, we evaluated which vector u`5i had a larger
∑4

`2=2G(1, `2, 3, 1, `5)
2 (Fig. 6); in this case, we96

calculated the squared sum for 2 ≤ `2 ≤ 4 to consider them equally. Based on its largest contribution,97
`5 = 4 was further employed. The P -values attributed to the ith DNA regions were calculated using eq.98
(2), resulting in selection of 507 DNA regions associated with adjusted P -values less than 0.01.99

We next checked whether histone modification in the selected DNA regions was associated with the100
following transcription reactivation properties:101
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1. H3K27ac should have larger values in interphase and anaphase/telophase than in prometaphase, as the102
definition of reactivation.103

2. H3K4me1 and H3K4me3 should have constant values during all phases of the cell cycle, as the104
definition of a “bookmark” histone modification105

3. H3K4me1 and H3K4me3 should have larger values than the Input; otherwise, they cannot be regarded106
to act as “bookmarks” since these histones must be significantly modified throughout these phases.107

To check whether the above criteria are fulfilled, we applied six t tests to histone modifications in the 507108
selected DNA regions (Table 2). The results clearly showed that histone modifications in the 507 selected109
DNA regions satisfied the requirements for transcription reactivation; thus, our strategy could successfully110
select DNA regions that demonstrate reactivation/bookmark functions of histone modification.111

After confirming that selected DNA regions are associated with targeted reactivation/bookmark features,112
we queried all gene symbols contained within these 507 regions to the Enrichr server to identify TFs that113
significantly target these genes. These TFs were considered candidate bookmarks that remain bound to114
these DNA regions throughout the cell cycle and trigger reactivation in anaphase/telophase (i.e., after cell115
division is complete). Table 3 lists the TFs associated with the selected regions at adjusted P -values less116
than 0.05 in each of the seven categories of Enrichr.117

Among the many TFs that emerged to be significantly likely to target genes included in the 507 DNA118
regions selected by TD-based unsupervised FE, we here focus on the biological functions of TFs that were119
also detected in the original study suggesting that TFs might function as histone modification bookmarks120
for transcription reactivation (Kang et al., 2020). RUNX was identified as an essential TF for osteogenic121
cell fate, and has been associated with mitotic chromosomes in multiple cell lines, including Saos-2122
osteosarcoma cells and HeLa cells (Young et al. 2007). Table 4 shows the detection of RUNX family TFs123
in seven TF-related categories of Enrichr; three RUNX TFs were detected in at least one of the seven124
TF-related categories. In addition, TEADs (Kegelman et al. 2018), JUNs (Wagner, 2002), FOXOs (Rached125
et al., 2010), and FosLs citepKang01072020 were reported to regulate osteoblast differentiation. Tables 5,126
6,7, and 8 show that two TEAD TFs, three JUN TFs, four FOXO TFs, and two FOSL TFs were detected in127
at least one of the seven TF-related categories in Enrichr, respectively.128

Other than these five TF families reported in the original study (Kang et al., 2020), the TFs detected most129
frequently within seven TF-related categories in Enrichr were as follows (Table 9): GATA2 (Kala et al.,130
2009), ESR1 (Kato and Ogawa, 1994), TCF21 (Kim et al., 2017), TP53 (Ha et al., 2007), WT1 (Shandilya131
and Roberts, 2015), NFE2L2 (also known as NRF2 (Martin-Hurtado et al., 2019)), GATA1 (Kadauke132
et al., 2012), and GATA3 (Shafer et al., 2017). All of these TFs have been reported to be related to mitosis133
directly or indirectly, in addition to JUN and JUND, which are listed in Table 6) . This further suggests the134
suitability of our search strategy to identify transcription reactivation bookmarks.135

4 CONCLUSIONS
We applied a novel TD-based unsupervised FE method to various histone modifications across the whole136
human genome, and the levels of these modifications were measured during mitotic cell division to identify137
genes that are significantly associated with histone modifications. Potential bookmark TFs were identified138
by searching for TFs that target the selected genes. The TFs identified were functionally related to the cell139
division cycle, suggesting their potential as bookmark TFs that warrant further exploration.140
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Figure 1. Flow chart of analyses performed in this study
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Figure 3. Singular-value vectors associated with cell cycle phase. Left: u1m, middle: u2m, right: u3m

Table 1. Numbers of biological replicates used in this study
Histone modifications

Phases Cell lines
H3K27ac H3K4me1 H3K4me3 Input

RPE1 U2OS RPE1 U2OS RPE1 U2OS RPE1 U2OS
interphase 2 2 2 2 2 2 2 2

prometaphase 2 2 2 2 2 2 2 2
anaphase/telophase 2 2 2 2 2 2 2 2
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Figure 4. Singular-value vectors associated with histone modification. Upper left: u1k, upper right: u2k,
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Figure 5. Dependence of vectors on cell line (j) and replicate (s). Left: u1j , right: u1s
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Table 2. H
ypotheses for t tests applied to histone modification in the selected 507 DNA regions. The null hypothesis
was that the inequality relationship of the alternative hypothesis is replaced with an equality relationship.

int: interphase, ana: anaphase, tel: telophase, pro: prometaphase.
test alternative hypothesis P -value description of desired relationships
1 {xij1ms|m = 1, 3} > {xij12s} 3.30× 10−3 H3K27ac reactivation (int & ana/tel > pro)
2 {xij2ms|m = 1, 3} 6= {xij22s} 0.60 H3K4me1 bookmark (int & ana/tel = pro)
3 {xij3ms|m = 1, 3} 6= {xij32s} 0.72 H3K4me3 bookmark (int & ana/tel = pro)
4 {xij4ms|m = 1, 3} 6= {xij42s} 0.86 Input as control (int & ana/tel = pro)
5 {xij2ms} > {xij4ms} 8.98× 10−6 H3K4me1 > Input
6 {xij3ms} > {xij4ms} 3.79× 10−3 H3K4me3 > Input

Table 3. Number of transcription factors (TFs) associated with adjusted P -values less than 0.05 in various
TF-related Enrichr categories

adjusted P-values
Terms > 0.05 < 0.05

(I) ChEA 2016 537 97
(II) ENCODE and ChEA Consensus TFs from ChIP-X 91 12
(III) ARCHS4 TFs Coexp 1533 54
(IV) TF Perturbations Followed by Expression 1577 346
(V) Enrichr Submissions TF-Gene Coocurrence 587 1135
(VI) ENCODE TF ChIP-seq 2015 788 28
(VII) TF-LOF Expression from GEO 239 11

Table 4. Identification of RUNX transcription factor (TF) family members within seven TF-related
categories in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 RUNX1 © ©
2 RUNX2 ©
3 RUNX3 ©

Table 5. Identification of TEAD transcription factor (TF) family members within seven TF-related
categories in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 TEAD4 © ©
2 TEAD3 ©

Table 6. Identification of JUN transcription factor (TF) family members within seven TF-related categories
in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 JUN © © © ©
2 JUND © © © ©
3 JUNB © ©
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Table 7. Identification of FOXO transcription factor (TF) family members within seven TF-related
categories in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 FOXO1 © ©
2 FOXO3 ©
3 FOXO4 ©
4 FOXO6 ©

Table 8. Identification of FosL transcription factor (TF) family members within seven TF-related categories
in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 FOSL2 © ©
2 FOSL1 © ©

Table 9. Top 10 most frequently listed transcription factor (TF) families (at least four, considered the
majority) within seven TF-related categories in Enrichr. Roman numerals correspond to the first column in
Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 GATA2 © © © © ©
2 ESR1 © © © © ©
3 TCF21 © © © ©
4 TP53 © © © ©
5 JUN © © © ©
6 JUND © © © ©
7 WT1 © © © ©
8 NFE2L2 © © © ©
9 GATA1 © © © ©

10 GATA3 © © © ©
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