bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310698; this version posted September 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Ancestry Inference Using Reference
Labeled Clusters of Haplotypes

Keith Noto, Yong Wang, Shiya Song, Joshua G. Schraiber, Alisa Sedghifar, Jake K. Byrnes,
David A. Turissini, Eurie L. Hong, Catherine A. Ball

AncestryDNA, San Francisco, CA, 94107, USA

Abstract

We present ARCHes, a fast and accurate haplotype-based approach for inferring an individual’s
ancestry composition. Our approach works by modeling haplotype diversity from a large,
admixed cohort of hundreds of thousands, then annotating those models with population
information from reference panels of known ancestry. The running time of ARCHes does not
depend on the size of a reference panel because training and testing are separate processes,
and the inferred population-annotated haplotype models can be written to disk and used to label
large test sets in parallel (in our experiments, it averages less than one minute to assign
ancestry from 32 populations to 1,001 sections of a genotype using 10 CPU). We test ARCHes
on public data from the 1,000 Genomes Project and HGDP as well as simulated examples of
known admixture. Our results demonstrate that ARCHes outperforms RFMix at correctly
assigning both global and local ancestry at regional levels regardless of the amount of
population admixture.

Introduction

Admixture has played an important role in shaping patterns of genetic variation among humans
and other species. It is of interest at both population and individual levels and has motivated a
large body of research into population demography' ?and population stratification® in
association studies. It has also fueled public interest in direct to consumer (DTC) services that
provide estimates of ancestry proportions. In such applications, a consumer typically submits a
DNA sample through a saliva collection kit and receives an individual-level report of their
ancestral make-up based on genotype data.

Over the past decade, many tools have been developed to infer individual-level ancestry. One
set of methods only infers global ancestry proportions, some of which model the probability of
the observed genotypes using ancestry proportions and population allele frequency,* while

others use cluster analysis and principal component analysis (PCA).> Another set of methods
infer ancestral origin for genomic segments, which are then averaged over the entire genome.
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These methods use either SNPs (Single Nucleotide Polymorphisms) or a sequence of SNPs
(i.e. haplotypes) as the observed variables, and estimate ancestry in each segment of the
genome (called local ancestry). Compared to SNPs, haplotypes contain richer information, and
can be especially powerful in differentiating geographically close populations.® Among existing
haplotype-based methods, both Chromopainter® and HAPMIX’ use the Li and Stephen’s
haplotype copying model,® whereas RFMix® uses a random forest approach, training classifiers
on haplotype features in a reference panel and using a linear-chain conditional random field to
model the conditional distribution of local ancestry given observed haplotypes.

As the size of public and private genotype datasets grows (e.g., Ancestry has processed over
15 million human genomes), there is an increased need for methods that can efficiently and
accurately perform ancestry inference on a large number of samples. Here we describe
ARCHes (Ancestry inference using Reference labeled Clusters of Haplotypes), a method that
leverages reference panel labeled haplotype models to estimate diploid ancestry locally
throughout the genome. ARCHes first uses a large set of unlabeled haplotypes to learn
BEAGLE haplotype-cluster models,'® which are efficient at phasing and measuring haplotype
frequency. These BEAGLE models are then annotated with the probability that genotype
sequences from a given reference population run through a particular state. For a given test
individual, ARCHes calculates the probability that the observed genotype sequence comes from
a given pair of populations, followed by a genome-wide hidden Markov model to assign diploid
ancestry. These trained models need only be computed once, and can be stored thereatfter,
allowing ARCHes to efficiently estimate the ancestry of any number of subsequent test
individuals from their genotype data.

Previous studies have shown that RFMix® outperforms ADMIXTURE* in both global and local
ancestry estimation." RFMix generally performs well at assigning ancestry at continental level
but can struggle at regional level assignment, where populations may not be very differentiated.
ARCHes is capable of differentiating nearby populations and performing ancestry inference at a
much finer scale. We train both ARCHes and RFMix on research-consented individuals
representing 32 different regions and test selected individuals from 1000 genomes'? and
HGDP,™ representing 15 different regions. We compare the performance of ancestry
assignments for individuals with single ancestry as well as simulated individuals with admixed
ancestry in terms of both global ancestry proportions and diploid local ancestry assignments to
those of RFMix.? Our results demonstrate that ARCHes outperforms RFMix in both global
ancestry and diploid local ancestry assignments at regional levels.

Material and Methods

Overall ARCHes method
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Our approach begins with dividing the genome into a large number of small windows (e.g., 3-4
centimorgans each), such that, in a recently admixed individual, each of the maternal and
paternal haplotypes in a given window are likely to each come from a single population. For
each window, we construct a BEAGLE haplotype-cluster model' from a large, unlabeled
training set of haplotypes. A BEAGLE haplotype-cluster model is a directed acyclic graph with
haplotype represented as a path traversing the graph. Each node of the graph represents a
cluster of haplotypes. A BEAGLE model is often interpreted as Markov model where the states
are the nodes (Supplemental Figure 1), and thus as an “arbitrary order Markov model” of SNPs
along a haplotype. Using a reference panel of genotypes from individuals whose ancestry is
known in each window, we then annotate each state in the haplotype models with the probability
that genotype sequences from a given population belong to the haplotype cluster represented
by the state (Figure 1).

Given a new potentially admixed genotype sequence x, we assume that the ancestors of x are
all ultimately from the K origin groups, and that x is admixed recently enough that relatively
long haplotypes (on the scale of the genomic windows mentioned above) from each group are
intact. We run a genome-wide hidden Markov model (HMM) whose hidden states are the true
assignment (population label pairs) in each window. The emission probabilities are the
probability distributions of diploid population assignments for each window arising from the
annotated BEAGLE models and the transition probabilities (the probability that the population
assignment will change at any point along the genome) are learned through an
Expectation-Maximization (E-M) algorithm. We assign diploid ancestry to each window and
estimate the global assignment based on the Viterbi path through this HMM. We also sample
paths through the HMM to estimate the uncertainty of assignment amounts.

We describe our detailed method in the following sections, and provide pseudo-code in the
Appendix.

Annotating haplotype cluster models

We follow Browning and Browning'® in building haplotype cluster models. Briefly, we divide the
genome into W partially overlapping windows with approximately the same number of SNPs.
Within each window, we build a haplotype cluster model from a large, unlabeled set of training
phased haplotypes. For simplicity, we restrict to biallelic variants, and code them as 0 and 1.
Building this haplotype cluster model from a large, unlabeled set of individuals provides a
“background” of haplotype diversity against which we can measure the informativeness of
different haplotypes.

With a haplotype cluster model built for each window, we can then annotate populations using
the haplotype cluster model. Recall that each path through a BEAGLE model corresponds to a
realization of a haplotype, and each node at a given SNP represents a cluster of haplotypes that
are similar near that SNP. For the genotypes of a reference individual in window w, Xw, we
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compute the probability that the individual's two haplotypes pass through two specific nodes in
the graph, v and v, at SNP d,

Py(Xy, u, v)

Py(u,v|xy,) = Plxy)

where we compute Pa(u, v[xw) and P(Xw) using a modification of the forward-backward
algorithm for hidden Markov models, treating the node as a hidden state (see Appendix for
pseudo-code). In the following, we will refer to the HMM used to analyze the BEAGLE models
as the haplotype HMM, and its properties as haplotype emission probabilities, and haplotype
probabilities. This contrasts with the ancestry HMM we use to smooth ancestry estimates across
the genome, which is described in the subsequent section.

We then marginalize over one of the haplotypes of each diploid to create a haplotype posterior
probability that the genotypes Xw in window w passes through node u at SNP d,

Py(ulxy,) = ZPd U, v|Xy)

Finally, we annotate a node u by its average haplotype probability in a set of individuals

belonging to a reference population P, Ry = {Xipuw: 1 € 1,2,..., 75} where ™ is the total
number of reference samples in population P. Then, we compute

Py(ulp) = ZPd UK poaw) (1)

This equation gives us the probability that an individual drawn from population P will pass
through node u at SNP d of the haplotype cluster model for window w.

Ancestry emission probabilities for test individuals in windows

With Equation (1) in hand, we can compute the probability that a test individual’s genotypes in a
given window w descend from a specific pair of populations. Letting t be the unphased
genotype of our test individual, we first compute the probability of t given that the two
haplotypes in window w belong to clusters u and v of the haplotype cluster model at SNP d,

Pd<tw7 u, 1))

Py(ty|u,v) = Pl v)


https://doi.org/10.1101/2020.09.23.310698

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310698; this version posted September 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

where Fa(tw,u,v) js computed using the haplotype forward-backward algorithm and Py(u,v)
is obtained by multiplying the transition matrices of the haplotype cluster model up to SNP d
(equivalent to running the haplotype forward algorithm up to SNP d with all haplotype emission
probabilities set equal to 1).

We then want to know the probability that the individual's two haplotypes come from populations
P and ¢ using the information around SNP d. We compute this quantity by first computing the
probability that a haplotype passes through nodes u and v and SNP d of window w given
underlying populations P and ¢ by averaging over the equally likely combinations of whether
node u corresponds to population P and node v corresponds to population ¢ or vice versa,

Palu,olp,4) = 3(Pa(ulp)Pa(ola) + Paula) Pa(vlp)

Note that this result is equivalent to assuming that the two haplotype clusters that make up a
diploid sample are independent, and that the two populations that make up those haplotypes
are also independent.

Now, we use the law of total probability to average over all haplotype clusters at SNP d, and
compute the probability that the individual's haplotype clusters at that point arise from
populations P and 4,

Pultulp, @) = 3 Paltulu, v) Pa(u, vlp, q)

U,V

This probability weighs similarity to haplotypes in population » and @ more strongly for SNPs
closest to SNP d in window w; because we have no a priori knowledge of which part of a
window is most informative about population membership, we finally compute our ancestry
emission probability for a window by averaging over the population probability for every SNP in
the window,

P(tulp,q) = % > Pa(tulp. q) (2)

where D is the total number of SNPs in window w. This process can then be repeated for
every window in the genome to obtain the probability of the test individual's genotype in each
window, given that the two haplotypes arose from any pair of populations P and 4.
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Smoothing ancestry estimates using a genome-wide ancestry hidden
Markov model

In principle, the ancestry emission probabilities computed in the previous section could be used
to compute maximum likelihood estimates of diploid local ancestry in each window, one at a
time. However, doing so would result in highly noisy ancestry estimates. Instead, we share
information across the genome using an additional layer of smoothing via a genome-wide
hidden Markov model. Moreover, because ancestry segments from recent admixture are
expected to be longer than a single window, this model helps reduce false ancestry transitions.

If we wish to assign ancestry to K populations, the hidden states of our hidden Markov model

K
are the (2) + K possible unphased ancestry pairs, (p, ‘J), with ancestry emission probabilities
window w given by equation (2). Because we model unphased diploid ancestry, we define a

population pair as unordered, i.e. (P, 4) is the same ancestry assignment as (¢,p). Our ancestry
hidden Markov model assumes that between windows ancestry can change for one of the two
haplotypes with probability 7. The assumption that ancestry switches only for one of the two
haplotypes within an individual is both biologically realistic (assuming individuals are admixed
relatively recently) and greatly reduces the complexity of the hidden Markov model. Thus, a

change occurs from (P, 4) to (P, ) to any pair such that exactly one of P’ or ¢ is different from
P or 9. Each new ancestry pair is drawn with probability proportional to the stationary
probability of that ancestry pair, 7p,q. In full, the transition probabilities are

1—7 ifp=pd =g
T of .
P, qdlpq) =75~ i #pd=qorp=pq#q 3)
0 else

where the normalizing constant Zpa is given by summing over all accessible unphased
haplotype pairs.

Between chromosomes, both ancestry pairs are allowed to change, and the ancestry at the start
of each chromosome is drawn independently from that individual’s global distribution of ancestry
pairs, Tp.q. For a more formal description of how changes between chromosomes are handled,
see the Appendix.

We initialize the 7p,q to a uniform distribution and T to some low value, and use a modified
Baum-Welch algorithm to update 7p,¢ and 7 (see Appendix). Empirically, we observed a
tendency to overfit by estimating a large T parameter, resulting in inference of a large number
of different ancestries; thus we run a fixed number of update steps, rather than stopping at
convergence.


https://doi.org/10.1101/2020.09.23.310698

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310698; this version posted September 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Estimating ancestry proportions in individuals

In principle, the value ™ = qu Tp.a could be used as an estimate of the admixture proportion
from population P in an individual. However, we instead opt to use a path-based approach that
also allows us to obtain credible intervals of the ancestry proportions conditioned on the inferred
parameters. Specifically, we provide a point estimate of global ancestry proportions by
computing the maximum probability path through the HMM using the Viterbi algorithm, and
computing the proportion of windows (weighted by their length) that are assigned to population
P. We then provide a credible interval by then sampling paths from the posterior distribution on
paths, and for each one can compute the ancestry proportion in the same way as from the
Viterbi path. Because these credible intervals condition on the parameters, particular the 7p.q,
they tend to be conservative with respect to ancestry proportions, reflecting mostly genotype
sampling randomness. Thus, we advocate caution in interpreting them too literally.

Below we describe experiments we did for benchmarking ARCHes and RFMix®.

Reference Panel and Testing Data

We built our reference panel using genotypes from customer candidates who explicitly provided
prior consent to participate in research and have all family lineages tracing back to the same
geographic region. All the candidates were genotyped on Ancestry’s SNP array and were
analyzed through a quality control pipeline to remove samples with low genotype call rates,
samples genetically related to each other, and samples who appear as outliers from their
purported population of origin based on Principal Component Analysis. The reference panel
contains 11,051 samples, representing ancestry from 32 global regions (Supplemental Table 1).
We then use 1,705 individuals from 1,000 Genomes'? and HGDP Project' from 15 populations
as testing data. We used SNP array data of individuals from 1,000 Genomes'? and HGDP
Project' and limited them to around 300,000 SNPs that overlapped with Ancestry’s SNP array.
Lists of populations and associated sample counts included in reference panel and testing data
are specified in Supplemental Table 1 and 2, respectively. We align populations that come from
different data sources, in some cases combining populations together. For example, we
combined the ancestries that are assigned to ‘England, Wales, and Northwestern Europe’ and
‘Ireland & Scotland’ to represent ancestry for ‘Britain’. We combined the ancestry that are
assigned to ‘Benin & Togo’ and ‘Nigeria’ to represent ancestry for ‘Yoruba’'.

Simulation

We simulated genomes of admixed individuals with ancestors from a pair of populations and we
performed the simulation for 16 pairs of neighboring populations. We first constructed a
pedigree with 32 founders, with a single founder from one population, and the rest from the
other population. We then simulated the recombination process and obtained the haplotypes for
each descendant for 4 generations. We then select descendants from the pedigrees that are
roughly 50%-50% admixed, 25%-75% admixed, 12.5%-87.5% admixed, and 6.25%-93.75%
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admixed. We simulated 20 individuals for each of the 16 different pairings and 4 different levels
of admixture.

We also simulated 100 individuals with an admixture history similar to modern Latinos that
admixed 12 generations ago with 45% Native American, 50% European and 5% African
ancestry. We constructed 100 12-generation pedigrees and randomly selected founders from
the reference panel, with the ratio of 45% Native American (from the Maya and Peru regions),
50% European (from the France, Britain, Italy, Spain and Finland regions), and 5% African
ancestry (from the Yoruba region). We then simulated the recombination process as above and
obtained the genotypes of the descendant in each pedigree, which are roughly 45% Native
American, 50% European and 5% African.

Since RFMix needs the phased haplotypes for both query and reference individuals, we used
Eagle™ v2 with the HRC" reference panel to get the phased haplotypes of the simulated
individuals as well as for the individuals in the reference panel. However, ARCHes requires only
the unphased, diploid genomic sequences for both query and reference individuals.

RFMix parameters

We first used default parameters in RFMIX v2.03-r0 (https://github.com/slowkoni/rfmix). We then
performed a parameter sweep using different number of generations since admixture(the -G
parameter), with value of 2, 4, 6 and 8 coupled with different window sizes (set both CRF
window size and random forest window size) with values of 0.2cM, 0.5¢cM, 100 SNPs (roughly
1cM) and 300 SNPs (roughly 3cM) on chromosome 1 of simulated pair admixed individuals. We
then selected the parameters with the best performance, namely 4 generations since admixture
and a window size 0.2cM, and ran RFMix on the whole genome of simulated pair admixed
individuals. For simulated latino individuals, we used 12 generations since admixture and a
window size 0.2 cM. For single origin individuals, we used 2 generations since admixture and a
window size 0.2 cM. None of the RFMix runs used the E-M procedure or phase error correction.

ARCHes parameters

We divide the genome into 3,882 windows of 80 SNPs each, overlapping by 5 SNPs (with some
adjustments made near chromosome boundaries). We build a haplotype model for each of
these windows from the phased haplotypes of 50,000 individuals that are not in the reference
panel, but we tie small groups of 3-4 windows together by disallowing population assignment
transitions within those groups, which allows us to set the granularity with which we assign local
population assignments (there are 1,001 such window groups) and has the benefit of increased
computational efficiency. ARCHes's haplotype model annotation process is robust to missing
data, which is handled by marginalizing over all possible genotypes. In fact, the annotations
may benefit from intentionally downsampling reference panel genotypes so that haplotypes are
considered that are similar to but not exactly the same as those in the reference panel, and the
amount of downsampling and the number of downsampled genotypes used for annotation are
tunable parameters of the annotation process. In our experiments, we sample each reference
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panel genotype sequence 100 times, each time setting 20% of genotypes to missing and
annotating the 3,882 haplotype models with them.

We set the initial 7x parameter to be 0.01 and learned this parameter using 10 iterations of the
E-M approach described above. ARCHes assigns diploid local ancestry to 1,001 windows of the
genome and the global ancestry estimates are summarized from these 1,001 windows.

Results

Separate Training and Test Phases to Facilitate High-Throughput Ancestry
Estimation

The ARCHes software represents a change in design that explicitly separates two phases, first
model creation and annotation and second ancestry estimation, in order to make ancestry
estimation both efficient and distributable. The first phase, learning the haplotype models from
a large unlabeled training set and then annotating them with the reference panel populations,
need only be carried out once. In order to estimate ancestry on subsequent instances, ARCHes
software need only reload models and can be run on new examples at any time, distributed as
necessary, and the running time depends only on the number of the number of individuals to be
processed and labeled, not the size of the reference panels. In contrast, the training and testing
processes of RFMix are not separate and require significantly more time per individual. We
compare ARCHes's runtime and memory usage with RFMix in Supplemental Table 3.

Accuracy for single origin individuals

We built our reference panel using genotypes from research consented individuals, representing
32 regions. We then applied ARCHes on individuals from 1,000 genomes and HGDP
representing 15 regions. Lists of populations and associated sample sizes for both training and
testing data are in Supplemental Table 1 and 2. We first looked at the accuracy for single-origin
individuals, namely the average estimated ancestry proportions for individuals from a given
region. ARCHes predicted on average 66.1% of the ancestry to be from the correct region
(Figure 2). The rest of the ancestry mainly came from nearby regions (Supplemental Figure 3).
ARCHes performed well at separating different countries within Africa, and within Europe, and
within Asia, with only a few exceptions. In comparison, RFMix predicted on average 43.5% of
the ancestry to be from the correct region, and the rest of the ancestry mainly came from
neighboring regions, showing that RFMix is accurate for continental level assignments but
performs less well at finer scales.

Accuracy for simulated admixed individuals

Next, we simulated genotypes for individuals with ancestry from 16 different pairings of 11
regions and ran ARCHes using the same reference panel from research consented individuals,
representing 32 regions, as we used for analyzing single origin individuals. We measured the
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precision and recall for each of the 11 regions (Supplemental Figure 4). Precision was
calculated as the amount of correctly identified ancestry divided by the estimated value for that
region and recall was calculated as the amount of correctly identified ancestry divided by the
true value for that region. Precision can be thought of as how much of the reported ancestry is
true, and recall can be thought of as how much of the true ancestry is called by the process. We
find that ARCHes generally outperforms RFMix in terms of both precision and recall.

We calculated the concordance in terms of global ancestry assignments, namely the sum of
overlap between the true and estimated proportions for each region. We also calculated the
accuracy of diploid local ancestry assignments, namely the proportion of genomic windows with
correct diploid assignments regardless of the phase. Overall, ARCHes achieves more than 50%
global ancestry concordance and diploid local ancestry concordance, especially for simulated
individuals who are from two nearby European or Asian countries (Figure 3). We don’t find a
large difference between global ancestry concordance and diploid local ancestry concordance,
indicating that ARCHes achieves its global ancestry accuracy by estimating local ancestry
accurately. It is also encouraging that ARCHes is capable of differentiating populations not only
on a continental level but also on sub-continental and even country levels. RFMix in general
performs worse than ARCHes, with a roughly 20% -30% deduction of concordance in terms of
both global and local ancestry concordance.

Accuracy for simulated Latino individuals

We finally simulated 100 individuals using forward simulation with a pedigree mimicking Latino
population history in which founders admixed 12 generations ago with 45% Native American,
50% European and 5% African ancestry. Their American ancestry came from Maya and Peru,
their European ancestry came from France, Britain, Italy, Spain and Finland, and their African
ancestry came from Yoruba (refer to Supplemental Table 1 and 2 for population labels). This
dataset provides information on ARCHes'’s power to differentiate continental level admixture that
happened as many as 12 generations ago. Moreover, we can see if it can even differentiate the
subregions that individuals’ continental ancestry comes from. We found that ARCHes accurately
recovered both global ancestry assignments and diploid local ancestry assignments, with
average concordances of 72.3% and 47.8%, respectively (Supplemental Figure 5). RFMix
achieved 65.7% global ancestry concordance but failed to infer the local assignments correctly,
with average diploid local ancestry concordance of 18.5%. This is probably due to difficulties
that RFMix has in differentiatiating subregions within Europe and between Maya and Peru.

Discussion

Ancestry inference in large, heterogeneous sample sets is becoming increasingly important for
academics, clinicians, and consumers. We showed that ARCHes is able to be trained on a wide
set of global populations and perform accurately at within and among continental scales, without
any specific fine tuning. Moreover, because our approach separates the time-consuming
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training step from the fast testing step, it can be applied to large scale databases, such as
Ancestry’s 15 million customers.

Our approach works because haplotypes contain rich information for distinguishing
subpopulations. Instead of coding haplotype sequences as consecutive alleles, we take
advantage of the haplotype-cluster models that have been shown to be effective at phasing™.
Compared to RFMix®s approach of training random forests on haplotypes from reference
panels, we annotated haplotype clusters with the probability of each population label in our
reference panel. To improve robustness, ARCHes can account for incomplete haplotype
representation in the reference panel via tuning of a parameter that controls the proportion of
missing genotypes during model annotation. It is important to note that our reference panel does
not need to consist exclusively of whole-genome single-origin training examples. Because we
annotate haplotype models in individual windows across the genome, we are able to utilize
population-labeled partial-genome diploid or haploid genotype examples as well. That means
that the accuracy of ARCHes can be improved even if a reference genotype is admixed, or if
only part of it has known ancestry.

Utilizing rich haplotype models in each window, we assign a likelihood over all population labels
to the haplotypes in our test sample, which are used as emission probabilities in the
genome-wide HMM. HMMs are used in a number of existing approaches for estimating
ancestral proportions.®” We applied standard HMM techniques and learn parameters through
iterations of a Baum-Welch'® approach. In cases where sufficient prior knowledge is in hand,
parameter learning can also be turned off and ARCHes can use predefined parameters. For
instance, when analyzing descendents of a specific, known admixture event, it may be desirable
to fix the prior distribution on global ancestry proportions. Nonetheless, in our benchmark
experiments, we use one set of parameters for testing single origin individuals and simulated
admixed individuals who were admixed from a range of generations ago. Without fine-tuning the
parameters to each situation, we can achieve high accuracy. However, to achieve the highest
accuracy, we suggest performing a parameter sweep to optimize ARCHes'’s performance for a
particular dataset. In particular, our results show that ARCHes often overfits the data, and
estimates too many different ancestral backgrounds in an individual. This suggests that for
applications where precision is important, a user may want to constrain the switch rate
parameter 7 to be small.

The size and composition of the reference panel may have an impact on the accuracy of the
ancestry estimation. As one might expect, a larger reference panel will improve performance, as
a greater proportion of haplotype diversity is represented. We found that even with small
reference panel sizes (for example, Maya, France and Slavic have less than 50 samples each),
ARCHes can achieve very high accuracy for single origin individuals (Supplemental Figure 6).
On the other hand, an imbalance in reference panel size/diversity between populations can
result in mis-assignment to the larger reference panel. We can compensate for this effect by
tuning a parameter that controls the fraction of missing genotypes set to missing during the
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annotation process. However, the impact of doing so may be limited due to the intrinsic
properties of haplotype diversity and the sharing of haplotypes between labeled populations.

For other local ancestry approaches, such as RFMix, phasing error will result in decreased
accuracy of ancestry estimation. However, because ARCHes uses unphased genotype data, it
is unaffected by phasing errors, thus removing an entire source of error from the analysis.
Moreover, ARCHes can account for missing data by integrating for all possible paths on the
haplotype-cluster model, though it may be preferable to use imputed genotypes.

ARCHes provides a fast and accurate method for inferring unphased local ancestry and
combining that into estimates of diploid global ancestry. There are nonetheless several
opportunities for future research. First of all, the confidence intervals provided by ARCHes are
underestimated; it is possible that they can be rescued by using a recalibration procedure on
simulated data. Second, despite the fact that using unphased local ancestry in ARCHes helps it
to overcome phasing errors, it may be desirable to provide phased local ancestry in some
circumstances. Because of the modular nature of the ancestry hidden Markov model, it may be
possible to extend this framework to provide phased local ancestry estimates.

Description of Appendices

Appendix includes 3 algorithm boxes and another 3 algorithm descriptions.

Description of Supplemental Data

Supplemental Data includes six figures and three tables.
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Figures

Figure 1. lllustration of annotating haplotype-cluster model. Each box illustrates the expected
proportion of haplotypes in all the genotypes of different populations that include a certain model
state at a certain level.
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Figure 2. Boxplot of the estimated ancestry proportions for single-origin individuals from each
testing population comparing ARCHes and RFMix.
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Figure 3. Concordance of global ancestry assignments and diploid local ancestry assignments
for simulated admixed individuals from 16 different pairings of 11 populations. Admixture level is
defined as x-way admixed with x founders, 1 of which belong to one population, the rest belong
to another population. 2-way admixed results in 50%-50%, 4 way admixed results in roughly
25%-75%, 8 way admixed results in roughly 12.5%-87.5%, 16 way admixed results in roughly
6.25%-93.75%.
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Supplemental Data

Supplemental Figure 1. lllustration of haplotype model for one window of the genome,
consisting of D SNPs.
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Supplemental Figure 3. Average estimated ancestry proportions for single-origin individuals
from each testing population. In this matrix figure, each row represents single-origin individuals
from the testing population. Each column represents each of the possible 30 populations that
the single-origin individuals might be assigned to.
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Supplemental Figure 5. Concordance of global ancestry assignments and diploid local ancestry
assignments on 100 simulated latino individuals.
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Supplemental Table 1. Sample size and geographic location for 32 populations in the reference
panel. Some population is matched with testing population specified in Supplemental Table 2.

Population Label Sample size Matched testing population
Native American-North, 96 Maya

Central, South

Native American-Andean 44 Peru

England, Wales, and 1226 Britain

Northwestern Europe

Central & Northern Asia 111 Central & Northern Asia
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Southern Asia 444 Southern Asia
Baltic States 127

Benin & Togo 102 Yoruba
Cameroon, Congo & 576

Southern Bantu Peoples

Ireland & Scotland 319 Britain
China 208 China
European Jewish 129

France 1071 France
Germany 1314

Greece & Balkans 149

Italy 587 Italy
Ivory Coast & Ghana 119

Japan 363 Japan
Korea 201

Mali 169

Middle East 147 Middle East
Nigeria 109 Yoruba
Norway 242

Iran/Persia 413

Philippines 385

Polynesia 57

Portugal 257

Slavic (Eastern Europe & 1301 Slavic
Russia)

Spain 143 Spain
Sweden 240
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Turkey & the Caucasus 59
Finland 202 Finland
Vietnam 51 Vietnam

Supplemental Table 2. Sample size and geographic label for testing population from HGDP and

1000 Genomes.

Population label Detailed label Sample size Source

Maya Maya 25 HGDP

Peru PEL(Peruvians from 105 1000 Genomes
Lima, Peru)

Central & Northern Daur, Hazara, 116 HGDP

Asia Hezhen, Mongola,
Orogen, Tu, Uygur,
Xibo, Yakut

Southern Asia Pathan, Sindhi 48 HGDP

Yoruba YRI (Yoruba in 213 1000 Genomes,
Ibadan, Nigeria), HGDP
Yoruba

China CHS (Southern Han 325 1000 Genomes,
Chinese), Han, She, HGDP
Tujia

France French 29 HGDP

Britain GBR (British in 104 1000 Genomes
England and Scotland)

Italy TSI (Toscani in ltalia) 112 1000 Genomes

Japan JPT (Japanese in 134 1000 Genomes,
Tokyo, Japan), HGDP
Japanase

Middle East Druze, Palestinian 98 HGDP

Slavic Russian 25 HGDP
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Spain IBS (Iberian 150 1000 Genomes
Population in Spain)

Finland FIN (Finnish in 100 1000 Genomes
Finland)

Vietnam KHV (Kinh in Ho Chi 121 1000 Genomes

Minh City, Vietnam)

Table 3. Run time and Memory Usage (Maximum resident set size, MaxRSS) comparison
between ARCHes and RFMix. Since ARCHes trains models in a separate process, we only
count the running time and MaxRSS for inferring ancestry for test individuals. However,
because RFMix combines the training and testing process together, we count the running time
and MaxRSS for both training and testing process for RFMix.

Experiment # of test individuals | Method User time (s) MaxRSS
Single origin 1705 ARCHes 98237 (10 CPU) 7.9G
individual

RFMix 390443 (10 CPU) 6.18G
Simulated pair 3200 ARCHes 188709 (10 CPU) 14.8G
admixed
individual RFMix 378838 (10 CPU) 7.27G
Simulated Latino | 100 ARCHes 6814 (1 CPU) 0.53G
individual

RFMix 389388 (10 CPU) 8.07G
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Appendix

Algorithm 1 Diploid HMM forward procedure for a sequence x of D diploid genotypes (values are all homozygous 0 or
1, heterozygous, or missing) and a model M of D + 1 levels. M has a start state S, a transition function t(u,a) that maps
a haplotype model state u to the state at the next level associated with the allele a transition (e € 0,1), and a transition
probabilty function p(u,a) that maps a haplotype model state u to the transition probability associated with allele a. The
procedure populates f, where f(u1,u2) is the forward likelihood of a diploid HMM state (u1,u2). It also stores states of the
diploid HMM that are consistent with the genome at each level and their outgoing transitions (and the probabilities associated
with those transitions) to a data structure « (so that the genotype need not be re-examined during the backward procedure).
The optional subroutine TRIM removes the diploid HMM states in a set with the lowest f values. It is often possible to remove
a large proportion of states and yet keep (e.g., ) 99.9999% of the likelihood mass contained in the set of SNPs. We use TRIM
only for reasons of efficiency.

1: procedure DIPLOID-FORWARD(x,w, My)

2 Let D,, be the number of SNPs in M,,

3: Let W(x,w) be the subsequence of genotypes in x that correspond to the SNPs in window w.

4 Let S be the start state of model M,

5: Let t and p be My,’s transition functions, mapping a state to a state and probability, respectively
6: Let a(d) be an initially empty data structure containing diploid HMM states at level d,
7.
8
9

and the states they transition to with what probability
f(S,S)) + 1 // both haplotypes must start in the haplotype model start state
: Add state (S,S) to a(0) with no outgoing transitions (yet)
10: for d€0,1,2,...,D, — 1 do

11: for each diploid HMM state (u1,u2) € a(d) do

12: Let P be an initially empty list of diploid HMM state transitions and their likelihoods

13: if W(x,w)q41 is HOMOZYGOUS 0 then

14: Add ((t(u1,0),t(u2,0)), p(u1,0) X p(uz,0)) to P

15: if W(x,w)g441 is HOMOZYGOUS 1 then

16: Add ((¢(u1,1),t(ug,1)), p(u1,1) X p(ug, 1)) to P

17: if W(x,w)g4+1 is HETEROZYGOUS then // Consider both possibilities

18: Add ((t(u1,0),t(ug,1)), p(u1,0) X p(ug, 1)) to P

19: Add ((t(u1,1),t(u2,0)), p(u1,1) X p(ug,0)) to P

20: if W(x,w)q441 is MISSING then // Consider all possibilities

21: Add ((t(u1,0),t(u2,0)), p(u1,0) X p(uz,0)) to P

22: Add ((t(u1,0),t(u2,1)), p(u1,0) X p(uz,1)) to P

23: Add ((t(u1,1),t(u2,0)), p(u1,1) X p(uz,0)) to P

24: Add ((t(u1,1),t(u2,1)), p(u1,1) X p(uz,1)) to P

25: for ((v1,v2),p) in P do // (u1,u2) can transition to (vi,v2) with probability p

26: if (v1,v2) is not in a(d + 1) then // Lookup in constant time with perfect hash on serial numbers of vi,v2
27: initialize f(v1,v2) < 0 and add (v1,v2) to a(d+ 1)

28: f(v1,v2) « f(v1,v2) + f(u1,u2) X p // Update f(v1,v2) to include the new transition

29: Add ((u1,u2) = (v1,v2),p) to the set of outgoing transitions for state (u1,us2) in a(d)

30: TriM(a(d + 1), f) // Optionally remove some of the lowest-likelihood diploid HMM states from a(d + 1)

31: return f, o
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Algorithm 2 Diploid HMM backward procedure (see DIPLOID-FORWARD). The procedure populates b, where b(u1,uz2)
is the backward likelihood of a diploid HMM state (u1,u2). D is the number of SNPs in the window associated with the
haplotype model, « is the set of diploid HMM states at each level and their probabilistic outgoing transitions as computed by
DIPLOID-FORWARD.
1: procedure DIPLOID-BACKWARD(D, )
2: Initialize b(u1, ug) < 0 for all diploid HMM states (u1,u2)
forde D—-1,D—-2,..,2,1,0 do
for each diploid HMM state (u1,u2) € a(d) do // (u1,u2) is a source state
for each diploid HMM state (v1,v2) such that ((u1,u2) = (v1,v2),p) € a(d) do// (v1,v2) is a destination state
// (u1,u2) transitions to (v1,v2) with probability p
b(u1,u) ¢ b(uy,uz) + b(vi,v2) X p
return b

Algorithm 3 Diploid HMM forward-backward procedure (see DIPLOID-FORWARD and DIPLOID-BACKWARD). The procedure
populates f and b, where f(u1,u2) is the (“forward”) likelihood that a path through the diploid HMM ends in state (u1,u2)
after emitting d alleles (where d is the level of u1 and u2) of a haplotype in the input genotype sequence x, and b(u1, u2) is the
likelihood of all paths from (u;,u2) to the end state. The probability P;(u1,u2|x) that the haplotypes of genotype sequence x
belongs to clusters w1 and w2 is calculated as ﬂ% , where S is the start state of model M and f and b are computed
by this procedure.

1: procedure DIPLOID-FORWARD-BACKWARD (x, w, My,)
f»a <~DIPLOID-FORWARD (x, w, M)

Let D,, be the number of SNPs in M,,

b <+~ DIPLOID-BACKWARD( Dy, c)

return f,b
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A Computing Forward-Backward on the Genome-Wide Ancestry
HMM, and Updating 7 and 7 Transition Probability Parame-
ters

The genome-wide ancestry HMM computes the likelihoods that a test instance’s genotype sequence, t, in a
genomic window w (denoted t,,) is explained by populations p and ¢ for a set of populations and genomic
windows. It is parameterized by 7, and 7¢,' which are typically learned for a specific test instance. The
ancestry HMM representing a K populations and a set of SNPs on multiple chromosomes has a single silent
(non-emitting) state before the first, after the last, and in-between each chromosome, and a series of M
emitting states for each window of each chromosome, each corresponding to a population assignment (p, q)

with 1 < p < ¢ < K. Figure 1 illustrates such a genome-wide HMM with K = 3 populations. Let the

'indow 1 w
h
A
it
» ?;f f{ 3‘3&‘\ S SR SO AN Enc
ite v/ \v vié‘\wi N N < e
l l
Silent state between windows i and i+ where
window i+/ begins a new chromosome

Figure 1: A genome-wide ancestry HMM, consisting of 3 ancestral populations (green, blue, and red) and W windows.

emitting state corresponding to window w and population assignment (p,q) be denoted Sy, ;4. Its emission
probability P(t.|p,q) is precomputed and fixed based on the genotype t,, in window w. Let S, represent
the silent state that preceeds the emitting states correpsonding to windows on chromosome c. Thus the start
state of the HMM is S; (and if the HMM represents C' chromosomes, the end state would be Scy1). Let
C(c) map a chromosome number to the window that begins the chromosome. Then, our HMM transitions
from silent states to emitting states S. — Se(c),p,q> from emitting states in the last window of a chromosome
to a silent state Se(ct1)—1,p,q — Scr1, and from emitting states to emitting states for windows w that are
not the first or last in a chromosome S, p 4 = Sw+1,p7,¢- A transition from Sy, ¢ — Sw+1,p7,¢ T€pPresents a
change in population assignment between windows w and w + 1 if p # p’ or ¢ # ¢'.

The transition probabilities from a silent state to an emitting state S. — Sc(c),p,q 18 Tt,(p,q), Where 7 is a
learned parameter vector over all possible assignments (p,q) (1 < p < ¢ < K) indicating a global assigment
preference. The transition probability from a state in the last window of a chromosome to a silent state
Sc(e)—1,p,q = Sec is always 1, and transitions between emitting states on the same chromosome, from state
(p,q) in window w to state (p/,¢") (with p’ < ¢') in window w + 1, are as follows:

1-7 ifp=p and g=¢
. ’ ’ .
P(Swpq = Swtip g |me, 7e) =  Te X ) ifp=p ®qg=4¢ 1
( w,p,q w+1,p ,q’| t, t) t Z(p”,q”)\p”gq”,p:p”@q:q” T, (p' ,q"") p p q q ( )
0 (transition ignored) otherwise

IThe subscript t may be dropped from these and other terms when there is only one test genotype instance in question.
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where 7¢ is a parameter representing the probability of changing population assignment that enforces the
bias against changing population assignments from window to window (& is the exclusive or operator).
We initialize 7y to a uniform distribution, and 7y to a (typically low) initial value and learn 7y and 7
using expectation-maximization over a number of iterations (similar to the standard Baum-Welch algorithm
[Rabiner, 1989], except that 7 and 7 are tied to all state transition probabilities).

Let Fi(s) be the forward probability, the sum probability of all paths through the Ancestry HMM (as
opposed to the haplotype HMM used to calculate per-window emission probabilities) that start in the start
state and end in state s (including the emission of state s) and Bg(s) be the backward probability of all
paths through the HMM that start in state s (excluding emission) and end in the end state. F' and B are
computed recursively as follows.

Fy(51) =1 (2)
For the emitting states in the first window of a chromosome,
Fe(Se(eypr,a) = Fe(Se) X m (1, q) X Plbee) P, @) (3)
for all p’ and ¢’. When a window w is not the first window of a chromosome,

K K
Fe(Swpq) = ZZFt(Sw—l,p,q) X P(Sw-1p.q = Swp.q |7, 7e) X P(tw|p, q) (4)

p=1qg=p

where P(Sy—_1pq — Swp ¢ |7, ) is given by (1). The forward probability of the silent state preceding

chromosome c is
Z Z Fy SC ’p’q) (5)

p=14q=p
Similarly, if there are C' chromosomes in the model,

Bt(SC+1) - ]. (6)

For the last window on chromosome c,

Be(Se(e+1)-1.p,q) = Be(Se1) (7)

for all p and q. When window w is not the last window on a chromosome,

w,p.q) Z Z wg = Swiip g [Te 7e) X Pltwia|p’, @) X Be(Swt1,p,q7)- (8)

/ 1 qlf
Finally, for the silent state preceding chromosome c,

K K

Bt(SC) = Z Z '/Tt,p’,q/ X P(tC(c) ‘p/,q/) X Bt(SC(c),p/,q')' (9)

p'=1¢q'=p’

After computing Fy and B¢, we compute the expectation for each m¢ (, ) as

C C(c+1)—1

E(,(p,q)) Z Z Fy(w,p,q) x Bg(w, p,q) (10)

c=1 w=C(c
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and reset each 7y (, o) to the value that maximizes the likelihood of E(m,(, q)):

E(m,(p,q))

. 11)
K K (
Zp’:l Zq/:p’ E(ﬂ—t,(p/,q’))

Tt,(p.q)

We learn 7y in a similar fashion, by updating it based on the expected number of transitions that do not
change assignment, compared to all transitions. If there are C' chromosomes,

c Clc+1)—1 K K
c=1 Zw(zcc(c)) p=1 Zq:p Ft(Sw,p,q) X P(Sw,p,q = Sw+1,p,q|7t, 7t) X Bt(Sw+1,p,q)

C C(c+1)—1 K K K K
D1 w(=cc(c)) Zp:l Zq:p Zp/:l Zq/:p/ Fe(Sw,p,q) X P(Sw,p,q = Sw+1,p’,q’|7"tv7't) X Bt(5w+1,p’,q’)

Tt < 1 — (12)

B Computing the Viterbi Path

The Viterbi path is the single most likely path (relative to a genotype sequence t) through the genome-wide
HMM V¢ = (V;1, Va2, ..., Vo w), where each V4 ,, is an assignment (p, ¢) in a window w, 1 <w < W.

To compute V, we must first define My, where M(s) is the probability of the most likely path through
the HMM that start in the start state and end in state s (including the emission of state s), analagous to
the forward probability Fy(s) in Appendix A, but referring to the probability of the single most likely path
instead of the sum probability of all paths.

Mi(S1) =1. (13)
For the emitting states in the first window of a chromosome,
M(Se(e),prqr) = Me(Se) X o, 0,41y X Plbeo)lp’s ') (14)
for all p’ and ¢’. When a window w is not the first window of a chromosome,
Me(Swprq) = argmax My(Su—1,p,q) X P(Sw-1,p.q = Swp.q'me: ) X Pltulp’,q) (15)

1<p<q<K

And for a silent state that is not the start state,

Mg (S.) = argmax M(Sc(e)—1,p,q) (16)
1<p<q<K
The Viterbi path V is then defined for windows that are the last window in a chromosome, ¢, as
VVt,C(chl)fl = argmax Mt(SC(c%»l)flvpa q)7 (17)
1<p<q<K
and for all other windows as
Vew = argmax P(Suwpq = Swiip,q|me, Te) X P(twi1lp,q") X Me(Swi1,p.q7)- (18)

1<p'<¢’'<K

C Computing Path Samples

Let choose be a operator that chooses an argument with a probability relative to an expression so that
chools)e f(z) returns x with probability % Then a stochastic path Q for a genomic sequence t is
xe xz/ €D

defined over all windows 1 < w < W as follows. For windows that are last in a chromosome, c,

Qt.c(e+1)-1 = chg%se Fi(Se(e+1)—1,p.)- (19)
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For other windows w,

Qt,w = choose Ft(S'u),p,q) X P(Sw,p,q — S’UH-LQt,w-;—l ‘ﬂ't,’ﬁ;) X P(tw+1|Qt,w+l)- (20)

p,q
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