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Abstract 24 

Recent development of single-cell RNA-seq (scRNA-seq) technologies has led to enormous biological 25 

discoveries. As the scale of scRNA-seq studies increases, a major challenge in analysis is batch effect, which 26 

is inevitable in studies involving human tissues. Most existing methods remove batch effect in a low-27 

dimensional embedding space. Although useful for clustering, batch effect is still present in the gene 28 

expression space, leaving downstream gene-level analysis susceptible to batch effect. Recent studies have 29 

shown that batch effect correction in the gene expression space is much harder than in the embedding 30 

space. Popular methods such as Seurat3.0 rely on the mutual nearest neighbor (MNN) approach to 31 

remove batch effect in the gene expression space, but MNN can only analyze two batches at a time and 32 

it becomes computationally infeasible when the number of batches is large. Here we present CarDEC, a 33 

joint deep learning model that simultaneously clusters and denoises scRNA-seq data, while correcting 34 

batch effect both in the embedding and the gene expression space. Comprehensive evaluations spanning 35 

different species and tissues showed that CarDEC consistently outperforms scVI, DCA, and MNN. With 36 

CarDEC denoising, those non-highly variable genes offer as much signal for clustering as the highly variable 37 

genes, suggesting that CarDEC substantially boosted information content in scRNA-seq. We also showed 38 

that trajectory analysis using CarDEC’s denoised and batch corrected expression as input revealed marker 39 

genes and transcription factors that are otherwise obscured in the presence of batch effect. CarDEC is 40 

computationally fast, making it a desirable tool for large-scale scRNA-seq studies.  41 
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Introduction 42 

Single-cell RNA sequencing (scRNA-seq) analysis has substantially advanced our understanding of cellular 43 

heterogeneity and transformed biomedical research. However, the analysis of scRNA-seq data remains 44 

confounded by batch effects, which are inevitable in analyses of human tissue and are prevalent in many 45 

scRNA-seq studies in general1,2. Several methods have been developed to remove batch effect in scRNA-46 

seq data analysis3-10. These methods can be divided into two categories: 1) batch correction in the low-47 

dimensional embedding space, and 2) batch correction in the original gene expression space. Most 48 

published papers belong to the first category3,7-10. Although useful for profiling the overall characteristics 49 

of cells such as clustering and trajectory reconstruction, these methods cannot be used for downstream 50 

gene-level analysis like differential expression and co-expression analysis.  51 

 52 

A recent benchmarking study has shown that correcting batch effect in the gene expression space is much 53 

more challenging than in the embedding space11. Popular methods such as Seurat 3.06 rely on the mutual 54 

nearest neighbor (MNN) approach5 to remove batch effect in the gene expression space, but MNN can 55 

only analyze two batches at a time. Its performance is affected by the ordering in which batches are 56 

corrected and it quickly becomes computationally infeasible when the number of batches gets large. 57 

Moreover, our evaluations indicate that MNN performs poorly for removing batch effect for genes that 58 

are not highly variable. Another popular method, scVI, suffers from a similar issue in which the denoised 59 

gene expression is still susceptible to batch effect, particularly for those genes that are not highly variable. 60 

Non-highly variable genes represent the majority of genes in the genome, where batch effects constitute 61 

a larger fraction of variance in the transcriptome and are much harder to correct.  62 

 63 

To address this gap in the literature, we present CarDEC (Count adapted regularized Deep Embedded 64 

Clustering), a joint deep learning framework for simultaneous batch effect correction, denoising, and 65 
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clustering of scRNA-seq data. Rather than explicitly modeling batch effect, CarDEC jointly optimizes its 66 

reconstruction loss with a self-supervised clustering loss. By minimizing a clustering loss iteratively, the 67 

batch effect in the embedding is reduced and cell type signal is improved3. The denoised gene expression 68 

values, computed from this embedding using a decoder, are then corrected for batch effects as well. To 69 

address the difficulty of batch correcting  genes that are not highly variable, which suffer from a lower cell 70 

type signal-to-noise ratio, we designed CarDEC using a branching architecture that treats highly variable 71 

genes (HVGs) and the remaining genes, which we designate as lowly variable genes (LVGs), as distinct 72 

feature blocks.  73 

 74 

CarDEC is unique among batch effect correction methods in that it implicitly corrects for batch effect 75 

through joint optimization of its dual objective function, rather than explicitly modeling batch effect using 76 

batch indicators as in methods such as MNN5 and scVI4. Moreover, it corrects batch effect both in the low-77 

dimensional embedding space and the original gene expression space. CarDEC’s architecture is uniquely 78 

founded on the idea of treating HVGs and LVGs as different “feature blocks,”  which enables CarDEC to 79 

use the HVGs to drive the clustering loss, while still allowing the LVG reconstructions to depend on the 80 

rich, batch corrected embedding learned from the HVGs, to help remove batch effect in the LVGs. Through 81 

comprehensive analyses on numerous datasets spanning different species and tissues with various 82 

degrees of complexities, we show that CarDEC is effective in removing complex batch effect and 83 

consistently outperforms scVI4, DCA12, MNN5, and scDeepCluster13 for both batch effect correction and 84 

clustering accuracy. We also show that with appropriate denoising and batch effect correction, the LVGs 85 

offer as much signal for clustering as the HVGs. Furthermore, the effective batch effect correction in gene 86 

expression offered by CarDEC allows it to reveal biologically anticipated marker genes in trajectory 87 

analysis that are otherwise obscured in the presence of batch effect by other methods. 88 

 89 
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Results 90 

Overview of CarDEC and evaluation  91 

An outline of the CarDEC workflow is shown in Figure 1 and Supplementary Figure 1. CarDEC starts by 92 

data preprocessing and pretraining of an autoencoder using HVGs with a mean squared error 93 

reconstruction loss function. After pretraining, the weights learned from the pretrained autoencoder are 94 

transferred over to the main CarDEC model, which treats HVGs and LVGs as different feature blocks. The 95 

main CarDEC loss function is a weighted combination of the reconstruction losses for the HVGs and the 96 

LVGs, and a self-supervised clustering loss function driven by the HVGs. This combined loss function allows 97 

CarDEC to preserve local structure of the data during clustering14. By minimizing this self-supervised 98 

combined loss function, CarDEC not only improves the low-dimensional embedding for clustering, but the 99 

reconstructed genewise features, which are computed as a function of the low-dimensional embedding, 100 

is also denoised and batch effect corrected, leading to dramatically improved gene expression quality.  101 

 102 

We evaluated CarDEC on a diverse set of challenging real datasets that range from human to mouse and 103 

have different flavors of batch effect. In our evaluations, we wish to assess two properties of CarDEC: 1) 104 

its ability to recover biological signals in the data, and 2) its ability to remove spurious technical signals 105 

driven by batch effect. An ideal method should strive to remove batch effect while maintaining true 106 

biological variations. We compared CarDEC with several state-of-the-art scRNA-seq methods for 107 

denoising, batch effect correction, and clustering. scVI4 and DCA12 are multi-use methods that provide 108 

denoised counts in the gene expression feature space, and also a low-dimensional embedding that can be 109 

used for tasks like clustering and visualization. scVI also attempts to correct for batch effect by 110 

conditioning on batch annotation when modeling the denoised counts from a zero-inflated negative 111 

binomial distribution. MNN5 is a batch correction method that merges batches in a pairwise manner and 112 
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generates batch corrected gene expression on a cosine scale. scDeepCluster13 is a clustering method that 113 

also draws inspiration from the self-supervised clustering loss14. 114 

 115 

To measure the degree of batch mixing, we examined the batchwise centroids before and after denoising 116 

and/or batch correction for each method by calculating a coefficient of variation (CV) metric. For each 117 

gene, the CV is calculated using the centroid of each batch. A higher value of CV corresponds to greater 118 

variation of gene expression among batches and less batch mixing, whereas a good batch effect removal 119 

method should drive the CV value close to zero. 120 

 121 

Application to human pancreatic islet data from four protocols 122 

A unique feature of CarDEC is the branching architecture for both the HVGs and the LVGs. To demonstrate 123 

that this architecture is key in removing batch effect, we combined four datasets on human pancreas 124 

generated using Fluidigm C115, SMART-seq216, CEL-seq17, and CEL-seq218. The branching architecture was 125 

designed with two objectives in mind. First, we wish to show that when correcting batch effect and 126 

denoising both the HVGs and the LVGs, using a branching model that treats these feature blocks 127 

differently improves the quality of denoised expression values relative to a naïve architecture that treats 128 

these feature blocks the same. Second, we hope to design a model architecture such that including the 129 

LVGs in the model does not worsen denoising and batch effect correction quality of the HVGs, relative to 130 

a naïve model that only denoises the HVGs and does not attempt to denoise LVGs.  131 

 132 

As shown in Figure 2, the branching architecture posts significant performance boosts over the naïve 133 

architecture that treated all genes as the same feature block in the input. The branching architecture 134 

performed better for denoising both the HVGs (Adjusted Rand Index (ARI) of 0.93 over 0.72) and the LVGs 135 

(ARI of 0.83 over 0.67) relative to the naïve architecture (Figure 2a,b), underscoring the necessity of using 136 
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the branching architecture to denoise all genes as efficiently as possible. We also observed that for the 137 

purpose of denoising and batch correcting only the HVGs, the branching architecture performed just as 138 

well as a naïve model that only included the HVGs and completely discarded the LVGs (ARI of 0.93 vs 0.94) 139 

(Figure 2a,c). This verifies that the branching architecture does not trade off denoising and batch 140 

correction effectiveness on the HVGs at all to denoise the LVGs. Additionally, the denoised counts from 141 

CarDEC showed considerably less batch effect compared to denoised expression from scVI and batch 142 

corrected expression from MNN (Supplementary Figure 2). We also noticed that the clustering accuracies 143 

are similar for denoised values and embedding for CarDEC, but the clustering accuracy is much lower 144 

when using denoised values as input than using embedding for scVI (Supplementary Figure 3). Strikingly, 145 

the ARI for scVI with denoised gene expression as input is even lower than that when using raw read 146 

counts as input (Supplementary Figure 4). This result suggests that batch effect correction in the gene 147 

expression space is much harder than in the embedding space, consistent with the findings of Lucken et 148 

al.11. 149 

 150 

Application to macaque retina data with multi-level batch effect 151 

After finalizing the CarDEC architecture, we next evaluated the performance of CarDEC on a macaque 152 

retina dataset19. This dataset poses a great challenge for batch effect correction and denoising because it 153 

features a strong, multi-level batch effect, with cells sequenced from two different regions, four different 154 

macaques, and thirty different samples (Supplementary Figure 5).  155 

 156 

For the task of denoising and batch effect correction in the gene expression space, CarDEC was again the 157 

best performing method (Figure 3, Supplementary Figures 6 and 7), and the gap in performance between 158 

CarDEC and other methods is even larger on this more challenging dataset. CarDEC not only removed the 159 

multi-level batch effect but also preserved inter-cell type variation. Notably, the ARI for clustering using 160 
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the LVG denoised and batch effect corrected counts from CarDEC is 0.98 (Figure 3b), which is as high as 161 

that using the HVGs (Figure 3a). As a comparison, the ARI is only 0.15 using the LVG raw counts as input 162 

for clustering (Supplementary Figure 5). This suggests that the denoising and batch correction in CarDEC 163 

substantially boosted the signal-to-noise ratio in the LVGs. Moreover, CarDEC’s genewise CVs are 164 

consistently the closest to zero, providing evidence that cells were mixed well by batch (Figure 3c, 165 

Supplementary Figure 8). 166 

 167 

The other methods all struggled with batch effect in the denoised counts. scVI largely failed to correct 168 

batch effect: when using scVI batch corrected counts, the cells were separated primarily by batch rather 169 

than by cell type. For the LVGs, its ARI is even lower than that using the LVG raw counts as input for 170 

clustering (scVI 0.09 vs raw 0.15) (Figure 3b, Supplementary Figure 5). DCA had slightly higher ARIs than 171 

scVI for both the HVGs and the LVGs, although both are significantly lower than CarDEC (Figure 3a,b). 172 

MNN performed much better than scVI and DCA for batch correcting the HVG counts, achieving an ARI of 173 

0.86 (Figure 3a). However, it still fell substantially short of CarDEC for this evaluation (CarDEC ARI 0.98). 174 

Looking more closely at the HVG UMAP plots, the batches were mixed less thoroughly with MNN than 175 

they were for CarDEC, and the cells were separated less by cell type indicating that MNN failed to 176 

completely recover cell type variation. This is further confirmed by the genewise CV density plot in which 177 

the MNN density curve is further away from zero than CarDEC (Figure 3c). For removing batch effects in 178 

the LVG counts, MNN again was the worst performing method because it removed nearly all biological 179 

variations, leaving only batch effects. 180 

 181 

For the simpler task of clustering using embedding, existing methods did considerably better than they 182 

did at batch effect correction in the gene expression space but still fell short of CarDEC (Figure 3d, 183 

Supplementary Figure 9). CarDEC achieved an ARI nearly 1 for clustering using the embedding. 184 
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scDeepCluster and scVI performed slightly better than Louvain’s algorithm using raw HVGs, but still fell 185 

short of achieving 0.75 ARI. DCA struggled on this dataset with an ARI of only 0.25. 186 

 187 

Application to mouse cortex and PBMC data from four protocols 188 

We next compared different methods using a mouse cortex dataset20. This dataset poses the greatest 189 

challenge for batch correction and denoising on two fronts (Supplementary Figure 10). First, it exhibits 190 

very serious batch effects owing to the fact that cells were generated using four different scRNA-seq 191 

protocols. Furthermore, this dataset is heavily dominated by excitatory and inhibitory neurons, and the 192 

other cell types are rare, so preserving biological variation is especially imperative for detecting and 193 

analyzing these rarer subpopulations. 194 

 195 

For the task of denoising and batch correcting the gene expression space CarDEC performed considerably 196 

better than the other methods (Figure 4). CarDEC performed the best at balancing between removing 197 

batch effect while preserving as much cell type variability as possible. The ARIs are similar when using the 198 

HVG denoised counts and the LVG denoised counts as input for clustering (Figure 4a,b). As a comparison, 199 

the ARIs are only 0.26 and 0.25 when using the HVG and the LVG raw counts as input for clustering, 200 

respectively (Supplementary Figure 10). The relatively low ARI when using the HVG raw count as input 201 

for clustering demonstrates the strong batch effect in this dataset. However, for this challenging dataset, 202 

using CarDEC denoised and batch corrected LVG counts, the ARI increased to 0.74, suggesting that CarDEC 203 

substantially boosted the signal-to-noise ratio in the LVGs by simultaneous denoising and batch effect 204 

removal. The genewise CVs for CarDEC are also the closet to zero among all methods (Figure 4c). 205 

 206 

By contrast, DCA and scVI largely failed for this dataset (Figure 4a,b). For both the HVGs and the LVGs, 207 

DCA and scVI separated the cells purely by scRNA-seq protocol with no mixing of cells from different 208 
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batches. After denoising using DCA and scVI, cell variation was driven entirely by batch, rendering the 209 

denoised counts ineffective for downstream analyses. Consistent with our previous evaluations, for batch 210 

correcting the HVGs, MNN was the second-best performer (Figure 4a), ahead of other methods by 211 

substantial margins but still lagging relative to CarDEC. MNN did not merge batches to the extent that 212 

CarDEC did and failed to preserve as much cell type variability, causing cell types to mix more. For 213 

removing batch effects in the LVGs, MNN did considerably worse than CarDEC and only slightly better 214 

than DCA and scVI (Figure 4b). It suffered from the same problems as DCA and scVI for the LVGs in that 215 

cell type variation was lost and all variability was driven by batch. 216 

 217 

Even the simpler task of clustering the data using embedding was very difficult on this dataset (Figure 4d, 218 

Supplementary Figure 11). Both DCA and scVI performed poorly at this task, scoring lower ARIs than a 219 

straightforward application of Louvain’s algorithm to the raw data. scDeepCluster showed slightly better 220 

performance, but its ARI still fell below 0.4. For this task, CarDEC also was the clear leader, achieving an 221 

ARI of 0.73. 222 

 223 

We also analyzed a dataset of human PBMCs from the same paper20 as the mouse cortex data. This dataset 224 

was similar to the cortex dataset: featuring eight batches spanning five scRNA-seq protocols and the 225 

results were largely the same: CarDEC was the best for denoising/batch correcting the HVGs and far away 226 

the best for denoising/batch correcting the LVGs (Supplementary Figures 12-14). 227 

 228 

Application to human monocyte data with pseudotemporal structure 229 

We next show the utility of CarDEC for improving trajectory analysis for cells with pseudotemporal 230 

structure. We analyzed a scRNA-seq dataset generated from monocytes derived from human peripheral 231 

blood mononuclear cells by Ficoll separation followed by CD14- and CD16-positive cell selection3.  This 232 
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dataset includes 10,878 monocytes from one healthy subject. The cells were processed in three batches 233 

from blood drawn on three different days. Although monocytes can be classified as classical 234 

(CD14++/CD16), intermediate (CD14++/CD16+), and nonclassical patrolling (CD14-/CD16++) subpopulations 235 

based on surface markers, our previous analysis based on scRNA-seq data indicates that these cells show 236 

continuous transcriptional characteristics and trajectory analysis is an appropriate approach to 237 

characterize them3. This dataset has strong batch effect (Supplementary Figure 15). To reconstruct the 238 

trajectories of these cells, for each method, we first denoised and/or batch corrected the gene expression 239 

matrix, which was  then fed into Monocle 321 to estimate the pseudotime of each cell.  240 

 241 

Figure 5a shows that CarDEC yields far and away the best pseudotime analysis results with cells from the 242 

three batches well mixed, and a clear pseudotemporal path emerged. The batchwise density plots show 243 

that the three batches have similar pseudotime distributions, suggesting that CarDEC successfully 244 

removed batch effect. The plots of FCGR3A (known marker gene for nonclassical monocytes) and S100A8 245 

(known marker gene for classical monocytes) gene expression also showed expected patterns 246 

(Supplementary Figure 16). There are two key points of evidence from these marker gene plots suggesting 247 

that CarDEC recovered biological signal. First, for each marker gene, the expression levels are virtually 248 

identical across batches for all pseudotime points, which indicates that batch effect was removed for each 249 

gene expression and pseudotime relationship. Also, FCGR3A gene expression decreases monotonically 250 

with pseudotime, while S100A8 expression increases monotonically with pseudotime. This is exactly the 251 

kind of behavior we expect from these marker genes. Since FCGR3A and S100A8 are markers for the 252 

nonclassical and classical monocytes, respectively, we expect a good pseudotime analysis to segment the 253 

monocytes from nonclassical to classical (or vice versa) and for FCGR3A and S100A8 expressions to be 254 

monotonic function of pseudotime with opposite trends. By denoising and batch correcting gene counts, 255 
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CarDEC successfully mixed batches and recovered biological signal down to the individual marker gene 256 

level.  257 

 258 

By contrast, no other methods were able to achieve CarDEC’s success in improving pseudotime analysis. 259 

DCA (Figure 5b), scVI (Figure 5c), and MNN (Figure 5d) all failed to mix batches in the UMAP embedding 260 

from Monocle 3, and the pseudotime distribution varied across batches for all three methods. 261 

Furthermore, neither of the marker genes show strong monotonic trends as a function of the pseudotime, 262 

and for each marker gene, the relationship between expression and pseudotime varied by batch. These 263 

issues suggest that DCA, scVI, and MNN’s failures to correct for batch effects confounded biological signal 264 

and obscured signals from canonical markers of established subpopulations, FCGR3A and S100A8, as 265 

marker genes using these approaches. 266 

 267 

There are other approaches to using these denoising and batch correction methods for pseudotime 268 

analysis. For example, one can subset the denoised and batch corrected matrix to include only the HVGs 269 

and then feed this into Monocle 3 (Supplementary Figures 17 and 19). Alternatively, one can use the 270 

embedding from CarDEC, scVI, or DCA as the reduced dimension space to build the Monocle 3 pseudotime 271 

graph (Supplementary Figures 18 and 20). In both of these other cases, the conclusions are largely the 272 

same, CarDEC is far and away the best method for improving pseudotime analysis. 273 

 274 

Next, we examined whether the denoised and batch corrected gene expression values can help improve 275 

gene expression quality for biological discovery. We focused our analyses on 61 transcription factors (TFs) 276 

that were expressed in the monocyte data and also found to be differentially expressed among classical, 277 

intermediate, and nonclassifcal monocytes by Wong et al.22. Among these 61 TFs, 23 were selected as 278 

HVGs and the remaining 38 were designated LVGs. Figure 6a shows that the CarDEC denoised gene 279 
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expression revealed a gradual decreasing trend from nonclassical to classical for TFs that are known to be 280 

highly expressed in nonclassical monocytes, e.g., TCF3L2, POU2F2, CEBPA, and HSBP1. We also observed 281 

expected gene expression increase from nonclassical to classical for TFs that are known to be highly 282 

expressed in classical monocytes, e.g., NEF2, CEBPD, GAS7, and MBD2. Notably, some of the TFs with 283 

these expected expression patterns were not selected as HVGs, suggesting that denoising and batch 284 

correction in CarDEC helped recover the true biological variations. By contract, when using raw UMI 285 

counts as input, the heatmap did not reveal any meaningful biological patterns even for those TFs that 286 

were selected as HVGs (Figure 6b).  287 

 288 

An important task in trajectory analysis is to identify genes whose expression values change over 289 

pseudotime and whether the expression patterns are different between conditions (e.g., healthy vs 290 

diseased) over pseudotime. Avoiding generating false positive results is critical as failure of doing so may 291 

lead to follow-up of a wrong signal. Since the three batches were obtained from the same subject, we do 292 

not expect to detect significant gene expression differences over pseudotime among them. To this end, 293 

we performed differential expression analysis and compared the distribution of gene expression changes 294 

over pseudotime across the three batches. We performed hypothesis tests using the ‘gam’ function in R 295 

package mgcv and tested whether gene expression patterns for the three batches are significantly 296 

different over pseudotime. Figure 6c shows the p-values from this differential expression analysis for each 297 

method. CarDEC is clearly much more effective in removing batch effect than DCA, MNN, and scVI. The 298 

median -log10 p-value for CarDEC is 3.70, whereas the median -log10 p-values for DCA, MNN, and scVI 299 

are 322, 7.08, and 323, respectively. These results clearly indicate that failure to correct for batch effect 300 

could lead to a severe inflation of false positive results. Figure 6d shows four selected TFs, where the 301 

denoised and batch corrected gene expression for CarDEC agreed well among the three batches, further 302 
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confirming the effectiveness of CarDEC in removing batch effect in the gene expression space. Gene 303 

expression plots for the remaining 57 TFs are shown in Supplementary Figure 21. 304 

 305 

CarDEC is scalable to large dataset 306 

As the scale of scRNA-seq continues to grow, it becomes increasingly important for a method to be 307 

scalable to large datasets. To evaluate the scalability of CarDEC, we leveraged a dataset of 104,694 human 308 

fetal liver cells23. Since we are principally interested in the problem of denoising and batch correcting in 309 

the full gene expression space, we retained all 21,521 genes after initial filtering for this analysis. For 310 

CarDEC we benchmarked two variations: a version that provides only denoised/batch corrected 311 

expression in the Z-score space (CarDEC Z-score) and a version that provides denoised/batch corrected 312 

expression in the count space (CarDEC Count). 313 

 314 

We evaluated the runtime needed to process 10%, 20%, 40%, 60%, 80%, and 100% of cells in the human 315 

fetal liver dataset for CarDEC, scVI, DCA, and MNN. All evaluations were done on a 2019 edition MacBook 316 

Pro with 2.4 GHz 8-Core Intel Core i9 CPU and 32 GB of memory. CarDEC, DCA, and scVI were all trained 317 

with early stopping to halt training upon convergence. The results are shown in Supplementary Figure 22. 318 

Both versions of CarDEC as well as DCA scaled approximately linearly with the number of cells and all 319 

three of these methods finished the analysis in less than 3.5 hours. scVI compared less favorably, as it 320 

took almost 11 hours to process the full dataset. MNN, on the other hand, has serious scalability issues, 321 

which is consistent with a recent benchmarking study5. It took over 12 hours to analyze 20% of the dataset, 322 

and over 47 hours to analyze 40% of the dataset. We could not run MNN in under 48 hours using more 323 

than 40% of the data. 324 

  325 

 326 
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Discussion 327 

We developed CarDEC, a joint deep learning model, that removes batch effects not only in the low-328 

dimensional embedding space, but also across the entire gene expression space. As demonstrated in our 329 

evaluations and a recent benchmarking study11, it is considerably harder to correct for batch effect in the 330 

gene expression space than in the embedding space, and especially hard to correct for batch effect in 331 

LVGs, which constitute the majority of the transcriptome. CarDEC was built to tackle these challenges. To 332 

remove batch effect in the gene expression space, we minimize a loss function that combines clustering 333 

and reconstruction losses. The self-supervised clustering loss, driven by HVGs, regularizes the embedding 334 

and removes batch effects in the embedding. The rich, batch corrected embedding is then used to 335 

compute an effectively batch corrected representation in the original gene expression space. To address 336 

the difficulty associated with batch correcting LVGs, we implemented a branching architecture, where 337 

embeddings are computed separately for HVGs and LVGs and where only the HVG embedding is used to 338 

compute the clustering loss. Using the pancreatic islet datasets generated from four scRNA-seq protocols, 339 

we demonstrated that this branching architecture substantially improved batch effect removal on both 340 

the HVG and LVG gene expression spaces, as compared to the naïve architecture.  341 

 342 

Across a variety of datasets, with batch effects spanning multiple complexities in level and strength we 343 

demonstrated that CarDEC consistently led in its ability to remove batch effects. CarDEC was consistently 344 

the best for removing batch effects in all capacities: in the embedding space, the HVG expression space, 345 

and the LVG expression space. In particular, CarDEC is the only method capable of batch correcting the 346 

LVGs. We showed that with appropriate denoising and batch correction, the LVGs offer as much signal for 347 

clustering as the HVGs, suggesting that CarDEC has substantially boosted the amount of information 348 

content in scRNA-seq. We also demonstrated that by batch correcting gene expression counts, CarDEC 349 
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improved pseudotemporal analysis of human monocytes, an example of how batch correction can be 350 

used to improve downstream analyses. 351 

 352 

Current scRNA-seq studies often include a large number of cells generated from many samples, across 353 

multiple conditions, and possibly using different protocols. Removing batch effect is critical for data 354 

integration. Since CarDEC provides efficient batch correction in the full gene expression space, it can be 355 

used to for a wide array of analyses to facilitate biological discovery. Harmonized counts in the gene 356 

expression space can be used to estimate unbiased, batch corrected log fold changes, which can be used 357 

to identify marker genes for different cell types. These counts can also be used to reconstruct trajectories 358 

and identify genes showing pseudotemporal patterns. Lastly, CarDEC is computationally fast and memory 359 

efficient, making it a desirable tool for analyses of complex data in large-scale single-cell transcriptomics 360 

studies.  361 
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Figure legends 377 

Figure 1.  The workflow of CarDEC. The CarDEC workflow can be summarized in four steps that are 378 

depicted here: preprocessing, pretraining, denoising, and optionally, denoising on the count scale. 379 

 380 

Figure 2.  Justification for the branching architecture in CarDEC. The CarDEC API splits the input matrix 381 

into HVGs and LVGs and treats them separately with a “Branching” architecture as in Fig. 1. Alternatively, 382 

we can use a “Naïve” model for finetuning that treats all features the same regardless of gene expression 383 

variance, which consists of an autoencoder with a clustering loss in addition to the reconstruction loss. 384 

Here we demonstrate the utility of the Branching architecture. The HVGs and LVGs are clustered 385 

separately and the ARI of assignments is provided along with a UMAP plot. First row colored by cell type, 386 

second by scRNA-seq protocol. a, Clustering using denoised counts from the CarDEC Branching 387 

architecture. b, Clustering using denoised counts from the CarDEC Naïve architecture. All genes (HVGs 388 

and LVGs) were treated the same and denoised together. c, Clustering using denoised counts from the 389 

CarDEC Naïve architecture, but using HVGs only in the Naïve model. Since the LVGs were not included in 390 

this scenario, evaluation was only done for denoised expression for the HVGs. 391 

 392 

Figure 3. Comparison of different methods on the macaque retina dataset. a, UMAP embedding 393 

computed from the denoised HVG counts for each method. Top row colored by cell type; bottom colored 394 

by Macaque ID. UMAPs colored by region id and sample id provided in the supplement. Cells were also 395 

clustered with Louvain’s algorithm. b, UMAP embedding computed from the denoised LVG counts for 396 

each method. Figure legends are the same as those in a. c, Density plot of genewise coefficient of variation 397 

(CV) among batch centroids. Centroids computed with sample id as batch definition. CV plots with region 398 

id and macaque id as batch definition are provided in Supplementary Figure 9. d, Clustering accuracy 399 

metrics obtained using the embedding based methods to cluster the data, rather than running Louvain on 400 
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the full gene expression space. Results for “Raw” were run using Louvain’s algorithm on the original HVG 401 

counts, to provide a baseline with which to compare embedding based clustering results to. 402 

 403 

Figure 4. Comparison of different methods on the mouse cortex dataset. a, UMAP embedding computed 404 

from the denoised HVG counts for each method. Top row colored by cell type; bottom colored by batch. 405 

Cells are also clustered with Louvain’s algorithm, and resultant ARI is provided. b, UMAP embedding 406 

computed from the denoised LVG counts for each method. Figure legends are the same as those in a. c, 407 

Density plot of genewise coefficient of variation (CV) among batch centroids. d, Clustering accuracy 408 

metrics obtained using the embedding based methods to cluster the data, rather than running Louvain on 409 

the full gene expression space. Results for “Raw” were run using Louvain’s algorithm on the original HVG 410 

counts, to provide a baseline with which to compare embedding based clustering results to. 411 

 412 

Figure 5. Comparison of different methods for pseudotime analysis in the human monocyte data. The 413 

analysis is for Monocytes derived from three technical replicates from the same subject. For each method, 414 

the full dataset was denoised/batch corrected and then fed to Monocle 3 for pseudotime analysis. We 415 

show the UMAP embedding colored by batch (column 1) and estimated pseudotime (column 2). We also 416 

visualize the kernel density distribution of pseudotime by batch (column 3) and plot the distributions of 417 

marker genes FCGR3A and S100A8 against pseudotime (columns 4 and 5, respectively). a, Pseudotime 418 

analysis when using denoised/batch corrected gene expression matrix from CarDEC as input. b, 419 

Pseudotime analysis when using denoised gene expression matrix from DCA as input. c, Pseudotime 420 

analysis when using denoised/batch corrected gene expression matrix from scVI as input. d, Pseudotime 421 

analysis when using batch corrected gene expression matrix from MNN as input. 422 

 423 
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Figure 6. Comparison of different methods for differential expression analysis of transcription factors 424 

in the human monocyte data. a, Heatmap of scaled gene expression for CarDEC. Pseudotime was inferred 425 

based on embedding obtained from CarDEC using Monocle 3. b, Heatmap of scaled raw UMI counts. 426 

Pseudotime was inferred based on embedding obtained from the scaled raw UMI counts using Monocle 427 

3. c, p-values obtained from differential expression analysis among the three batches over pseudotime. 428 

For each method, the pseudotime was inferred based on embedding obtained from the corresponding 429 

method. The red dotted line corresponds to p-value = 0.01. The top panel is for the 23 HVG TFs and the 430 

bottom panel is for the 38 LVG TFs. d, Denoised and batch corrected gene expression for CarDEC, denoised 431 

gene expression for DCA, batch corrected gene expression for MNN, and denoised and batch corrected 432 

gene expression for scVI over pseudotime for four selected TFs, HIF1A, HES4, HSBP1, and GAS7. For each 433 

method, the pseudotime was inferred based on embedding from the corresponding method.434 
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Methods 435 

The CarDEC workflow (Figure 1, Supplementary Figure 1) involves four steps: preprocessing, pretraining, 436 

gene expression denoising in Z-score space, and (optionally) denoising in count space. Below we briefly 437 

describe each of these steps. Details of the implementation is described in Supplementary Note 1, and 438 

the hyperparameters of CarDEC are shown in Supplementary Table 1. 439 

 440 

Step 1: preprocessing 441 

We first remove any cells expressing less than 200 genes, and then remove any genes expressed in less 442 

than 30 of the remaining cells. Let 𝐗 be an 𝑛 × 𝑝 gene count matrix with 𝑛 cells and 𝑝 genes after filtering. 443 

The gene expression values are normalized. In the first step, cell level normalization is performed in which 444 

gene expression for a given gene in each cell is divided by the total gene expression across all genes in the 445 

cell, multiplied by 10,000, and then transformed to a natural log scale. In the second step, gene level 446 

normalization is performed in which the cell level normalized values for each gene are standardized by 447 

subtracting the mean and dividing by the standard deviation across all cells within the same batch for the 448 

given gene. Highly variable genes (HVGs) are selected based on the log-normalized counts using the 449 

approach introduced by Stuart and Butler24 and implemented in the “pp.highly_variable_genes” function 450 

with “batch_key” parameter in the Scanpy package (version >=1.4)25. The remaining genes that are not 451 

selected as HVGs are considered lowly variable genes (LVGs). We note that many of the LVGs still show 452 

cell-to-cell variability, and are useful for clustering analysis after appropriate denoising and batch effect 453 

correction. We select 2,000 HVGs for all analyses in this paper. 454 

 455 

Step 2: pretraining using the HVGs 456 

The pretraining step is a straightforward implementation of an autoencoder. Let 𝑝!"#  be the number of 457 

HVGs selected in Step 1, and 𝐘!"#  be the corresponding 𝑛 × 𝑝!"#  matrix of normalized expression, 458 
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subsetted to include only the HVGs. Define a standard autoencoder for 𝐘!"#  with encoder and decoder 459 

represented by 𝑓$,!"#'	∙	; 	𝑊$,!"#,  and 𝑓&,!"#'	∙	; 	𝑊&,!"#, , respectively. The weights 	𝑊$,!"#  and 460 

𝑊&,!"#  are randomly initialized using the glorot uniform approach, and are tuned during pretraining. We 461 

use the tanh activation for the output of the encoder, and the linear activation function for the output of 462 

the decoder. For all intermediate hidden layers in the encoder and decoder, we use the ReLu activation 463 

function. The autoencoder is pretrained with mean squared error loss using minibatch gradient descent 464 

with the Adam optimizer26. 465 

 466 

Step 3: denoising Z-scores 467 

In this step, we use an expanded, branching architecture to accommodate LVGs, and introduce a 468 

clustering loss that regularizes the embedding and improves batch mixing and denoising especially in the 469 

gene space. Let 𝑝'"#  be the number of LVGs selected in Step 1, and 𝐘'"#  be the corresponding 𝑛 × 𝑝'"#  470 

matrix of normalized expression, subsetted to include only the LVGs, and 𝒚(,!"#  and 𝒚(,'"#  be the vectors 471 

of HVGs and LVGs, respectively in cell 𝑖 . We retain the encoder and decoder mappings for HVGs, 472 

𝑓$,!"#'	∙	; 	𝑊$,!"#,  and 𝑓&,!"#'	∙	; 	𝑊&,!"#,  from Step 2, including the learnt weights 	𝑊$,!"#  and 473 

𝑊&,!"# . We introduce a clustering layer that takes the HVG embedding  474 

𝒛(,!"# = 𝑓$,!"#'	𝒚(,!"# 	; 	𝑊$,!"#,  as input and returns for each cell a vector of cluster membership 475 

probabilities for ℎ clusters, where ℎ is a user specified number. For this clustering layer, we introduce an 476 

ℎ × 𝑑 matrix of trainable weights/cluster centroids 𝚳, where the 𝑗)* row of 𝚳 is a cluster centroid 𝝁+, 477 

and 𝑑 is dimension of the embedding.  478 

 479 

To initialize 𝚳, we run Louvain’s algorithm on the embeddings {𝒛(,!"#: 𝑖 ∈ {1, 2, … , 𝑛}} learned from the 480 

pretrained autoencoder, and find the cluster centroid for each cluster. The clustering layer computes a 481 

vector of cluster membership probabilities for cell 𝑖, denoted by 𝒒(. Let 𝑞(+, the 𝑗)* element of 𝒒(, denote 482 
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the probability that cell 𝑖 belongs to cluster 𝑗. Then the membership probabilities are computed using a t-483 

distribution kernel as follows, 484 

 485 

𝑞(+ =
@1 + B𝒛(,!"# − 𝜇+B

,
E
-.

∑ @1 + B𝒛(,!"# − 𝜇+!B
,
E
-.

+!

 486 

 487 

Since we do not have cell type labels in an unsupervised analysis, we create “pseudo-labels” that can be 488 

used in place of real labels for optimizing clustering weights. Inspired by Xie et al.27, these pseudo-labels 489 

are computed from the membership probabilities 𝑞(+  as follows, 490 

 491 

𝑝(+ =
𝑞(+, /∑ 𝑞(+(

∑ 𝑞(+!
, /∑ 𝑞(+!(+!

 492 

 493 

Let 𝒑(  be an ℎ-dimensional vector whose 𝑗)* element is 𝑝(+. Then the clustering loss for cell 𝑖 is defined as 494 

the following Kullback–Leibler divergence (KLD), 495 

 496 

𝑙(,/ = 𝐾𝐿𝐷(𝒑(||𝒒() =P𝑝(+ 	 log T
𝑝(+
𝑞(+
U

+

 497 

 498 

This loss is a component of the total loss defined later. Since it takes the embedding vectors 𝒛(,!"#  as 499 

input, minimizing this objective function can refine the embedding and help to remove batch effects from 500 

denoised counts computed using this embedding as input. 501 

 502 
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We also introduce encoder and decoder mappings 𝑓$,'"#'	∙	; 	𝑊$,'"#, and 𝑓&,'"#'	∙	; 	𝑊&,'"#, to address 503 

the problem of denoising and batch correction for the LVGs. Unlike the HVG decoder 𝑓&,!"# , the LVG 504 

decoder 𝑓&,'"#'	∙	; 	𝑊&,'"#,  does not map the low-dimension embedding 𝒛(,'"#  alone to reconstruct 505 

𝒚V(,'"#  in the original 𝑝'"# -dimension space. Rather, we concatenate the HVG and LVG embeddings 506 

together, and feed the combined vector [𝒛(,!"# 		𝒛(,'"#] into the decoder to denoise and batch correct 507 

LVG expression in the original 𝑝'"#-dimension space. That is, 508 

 509 

𝒚V(,'"# =	𝑓&,!"#'[𝒛(,!"# 		𝒛(,'"#]; 	𝑊&,'"#,. 510 

 511 

This concatenated embedding is critical because it allows CarDEC to only use the high signal-to-noise ratio 512 

HVGs to drive the clustering loss, while still using the rich, batch corrected embedding that is refined using 513 

this clustering loss to denoise and batch correct LVGs. The activation functions for the encoder and 514 

decoder of the LVGs are similarly defined as the autoencoder in Step 2.  515 

 516 

To train this branching model, we first introduce two reconstruction losses, one for the HVGs and one for 517 

the LVGs computed as follows for cell 𝑖, 518 

 519 

𝑙(,!"# =
1

𝑝!"#
B𝒚V(,!"# − 𝒚(,!"#B

,
 520 

𝑙(,'"# =
1

𝑝'"#
B𝒚V(,'"# − 𝒚(,'"#B

,
 521 

 522 

Then the total loss is calculated as a multi-component loss function as follows, 523 

 524 

𝑙( = 𝛼𝑙(,/ + (2 − 𝛼)
𝑙(,!"# + 𝑙(,'"#

2
, 525 
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 526 

where 𝛼 is a hyperparameter ranging from 0 to 2 that balances reconstruction loss with clustering loss. 527 

We set 𝛼 at 1 as default value. The total loss is minimized in an iterative fashion until certain convergence 528 

criteria are satisfied. 529 

 530 

Step 4: denoising gene expression counts 531 

In Step 3, the denoised expression values obtained from the decoder are on a Z-score scale and are not 532 

naturally comparable to raw UMI counts. To remedy this, we offer an optional downstream modeling step 533 

that provides denoised expression values on the original count scale. This strategy involves finding mean 534 

and dispersion parameters that maximize a negative binomial likelihood. We choose the negative 535 

binomial distribution because previous studies have shown that UMI counts are not zero-inflated, and 536 

negative binomial fits the data well28-30. 537 

 538 

After the training in Step 3, we have obtained batch corrected low-dimension embeddings, 𝒛(,!"#  and 539 

𝒛(,'"#  for each cell 𝑖  from the fine-tuned HVG and LVG encoders. We will use two separate neural 540 

networks to maximize the negative binomial losses: one for the HVGs and one for the LVGs. These models 541 

are completely separate from one another but are trained almost identically with only minor differences. 542 

The goal is to map the embeddings into the full gene space to obtain mean and dispersion parameters for 543 

each gene. Without loss of generality, we use the HVGs as an example to illustrate how the neural network 544 

is built.  545 

 546 

The vector of genewise means 𝝁(,!"#  and vector genewise dispersions 𝜽(,!"#  are given below, 547 

 548 

𝝁(,!"# = 𝑠( × 𝑒𝑥𝑝	(𝐖0,!"# × 𝒛̀(,!"#), 549 
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𝜽(,!"# = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢 𝑠'𝐖1,!"# × 𝒛̀(,!"#,, 550 

 551 

where 𝑠(  is the size factor for cell 𝑖 , 𝐖0,!"#  and 𝐖1,!"#  are trainable weight matrices, and 𝑒𝑥𝑝  and 552 

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 are activation functions that are applied elementwise.  For each gene 𝑗 in cell 𝑖, we compute 553 

the negative log likelihood of the negative binomial distribution as  554 

 555 

𝑙(+ = −log d
Γ'𝑥(+ 	+ 	𝜃(+,

Γ'𝜃(+,
T

𝜃(+
𝜃(+ + 𝜇(+

U
1"#
T

𝜇(+
𝜃(+ + 𝑥(+

U
2"#
g , 556 

 557 

where 𝑥(+  is the original count in HVG gene 𝑗 for cell 𝑖, 𝜇(+  and 𝜃(+  are the 𝑗)*  elements of 𝝁(,!"#  and 558 

𝜽(,!"# , respectively. For the HVG count model, the full loss for cell 𝑖 is then 𝑙( =
.

3$%&
	∑ 𝑙(+

3$%&
+4. . The loss 559 

for the LVG count model can be similarly defined. Both the HVG and LVG count models are trained using 560 

their own early stopping and learning rate decay convergence monitoring. 561 

 562 

Evaluation of batch effect removal in the gene expression space and the embedding space 563 

Here, we briefly describe the workflow to evaluate batch effect removal and comparison between 564 

different methods (details see Supplementary Notes 2 and 3). First, we evaluated the performance of 565 

different methods in removing batch effect in the gene expression space. For this evaluation, we 566 

considered CarDEC, scVI, DCA, and MNN. We ran all denoising/batch correction methods on the full data 567 

matrix and then present clustering results for denoised HVGs and denoised LVGs separately by subsetting 568 

the HVGs and LVGs from the full denoised/batch corrected expression matrix. The subsetted matrix that 569 

includes only the HVGs (or LVGs) is then passed down to the Louvain’s clustering algorithm. All steps in 570 

this workflow are identical for both the HVGs and the LVGs, and all methods used the same HVGs and 571 

LVGs as input for clustering. Furthermore, on a given dataset, we benchmarked all methods with the same 572 
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number of clusters. Second, we evaluated batch effect removal for the embedded representations of 573 

scRNA-seq. For this evaluation we considered CarDEC, scVI, DCA, and scDeepCluster. We excluded MNN 574 

since it has no embedding functionality. We also included “raw” as a control method for comparison, 575 

which is just subsetting the raw data to include only the HVGs, and then running the clustering workflow. 576 

 577 

Coefficient of variation (CV) analysis 578 

To measure batch mixing, we examined the batchwise centroids before and after denoising. Let 𝐗′ be a 579 

matrix of gene expression counts (including both HVGs and LVGs). 𝐗′ can be the matrix of raw counts, or 580 

the denoised/batch corrected counts from any of CarDEC, scVI, DCA, or MNN. For CarDEC, we only 581 

considered denoised counts, not denoised expression in the Z-score space. If 𝐗′ consists of MNN corrected 582 

expression, then we did not preprocess the data since MNN denoised expression is on a cosine scale. In 583 

the case of MNN, a fraction of expression counts can be negative, which poses difficulties when computing 584 

coefficients of variation. To circumvent this issue, any MNN expression values that are negative were 585 

truncated to zero for the CV analysis. For all other methods we have denoised expression in the non-586 

negative count space, so we performed cell normalization and log normalization on 𝐗′, exactly in the same 587 

way described in the Step 1 (preprocessing) of CarDEC. 588 

 589 

Let 𝑥(+′ be the expression value in gene 𝑗 of cell 𝑖 in 𝐗′ . Let 𝑆5 be a set of integers defined such that 𝑖 ∈590 

𝑆5  if and only if cell 𝑖  was sequenced from batch 𝑏. Furthermore, let 𝑐5+ = ∑ 𝑥(+′(∈7' /∑ 1(∈7'  be the 591 

centroid (mean expression) of batch 𝑏 for gene 𝑗. Let 𝐶+ = {𝑐5+} be the set of batch centroids for gene 𝑗. 592 

If we have 𝐵 batches, then this will be a set of 𝐵 numbers. We define the CV for gene 𝑗 to measure the 593 

degree of batch mixing as follows: 594 

 595 
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𝐶𝑉+ =
o𝑉𝑎𝑟(𝐶+)

𝑀𝑒𝑎𝑛'𝐶+, + 𝛾
, 596 

 597 

where 𝛾 is a small number included to guarantee computational stability for very lowly expressed genes. 598 

We set 𝛾 = 10-.,. A higher value of 𝐶𝑉+  corresponds to greater variation among batches and less batch 599 

mixing, and a good batch effect removal method should drive 𝐶𝑉+  closer to zero. Normalizing by mean 600 

expression adjusts the CV for how highly expressed the gene is, so that CVs from more highly expressed 601 

genes are comparable to CVs from less highly expressed genes. 602 

 603 

Evaluation metrics for clustering 604 

For all of our benchmark datasets, we used the cell type labels reported in the original papers as the gold 605 

standard. The clustering performance of each method was mainly evaluated using the adjusted rand index 606 

(ARI), calculated as below, 607 

 608 

𝐴𝑅𝐼 =
∑ '8"#, , −	x∑ '

9"
, ,∑ '5#, ,+( y/'8,,(+

1
2 x∑ '

9"
, , + ∑ '5#, ,+( y −	x∑ '9", ,∑ '5#, ,+( y/'8,,

, 609 

 610 

where 𝑛(+  is the number of cells in both cluster 𝑖  from the cluster assignments obtained when 611 

benchmarking and in cell type 𝑗 according to the gold standard cell type labels. 𝑎(  is the total number of 612 

cells in cluster 𝑖 from the cluster assignments obtained when benchmarking, 𝑏+  is the total number of cells 613 

in cell type 𝑗 according to the gold standard cell type labels from the original study, and 𝑛 is the total 614 

number of cells. Additionally, we also computed normalized mutual information (NMI) and purity, 615 

calculated as below, 616 

 617 
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𝑁𝑀𝐼 = 2 ×
∑

𝑛(+
𝑛 log	 {

𝑛 × 𝑛(+
𝑎( × 𝑏+

|(+

∑ 𝑎(
𝑛 𝑙𝑜𝑔 @

𝑛
𝑎(
E( + ∑

𝑏+
𝑛 𝑙𝑜𝑔 {

𝑛
𝑏+
|+

, 618 

 619 

𝑃𝑢𝑟𝑖𝑡𝑦 =
1
𝑛
Pmax

+
𝑛(+

(

. 620 

 621 

Data availability 622 

We analyzed multiple published scRNA-seq datasets, which are available through the accession numbers 623 

reported in the original papers. 1) Human pancreatic islet data: CelSeq (Gene Expression Omnibus 624 

GSE81076), CelSeq2 (Gene Expression Omnibus GSE85241), Fluidigm C1 (Gene Expression Omnibus 625 

GSE86469), and SMART-Seq2 (Array Express E-MTAB-5061); 2) Bipolar cells from mouse retina (Gene 626 

Expression Omnibus GSE81904); 3) Bipolar cells from macaque retina (Gene Expression Omnibus 627 

GSE118480); 4) mouse cortex data (Single Cell Portal SCP425); 5) human PBMC data (Single Cell Portal 628 

SCP424); 6) human monocyte data GEO (GSE146974); 7) human fetal liver data (Array Express E-MTAB-629 

7407). Details of these datasets were described in Supplementary Table 2. 630 

 631 

Software availability 632 

An open-source implementation of the CarDEC algorithm can be downloaded from  633 

https://github.com/jlakkis/CarDEC 634 

 635 

Life sciences reporting summary 636 

Further information on experimental design is available in the Life Sciences Reporting Summary.  637 
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Figure 1 701 
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Figure 2 704 
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Figure 3 708 
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Figure 4 711 
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Figure 5 715 
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