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Abstract 27 

 Lymphoblastoid Cell Lines (LCLs) are generated by transforming primary B cells with Epstein-28 

Barr Virus (EBV) and are used extensively as model systems in viral oncology, immunology, and 29 

human genetics research. In this study, we characterized single-cell transcriptomic profiles of five 30 

LCLs and present a simple discrete-time simulation to explore the influence of stochasticity on 31 

LCL clonal evolution. Single-cell RNA sequencing revealed substantial phenotypic heterogeneity 32 

within and across LCLs with respect to immunoglobulin isotype; virus-modulated host pathways 33 

involved in survival, proliferation, and differentiation; viral replication state; and oxidative stress. 34 

This heterogeneity is likely attributable to intrinsic variance in primary B cells and host-pathogen 35 

dynamics. Stochastic simulations demonstrate that initial primary cell heterogeneity, random 36 

sampling, time in culture, and even mild differences in phenotype-specific fitness can contribute 37 

substantially to dynamic diversity in populations of nominally clonal cells. 38 

39 
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Introduction 40 

 Lymphoblastoid Cell Lines (LCLs) are immortalized cells prepared by in vitro transformation 41 

of resting primary B cells from peripheral blood with Epstein-Barr Virus (EBV).1,2 LCLs are used 42 

extensively in research as a model for EBV-associated malignancies including Diffuse Large B-43 

Cell Lymphoma (DLBCL)3,4 and post-transplant lymphoproliferative disorder (PTLD).5,6 Because 44 

EBV is a non-mutagenic transformant in this context, LCLs constitute an important renewable 45 

source of human cells and genomic DNA that are used in immunological, genetic, and virology 46 

research.7-11 47 

 EBV is a double-stranded oncogenic gammaherpesvirus infecting over 90% of humans.12 In 48 

vivo, the virus typically establishes an asymptomatic persistent latent infection in episomal 49 

form13,14 within resting memory B cells.15 Latent infection can take one of several forms, each 50 

characterized by distinct programs of viral gene expression initiated from different promoters.16 51 

For example, classical EBV infection within resting memory B cells in vivo is characterized by the 52 

Latency I program in which expression from the Q promoter yields a single viral protein, EBV 53 

Nuclear Antigen 1 (EBNA1), which functions to maintain the viral episome.17 Latency I, termed 54 

“true latency,” is established only after a complex progression of infection through pre-latency, 55 

Latency IIb, Latency III, and restricted forms of latency (e.g., Latency IIa), each occurring in 56 

distinct tissues within the body.16 While relatively infrequent, EBV can undergo lytic reactivation 57 

as a replication strategy.18  58 

 In vitro, the process of LCL production also necessarily involves multiple transitions in viral 59 

transcriptional programs. In the immediate-early stage of infection (the pre-latent phase), 60 

expression from the W promoter yields EBNA-LP, EBNA2, and several noncoding RNAs (EBERs, 61 

BHRF1 miRNAs, and BART miRNAs). A brief burst of lytic gene transcription (without lytic 62 

replication) is also observed during pre-latency.19 EBNA-LP and EBNA2 protein levels increase 63 

gradually within these early-infected cells, eventually leading to Latency IIb in which EBNA2 64 

activation of the C promoter upregulates expression of EBNA1, EBNA3A-C, noncoding RNAs, 65 
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and additional EBNA-LP and EBNA2.20 Latency IIb gene products induce hyperproliferation, a 66 

period of several days during which infected B cells divide every 10-12 hours.21 During 67 

hyperproliferation, EBNA1 mediates viral genome replication while EBNA3A-C inhibit host cell 68 

antiviral and tumor-suppression responses. Variance in virally-mediated rates of proliferation 69 

ensures that some infected cells undergo DNA damage-induced growth arrest21,22 while others 70 

continue to proliferate, eventually outgrowing as immortalized LCLs. LCLs largely exhibit the 71 

Latency III transcriptional profile, characterized by expression of all six EBNAs (EBNA-LP, 72 

EBNA1, EBNA2, and EBNAs 3A-3C) in addition to Latent Membrane Proteins 1 and 2 (LMP-1, 73 

LMP-2A/B) and noncoding RNAs.23 In Latency III, EBNA2 stimulates expression of LMP-1, a 74 

constitutively active Tumor Necrosis Factor Receptor (TNFR) homolog.24 LMP-1 signaling drives 75 

proliferation and survival via NFB pathway activation,25 which has been shown to be essential 76 

for LCL outgrowth.26 77 

 Although studied extensively, complete characterization of the viral and host determinants of 78 

growth arrest versus immortalization of early-infected cells remains elusive.27 As one 79 

consequence, it is unclear whether or to what extent viral transformation may influence the 80 

resulting LCL cell populations. The possibility of significant phenotypic diversity within and across 81 

LCL samples warrants consideration, given the intrinsic variance of the human primary B cell 82 

repertoire28,29 and the multiplicity of viral transcription programs active in the journey to 83 

immortalization. Indeed, we recently described a gene expression program having low expression 84 

of LMP1 and NFB targets which was unique to early infection (Latency IIb) relative to an 85 

otherwise identical population of LCLs.30 The wide distribution in LMP1 and NFB target 86 

expression levels within an LCL has been characterized and ascribed to the dynamic sampling of 87 

a distribution of immune evasive states, at the fringes of which growth and survival can be 88 

compromised.31-33 89 
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 In this study, we characterize the transcriptomic profiles of five different LCLs with single-cell 90 

resolution to assess inter- and intra-sample heterogeneity. Four of the sampled LCLs (two in-91 

house and two commercial cell lines) were transformed with the prototypical B95-8 strain of EBV 92 

derived from an infectious mononucleosis patient,34 while a fifth sample (in-house) was prepared 93 

from cells transformed with the M81 strain isolated from a human nasopharyngeal carcinoma 94 

(NPC) sample.35,36 Primary cells used in establishing the five LCLs were isolated and transformed 95 

from a total of four donors; cells from one donor were transformed concomitantly to establish 96 

LCLs with each of the tested EBV strains. We observe B cell genetic heterogeneity in the form of 97 

differential heavy chain isotype expression across LCLs and, in three instances, within a sample. 98 

Further, comparable patterns of phenotypic variance with respect to NFB pathway and plasma 99 

cell-like differentiation genes are evident in each LCL. Expression of host and viral genes indicate 100 

that individual cells within LCLs occupy a continuum of infection states. We also present an initial 101 

stochastic model to explore factors beyond the nuances of host-pathogen interactions that may 102 

generate profound phenotypic diversity within cultured cell lines. Our findings highlight some of 103 

the underappreciated complexity inherent within LCLs and broadly underscore the importance of 104 

understanding and accounting for sources of heterogeneity within presumptive cell lines. 105 

 106 

Results 107 

LCL generation and data provenance 108 

 Three LCLs were prepared in-house by infection of PBMCs from two donors (sample numbers 109 

461 and 777) with one of two different EBV strains (B95-8 or M81). Each of these three samples 110 

(LCL 461 B95-8, LCL 777 B95-8, and LCL 777 M81) was prepared and processed using standard 111 

single-cell RNA sequencing workflows (see Experimental Methods). Two additional, publicly 112 

available datasets were obtained for commercially-available samples of the GM12878 and 113 

GM18502 LCLs, which were generated as previously reported by Osorio and colleagues.37 These 114 

five samples yielded single-cell RNA count matrices for subsequent analysis. 115 
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 116 

LCL sample QC 117 

 Count matrices for the five samples exhibited similar feature, total RNA count, and 118 

mitochondrial gene distributions (Figure 1 – figure supplements 1 & 2) and were subjected to 119 

standardized QC thresholding (see Experimental Methods). Cell cycle marker expression (Figure 120 

1 – figure supplement 3) was scored and regressed out during selection of highly variable genes 121 

as features to avoid clusters arising solely from cell cycle phase. Selected features were used to 122 

derive principal components which were evaluated (Figure 1 – figure supplement 4) and 123 

subsequently used for dimensional reduction (see Experimental Methods). 124 

 125 

Immunoglobulin isotype heterogeneity within and across LCL samples 126 

 The five LCL populations exhibit distinct immunoglobulin (Ig) profiles with respect to both gene 127 

expression levels and isotype frequencies (Figure 1). Three of the five samples (LCL 777 B95-8, 128 

LCL 777 M81, and GM12878) contain IgM+ and class-switched IgA+ and IgG+ subpopulations, 129 

whereas two samples (LCL 461 B95-8 and GM18502) almost exclusively expressed IgG (Figure 130 

1A). Additionally, cells within each isotype class exhibit a wide range of Ig gene expression across 131 

all samples in an apparent class-independent fashion. No significant expression of IgE was 132 

observed in any of the five samples, consistent with the isotype’s rarity in the peripheral blood.38,39 133 

Significant IgD transcript levels were observed in one sample (LCL 777 B95-8), where the gene’s 134 

expression was constrained to (and varied inversely with expression levels of) IgM+ cells (Figure 135 

1 – figure supplement 5).  136 

 The proportion of cells expressing each isotype varied substantially among LCLs (Figure 1B). 137 

IgG was the only isotype observed in LCL 461 B95-8. Cells in the GM18502 sample were also 138 

homogenous for IgG, although low levels of IgM transcripts are observed in up to half of the 139 

population. The proportion of cells () for IgM, IgA, IgG in LCL 777 B95-8 were (69%, 7%, 24%); 140 

in LCL 777 M81 were (1%, 35%, 64%); and in GM12878 were (6%, 73%, 18%). Abundance of Ig 141 
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light chain gene (kappa or lambda) and heavy chain isoform expression are generally correlated 142 

with variable heavy chain expression in each of the five samples (Figure 1 – figure supplements 143 

5-14). The isotype and clonal frequency differences between LCL 777 B95-8 and LCL 777 M81 144 

are notable, given that these samples originated from the same donor and were transformed at 145 

the same time with different viral strains. 146 

 147 
Figure 1. Immunoglobulin isotype heterogeneity within and across LCLs. (A) Relative expression of 148 
immunoglobulin heavy chain genes (IgM, IgA1, IgG1) in five LCLs analyzed by single-cell RNA sequencing. 149 
Data are represented by dimensional reduction (t-distributed Stochastic Neighbor Embedding) of principal 150 
components generated from feature selection following out-regression of cell cycle markers (see 151 
Experimental Methods). (B) Percent of cells in LCL population within each isotype class. Null classification 152 
represents cells exhibiting negligible immunoglobulin heavy chain expression.  153 
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 Differential Ig isotype expression is a significant source of variation in LCLs, as captured by 154 

the loadings from principal component analysis (PCA), typically within the first four PCs (Figure 155 

1 – figure supplement 15-19). Consequently, differences in Ig isotype are effectively captured in 156 

dimensionally reduced datasets generated from PCs using t-distributed Stochastic Neighbor 157 

Embedding (tSNE) even at low clustering resolution. In samples with more homogenous isotype 158 

expression (LCL 461 B95-8 and GM18502), the relative Ig expression level is a significant factor 159 

in distinguishing clusters.  160 

 161 

Genes involved in B cell proliferation and differentiation exhibit inverse expression gradients 162 

 Across all samples, LCL populations display variable mRNA transcript levels for genes 163 

involved in cell proliferation, inhibition of apoptosis, response to oxidative stress, and 164 

differentiation (Figure 2). Gradients in Ig expression exhibit strong anticorrelation with expression 165 

of NFB pathway transcripts (e.g., NFKB2, NFKBIA, EBI3) central to B cell proliferation and 166 

survival (Figure 2A, Figure 2 – figure supplement 1A). Similar gradients are observed for 167 

metabolic and oxidative stress response transcripts (e.g., TXN, PRDX1, PKM, LDHA, ENO1, 168 

HSP90AB1), however these transcripts are present more broadly (>80% of cells) and at higher 169 

levels than NFB-related genes (20-30% of cells) in each sample (Figure 2 – figure supplement 170 

2). While NFB family gene expression is consistently anticorrelated with that of B cell 171 

differentiation factors, significant diversity exists in NFB-high cells with respect to specific 172 

subunits including cREL, RELA, and RELB (Figure 2 – figure supplement 3). This implies 173 

differential intercellular NFkB dimer composition and, consequently, intra-sample variation in 174 

NFB-mediated transcriptional programs. Expression of NFB regulated BCL2 family members 175 

(e.g. BCL2L1/Bcl-xL and BCL2A1/BFL1) displays strong anticorrelation with Ig expression level. 176 

However, MCL1 and BCL2 mRNAs are more broadly expressed across  177 
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 178 
Figure 2. LCLs exhibit anticorrelated expression gradients of activation and differentiation genes. 179 
(A) Inverse expression gradients of immunoglobulin genes (IgM, IgA1, IgG1) in magenta and NFB targets 180 
(NFKB2, NFKBIA, EBI3, ICAM1, BCL2A1) and TXN in green. (B) Similar inverse gradients of NFB targets 181 
in green and B cell differentiation markers (TNFRSF17, XBP1, MZB1, CD27, CD38) in orange. (C) Pearson 182 
correlation maps and hierarchical clustering reveals negative correlation of differentiation (orange) and 183 
activation (green) gene sets and positive correlations between genes within each set. (D) In LCLs 184 
comprising multiple immunoglobulin isotypes, heavy chain class and differentiation/activation gradients 185 
constitute orthogonal (independent) axes of phenotypic variance. 186 
 187 

cells within each LCL, while BCL2L2/BCL-W is only modestly expressed in LCLs (Figure 2 – 188 

figure supplement 4).  189 

 Ig gradients are closely related to expression of differentiation and maturation markers (e.g., 190 

CD27, TNFRSF17/BCMA, XBP1, MZB1, PRDM1),40-42 which are likewise anti-correlated with 191 

NFB pathway markers (Figure 2B-C, Figure 2 – figure supplement 1B). The apparent inverse 192 

relationship between these gene sets defines a major axis of phenotypic variance within LCL 193 

samples comprising multiple Ig isotypes (Figure 2D). The orthogonality of the pro-194 

survival/differentiation and isotype class diversity axes implies that these two aspects of 195 

phenotypic variance are decoupled. Continuity between phenotypes resembling activated B cells 196 

(ABC) and antibody-secreting cells (ASC) is also captured in the expression profiles of key genes 197 

involved in the mutually antagonistic control of B cell state (Figure 2 – figure supplement 5).43 198 
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In this model, genes including PAX5 and IRF8 promote the ABC state; IRF4 and MKI67 (a G2M 199 

cell cycle marker) are markers of a transitional phenotype; and PRDM1 (BLIMP1) and XBP1 200 

promote the ASC state. As cell cycle marker expression was regressed out, mitotic phase has 201 

negligible influence on the observed trends.  202 

  Whereas distinctions in Ig isotype class expression tend toward discrete partitioning, intra-203 

isotype expression of differentiation and maturation genes reflects a continuum of transcriptomic 204 

states and cellular functions. Thus, within a given isotype, elevated Ig heavy chain expression is 205 

negatively correlated with proliferation/anti-apoptotic gene expression and positively correlated 206 

with maturation/differentiation gene expression. These relationships are most readily evident in 207 

LCL samples consisting of a single class-switched population, such as GM18502 (Figure 2 – 208 

figure supplement 1C).  209 

 Finally, the viral EBNA2 and EBNA3 proteins are responsible for transcriptional regulation that 210 

we specifically interrogated within the single cell data. The direct EBNA2 targets RUNX3 and 211 

FCER2/CD23 correlated with NFB expression (Figure 2 – figure supplement 6).44 Indeed, the 212 

expression of RUNX3 and FCER2/CD23 was anticorrelated with Ig expression consistent with the 213 

known role of EBNA2 in suppressing IgH transcription.45 In contrast, the EBNA3 repressed targets 214 

including CXCL9, CXCL10, BCL2L11/BIM and ADAMDEC1 were uniformly repressed (Figure 2 215 

– figure supplement 7) consistent with the role of histone and DNA methylation in maintain gene 216 

repression of EBNA3 targets.46-48  217 

 218 

Viral state heterogeneity affects host expression profile distributions in LCLs 219 

 Clusters with high EBV lytic gene expression are observed in two of the three datasets (LCL 220 

777 B95-8 and LCL 777 M81) aligned against the human reference genome containing the viral 221 

genome as an extra chromosome (see Experimental Methods) (Figure 3). Lytic cluster cells are 222 

small, accounting for 2.2% and 0.9% of the LCL 777 B95-8 and LCL 777 M81 cell populations, 223 

respectively (Figure 3A). The higher rate of lytic cell capture in the B95-8 sample relative to the  224 
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 225 
Figure 3. Viral and host gene expression in lytic cell subpopulations. (A) Clustering of dimensionally 226 
reduced datasets for LCL 777 B95-8 and LCL 777 M81. (B) Grouping of cell clusters into latent (red) and 227 
lytic (cyan) cells based on viral and host gene expression signatures of principal components. (C) Relative 228 
expression of four representative EBV lytic genes (BHRF1, BLRF1, BALF1, and BARF1) is elevated in lytic 229 
cell subpopulations. (D) Lytic cell clusters exhibit elevated expression of several host cell genes (SGK1, 230 
NHLH1, NFATC1, MIER2, SFN) relative to latently infected cells. While under-sampled due to 231 
subpopulation size, immunoglobulin class frequencies in lytic cells roughly reflect the population-wide 232 
frequencies. 233 
 234 

M81 sample is somewhat surprising, as the M81 strain is known for increased frequency of lytic 235 

reactivation; however, this disparity may originate from the nature of single-cell sample 236 

preparation method (see Discussion).49 237 

 The presence or absence of viral lytic transcripts is a significant source of phenotypic variance 238 

in these samples, as reflected in population groupings by viral state (Figure 3B) and principal 239 

component loadings (Figure 1 – figure supplements 15 & 16, PC_3 and PC_7, respectively). 240 

Lytic cells can be identified confidently from high expression of EBV genes including BLRF1, 241 

BALF1, and BARF1, among others (Figure 3C). BHRF1 expression is also elevated in lytic cells, 242 

although BHRF1 transcripts are ubiquitous at low levels sample wide. This is likely because 243 

BHRF1 can be expressed during both latent and lytic phases of EBV infection from different 244 

promoters.50 245 

 While the absolute number of lytic cells in each sample is low, the data indicate that the lytic 246 

cells are polyclonal with respect to Ig heavy chain expression, display upregulation of several host 247 
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genes including NFATC1, MIER2, SFN, and SGK1, and exhibit heterogeneous NFB expression 248 

(Figures 3D, Figure 1 – figure supplements 5 & 6). Ig isotype distributions in lytic cell clusters 249 

appear roughly proportional to the whole-sample distributions. NFATC1, MIER2, SFN, and SGK1 250 

transcript levels were queried for GM12878 and GM18502 samples to test whether the presence 251 

of lytic cell subpopulations might be inferred from host gene expression. A sub-cluster 252 

representing a small percentage of cells in GM12878 (<0.5%) were found to co-express MIER2 253 

and NFATC1. Negligible expression of either gene was observed in GM18502 (Figure 1 – figure 254 

supplements 8 & 9). 255 

 256 

Loss of mitochondrial and Ig expression in subpopulations under oxidative stress 257 

 Three of the five samples (LCL 461 B95-8, GM12878, and GM18502) contain clusters that 258 

exhibit metabolic transcriptional profiles in stark contrast with typical expression in each 259 

population (Figure 4). Cells within these clusters account for 1-4% of the three samples after QC 260 

(Figure 4A) and are most notable for their low expression of mitochondrial genes (Figure 4B). In 261 

the case of LCL 461 B95-8 and GM18502, these cells are the first to partition from the rest of the 262 

sample at low clustering resolution (Figure 4 – figure supplements 1-5).  263 

 Compared to the rest of each sample, these atypical cells exhibit significantly depleted levels 264 

of cytochrome c oxidase (MT-CO, complex IV) and NADH-ubiquinone oxidoreductase subunits 265 

(MT-ND, complex I) as well as a lack of canonical markers of lymphoid (e.g., PTPRC [CD45], 266 

CD74), B cell-specific lineage (e.g., CD19, MS4A1 [CD20]), and in some cases, MHC class I & II 267 

antigen presentation (e.g., HLA-A,B,C, HLA-DR) (Figures 4C-D, Figure 1 – figure supplements 268 

7 & 9, Figure 4 – figure supplement 6).  269 

 Expression of genes involved in oxidative stress (TXN, PRDX1), unfolded protein responses 270 

(PPIA, HSP90AB1), metabolic shunt pathways (PKM, ENO1, LDHA), and cytoskeletal 271 

rearrangements (ACTB, TUBB) is enriched consistently in this subset relative to the bulk 272 

population in each of the three LCLs (Figure 4D, Figure 2 – figure supplement 2). Ig heavy  273 
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 274 
Figure 4. LCL subpopulations exhibiting reduced mitochondrial gene expression and elevated 275 
metabolic and oxidative stress genes. (A) Clustering of dimensionally reduced datasets for LCL 461 276 
B95-8, GM12878, and GM18502. (B) Distinct clusters within each of these samples are defined by 277 
uncharacteristically low mitochondrial gene expression. (C) Grouping of cell clusters to partition “mito-low” 278 
cells (cyan) for differential expression comparison. (D) Mito-low cells exhibit reduced expression of 279 
cytochrome oxidase (MT-CO1, MT-CO2), NADH-ubiquinone oxidoreductase (MT-ND1, MT-ND2), 280 
MALAT1, and numerous lymphoid and B-cell lineage markers (CD19, MS4A1/CD20, PTPRC/CD45, CD74, 281 
HLA-A). Mito-low cells exhibit increased expression of genes associated with cytoskeletal rearrangements 282 
(ACTB, TUBB), metabolic stress (PKM, ENO1, LDHA) protein folding/degradation (HSP90AB1, PSMA1, 283 
PPIA), and oxidative stress (TXN, PRDX1). 284 
 285 

chain transcripts are notably absent from these subpopulations, although some degree of light-286 

chain expression is observed (Figure 1 – figure supplements 7-9). While these cells are on the 287 

low end of the population distribution with respect to total RNA counts and unique feature RNAs 288 

(Figure 4 – figure supplement 7), the measured values are consistent with intact, viable cells. 289 

  290 

A stochastic model for LCL phenotypic heterogeneity 291 

 A simple stochastic simulation based on a discrete-time Markov chain model51 was developed 292 

to understand better the factors that may influence phenotypic heterogeneity observed in LCLs, 293 

using Ig isotype frequencies as an example (Figure 5). In principle, the simulation may be adapted 294 

to any set of phenotypes within a sample. For additional details regarding model parameters and 295 
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assumptions, please see the Experimental Methods (Stochastic Simulations) and refer to the 296 

source code (supplementary file: “ig_evo_sim.py”).  297 

 In the present implementation, changes in Ig isotype frequency can be simulated in discrete 298 

steps (rounds of cell division) as a function of initial phenotype frequencies, population sampling 299 

(with replacement), and potential differences in phenotypic fitness captured as fixed, (un)equal 300 

isotype-specific proliferation probabilities. The model assumes a fixed cell death rate across all 301 

isotypes in any given division round. The number of simulated trials can be adjusted to capture 302 

individual stochastic realizations or probabilistic outcome distributions. Each parameter and 303 

assumption can be adjusted by the user for tailored applications. 304 

 Three randomly selected realizations and averaged outcomes (trials = 100) of the model for 305 

a fixed sample size (n = 1000 cells) demonstrate the effects of intrinsic stochasticity on the 306 

evolution of phenotype proportions over many rounds of cell division (rounds = 300), even when 307 

each phenotype confers equivalent fitness (Figure 5A). In the case of equal fitness and sufficient 308 

sample size, initial phenotype frequencies are a key determinant of whether the most prevalent 309 

phenotype will change over time as a result of stochasticity. 310 

 The effect of sample size on inter-trial variance can be substantial, even when cell populations 311 

are sampled with replacement to maintain phenotype proportions in each round (Figure 5B). 312 

Mean phenotype proportions are generally conserved, whereas trial standard deviation 313 

decreases as the sample size increases (trials = 25, rounds = 300, n = 100, 500, 1000, or 5000 314 

cells). This is generally expected, since undersampling increases the likelihood that phenotype 315 

frequencies in the drawn sample will deviate from those of the population, even in the case of 316 

replacement. 317 

 It is notable that minor differences in relative fitness (1-2%) can lead to dramatic changes in 318 

isotype distributions over time (Figure 5C). The rate of such change is proportional to the 319 

magnitude(s) of fitness differences (n = 1000 cells, rounds = 300). Four randomly selected clonal 320 

evolution trajectories realized with a modest fitness advantage (2%) for class-switched cells (IgA,  321 
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 322 
Figure 5. Stochastic simulation of heterogeneous LCL evolution. (A) Stochastic immunoglobulin 323 
isotype frequency evolution. Three random single-trial simulations initiated from the same starting class 324 
frequencies are presented, assuming equal likelihood of proliferation across isotype classes (n = 1000 325 
cells). The last panel shows mean and standard deviation for outcomes from 100 trials simulated from the 326 
same parameters. (B) Simulation of a founder effect. Population under-sampling (modeled by comparing 327 
results from 25 trials using n = 100, 500, 1000, and 5000 cells, left-to-right panels) increases outcome 328 
variance and accelerates convergence to a single isotype. (C) Effect of phenotype-specific fitness 329 
advantages. Simulation results are presented for scenarios in which class-switched isotypes (IgA, IgG, IgE) 330 
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have a 1% (left panel) or 2% (right panel) fitness advantage over IgM cells. (D) Four random single-trial 331 
simulations over long periods of time (1000 division rounds) with a 1% fitness advantage for class-switched 332 
cells (left panels) compared to 10 trials over the same period with equal fitness across classes. (E) Single-333 
trial isotype frequency evolution and corresponding simulated clustering (see Experimental Methods) in the 334 
case of equal proliferation probability. Starting frequencies of IgM, IgA, IgG, IgE cells are 89%, 5%, 5%, 335 
and 1%, respectively. (F) As in E, with a 1% fitness advantage for class-switched cells. (G) As in E, with a 336 
2% advantage for class-switched cells. 337 
 338 

IgE, and IgG) reveal the potential for drastic variations when multiple rare phenotypes with a 339 

fitness advantage exist (n = 2500 cells, trials = 10, rounds = 1000). Thus, rare cells may become 340 

prevalent or even dominant over time if they exhibit only slightly greater fitness relative to other 341 

cells in some environmental context (e.g., cell culture). In such cases, observed phenotype 342 

frequencies can deviate wildly from expectations of equal fitness over time (Figure 5D). 343 

 Cluster simulation was implemented by random sampling from four arbitrary, isotype-specific 344 

2D normal distributions based on empirical observations that Ig isotypes yield distinct clusters in 345 

dimensionally reduced single-cell RNA-seq data (Figures 5E-G). Simulated clusters were 346 

generated from randomly selected trials initiated from the same initial phenotype distribution (IgM 347 

= 89%; IgA = 5%; IgG = 5%; IgE = 1%) at three different relative fitness advantages (0%, 1%, and 348 

2%) for class-switched isotypes. In all cases, the proportion of observed cells in each cluster 349 

fluctuates over time. As expected, the presence or absence of observed phenotypic heterogeneity 350 

(in this example, isotype polyclonality) in a cell population is a complex function of relative 351 

frequency, fitness, sampling (i.e., bottlenecks), stochasticity, and time.52,53 352 

  353 

Discussion 354 

Ig isotype heterogeneity in LCLs 355 

 LCL clonality is known to change over time, although the factors involved in this evolution are 356 

not fully characterized.54 PBMC derivation from multiple donors is an obvious source of cellular 357 

heterogeneity in the analyzed samples presented herein. B cells from peripheral blood ( 5-10% 358 

of all lymphocytes) comprise wide ranges of naïve ( 50-80%, mean  65%) and memory ( 15-359 
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45%, mean  30%) cells, with immature/transitional and plasmablasts accounting for smaller 360 

proportions ( 1-10%, mean  5% and  0.5-4.5%, mean  2%, respectively).29 Within the memory 361 

cell compartment, proportions of non-switched (IgM) and switched memory (IgA, IgG, and 362 

technically, IgE) are also likely donor-specific. The negligible number of IgE+ cells present across 363 

the samples can be explained by the isotype’s low frequency in the peripheral blood.38 364 

 It is evident from LCL 777 B95-8 and LCL 777 M81 samples that inter-donor differences 365 

cannot fully explain the observed isotype heterogeneity in LCLs. While it may be tempting to 366 

attribute the observe differences to infection with different viral strains, there is ample 367 

experimental evidence that EBV infection does not induce class-switching.55 The disparity in 368 

isotype frequencies is notable since these samples were transformed, cultured, prepared, and 369 

sequenced in parallel (i.e., under equivalent conditions and within the same interval). 370 

 The polyclonality exhibited within LCL 777 B95-8 and LCL 777 M81 contrast with the 371 

dominance of a single isotype in LCL 461 B95-8 and GM18502 samples (in each case, IgG). The 372 

only notable difference between LCL 461 B95-8 and LCL 777 B95-8 is that the former sample 373 

was in culture substantially longer prior to single-cell library preparation. Given that the GM18502 374 

line was derived more than a decade ago, these observations implicate the influence of culture 375 

period in altering significantly the isotype proportions present within LCLs, which is altogether 376 

consistent with known (and profound) challenges associated with cell culture.56-58 In this regard, 377 

the data from GM12878 merit remark. The finding of polyclonality in this sample is surprising, 378 

given that GM12878 has been in culture over a timescale comparable to GM18502.59 Forgoing 379 

the possibility of errors in sample handling or procurement, the persistence of genetic 380 

heterogeneity in this line is both intriguing and potentially confounding. Whether or to what extent 381 

cellular diversity may influence observed results will inevitably vary on a study-specific basis, but 382 

the possibility of sample-intrinsic variance should be considered even when homogeneity is 383 

presumed.8,60 384 
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 Multiple isotypes within an LCL sample guarantee clonal diversity, but the presence of a single 385 

isotype does not necessarily ensure the inverse (intra-sample homogeneity). While not in the 386 

scope of the present study, B Cell Receptor (BCR) 5’ single cell sequencing of LCL samples could 387 

provide insight into variable regions and as to whether subpopulations of a given isotype are the 388 

progeny of one or multiple founder cells (and whether the answer to this question changes over 389 

time). 390 

 391 

Viral origins of LCL phenotypic variance 392 

 NFB pathway signaling is constitutively activated by viral Latent Membrane Protein 1 (LMP1) 393 

in EBV-transformed B cells.25 LMP1-induction of the NFB pathway is necessary for LCL 394 

survival;26,61,62 however, the observed intra- and inter-LCL variance in transcript levels of NFB 395 

and several of its transcriptional targets add nuance to this picture. Similar profiles of NFB 396 

pathway transcript levels across samples may constitute a snapshot of the most probable 397 

distribution arising from stochastic NFB target expression induced by EBV infection. This may 398 

arise from a transcriptional bursting mechanism in which mRNA transcript levels in each cell 399 

fluctuate over time (as a Poisson process) while the proportion of cells containing n transcripts in 400 

a population at any given time is roughly constant.63-67 Alternatively, or perhaps additionally, 401 

variation in NFB pathway activity may be a manifestation of the different viral latency states 402 

present within each sample, as indicated by correlation with host markers of latency IIb and III.  403 

 The distinct anti-correlation between NFB/viral latency program and B lymphocyte 404 

differentiation genes is noteworthy. While a mechanism imparting causality to this relationship is 405 

not yet fully clear, recent time-resolved bulk transcriptomic data revealed that EBV-induced 406 

plasma cell phenotypes (including upregulation of Xbp1) developed as early as the pre-latent 407 

phase of infection (1-14 days).27 Correlated expression of MZB1 with XBP1, TNFRSF17, CD27, 408 

and CD38 support the model that the development of plasma cell characteristics is reminiscent 409 
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of germinal center differentiation. Single-cell data adds complexity to this finding and its 410 

consequences for LCL heterogeneity even after long-term outgrowth. Specifically, EBV 411 

transformation in vitro appears to maintain B cells along a continuum of differentiation states, 412 

each with varying degrees of similarity to phenotypes observed in vivo.16 In the case of LCL 413 

generation, the multiple transcriptional programs of the transformant likely constitute an 414 

inescapable source of phenotypic heterogeneity.  415 

 The low number of observed lytic cells is likely a consequence of EBV’s predominant latency 416 

and the fact that lytic reactivation is by nature somewhat incompatible with single-cell RNA-seq 417 

methods. However, these small subpopulations provide an interesting case for examination. The 418 

spatial proximity of lytic clusters in LCL 777 B95-8 and LCL 777 M81 to plasma-like clusters 419 

resulting from tSNE dimensional reduction implied phenotypic similarity, however we found that 420 

this is likely an artifact of the tSNE algorithm since UMAP dimensional reduction did not preserve 421 

this proximity. Notwithstanding, XBP1 upregulation in plasma cells has been shown to 422 

transactivate the viral Z promoter and induce lytic reactivation.68,69 Lytic cells also display relatively 423 

high and polyclonal Ig heavy chain expression in addition to other shared characteristics with 424 

plasma-like cells (reduced expression of NFB and its targets). By contrast, lytic cells exhibit 425 

notably reduced levels of B cell differentiation transcripts. Thus, viral transcription changes in 426 

dynamic response to host cell programs (and vice versa) contribute to the observed LCL diversity. 427 

Prior work has shown that the viral proteins EBNA3A and EBNA3C suppress plasma-like 428 

phenotypes during EBV latency establishment.70 The possibility that EBV may undergo lytic 429 

reactivation in response to plasma cell differentiation as a means of maintaining persistent latent 430 

infection is a topic of future interest.  431 

 Host genes upregulated within lytic cluster cells (e.g., NFATC1, MIER2, SFN, SGK1) 432 

represent a limited subset of transcription factors associated with B (and T) lymphocyte 433 

activation71,72, several of which have been recently identified at various degrees of enrichment 434 

within lytic cells.73 The presence of NFATC1 is particularly notable considering the recent report 435 
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of this factor contributing to the spontaneous lytic phenotype of type 2 EBV by upregulating 436 

expression of BZLF1 to promote the lytic gene expression cascade.74 437 

 Although PC loadings reveal substantial upregulation of more than a dozen EBV lytic genes, 438 

cells within the lytic clusters curiously lack expression of BZLF1, which plays a role in the latent-439 

to-lytic transition.18 The absence of BZLF1 reads (and low mRNA counts generally) ostensibly 440 

may result from factors including naturally low transcript abundance, reduced transcript capture 441 

efficiency, and/or reduced efficiency of reverse transcription to cDNA owing to RNA secondary 442 

structural motifs.75  443 

 444 

“Marker-less” subpopulations  445 

 The small populations of cells in LCL 461 B95-8, GM12878, and GM18502 characterized by 446 

low mitochondrial gene expression and a dearth of canonical B cell markers are curiosities. These 447 

cells share similarities with exhausted plasma cells, most notably an apparent loss of Ig heavy 448 

chain expression while retaining moderate kappa and light chain expression,76,77 and hallmarks 449 

of oxidative stress including upregulated thioredoxin expression.78-81 Low levels of NFB pathway 450 

transcripts in these clusters most closely resemble expression profiles of cells with a plasma-like 451 

phenotype in the same samples. It is unlikely that these cells are immature, naïve, or transitional 452 

B cells, given that neither IgM nor IgD expression are observed. Loss of lineage marker 453 

expression is suggestive of a tumor-like phenotype.82  454 

 455 

Factors in the evolution of subclonal heterogeneity 456 

 Cellular diversity abounds even within presumptive clonal lines. For LCLs generated from 457 

EBV-transformed primary B cells, the list of parameters affecting the cell population’s phenotypic 458 

profile includes donor-specific frequencies of non-switched and switched memory B cells, 459 

heterogeneous states of viral infection, phenotype-specific differential fitness in culture, 460 

stochasticity, and time. By definition, some degree of differential fitness exists among cells in each 461 
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sample as a consequence of the variability in pro-survival, proliferation, and anti-apoptotic genes. 462 

However, as a principle of evolution, phenotypic differences do not necessarily have to be 463 

selected directly; they may simply be carried over in cells possessing other selected features. 464 

With respect to the stochastic model presented herein, the simulated phenotype advantage of 465 

class-switched memory vs. non-switched memory cells need not be construed as originating from 466 

heavy chain isotype expression. 467 

 Experimental procedures including cell passaging and the initial transformation itself may 468 

contribute to variance among LCLs. As an illustration, consider that 1 million PBMC has around 469 

25,000 B cells, of which 7,500 (30%) on average are memory cells of various classes. If the rate 470 

of transformation leading to LCL outgrowth is 10%, then  750 memory cells out of 1 million 471 

PBMCs define the initial isotype frequency of the eventual LCL. This sample size is small relative 472 

to the donor’s total memory B cell compartment and may lead to founder cell effects. 473 

Consequently, B cell population undersampling may be a foregone conclusion in the context of 474 

LCL preparation. 475 

 476 

Conclusion 477 

 Single-cell RNA sequencing reveals that LCLs including widely used commercial lines exhibit 478 

substantial phenotypic diversity. During the early stages of LCL generation, EBV infection drives 479 

cell proliferation by mimicking the process of B cell activation. After successful LCL outgrowth, 480 

infected B cells occupy a range of phenotypic states along a continuum between activation and 481 

plasma cell differentiation and, in some cases, exhibit signs of lytic reactivation. The diversity 482 

observed within LCLs (and cultured lines generally) can originate from intrinsic heterogeneity 483 

within primary cells, transcriptional programs of the viral transformant, and the realization of 484 

inherently stochastic processes (including certain gene expression programs) over time. The data 485 

reported herein enable extensive hypothesis generation and interrogation of aspects of B cell 486 

biology, EBV pathogenesis, and host-virus interactions. Moreover, this work highlights the 487 
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importance of considering the possible sources and experimental consequences of cell population 488 

heterogeneity when using cultured cell lines. 489 

 490 

 491 

Acknowledgments 492 

 We would like to acknowledge the assistance of the Duke Molecular Physiology Institute 493 

Molecular Genomics core for the generation of the data for the manuscript. 494 

 495 

Experimental Methods 496 

PBMC isolation and transformation with EBV 497 

 Whole blood samples from two normal donors (777 and 461) were obtained from the Gulf 498 

Coast Regional Blood Center. PBMCs were isolated from each sample by Ficoll gradient (Sigma, 499 

# H8889). CD19+ B cells were extracted from each PBMC sample through magnetic separation 500 

(BD iMag Negative Isolation Kit, BD, # 558007). Purified B cells were cultured in RPMI 1640 501 

media supplemented with 15% fetal calf serum (FCS, vol./vol., Corning), 2 mM L-glutamine, 502 

penicillin (100 units/mL), streptomycin (100 g/mL, Invitrogen), and cyclosporine A (0.5 g/mL). 503 

 B95-8 and M81 strains of EBV were generated from the B95-8 Z-HT and M81 cell lines, 504 

respectively, as described previously.83 Separate bulk infections of B cells were performed by 505 

incubating donor B cells with B95-8 Z-HT or M81 supernatants for 1 h at 37°C, 5% CO2 to produce 506 

the following cultures: 777_B95-8, 777_M81, and 461_B95-8. After virus incubation, cells were 507 

rinsed in 1x PBS and resuspended in R15 media. LCL outgrowth was achieved from each of 508 

these three samples, resulting in LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8. 509 

 510 

Cell culture   511 

 All three in-house LCL samples were cultured in supplemented RPMI media as described 512 

above, substituting 10% FCS instead of 15% FCS. Prior to single-cell sample preparation, 513 
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LCL_777_B95-8 and LCL_777_M81 were maintained in culture for approximately one month, 514 

whereas LCL_461_B95-8 was cultured for longer than six months. Immediately prior to single-515 

cell sample preparation, LCLs were resuspended and disaggregated. 516 

 517 

LCL samples and data 518 

 LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8 were created as described above. 519 

LCLs GM_12878 and GM_18502 were obtained, prepared, sequenced, and aligned as described 520 

by Osorio and colleagues.37 Briefly, these samples were obtained from the Coriell Institute for 521 

Medical Research, cultured for several days, then prepared as single-cell GEMs (Gel bead in 522 

Emulsions) with the 10x Genomics Chromium system using version 2 chemistry for total RNA. 523 

Single-cell sequencing libraries were generated using established 10x Genomics protocols, and 524 

sequencing was performed with a Novaseq 6000 (Illumina, San Diego). Unique Molecular 525 

Identifier (UMI) count matrices were generated from these samples by using CellRanger v.2.1.0 526 

with alignment to the hg38 version of the human reference genome. Additional information about 527 

the experimental handling and acquisition of data for GM12878 and GM18502 is provided in the 528 

original reference.37 Gene-barcode matrix files for each sample were downloaded from the Gene 529 

Expression Omnibus (accession ID: GSE126321) and subsequently analyzed along with data 530 

from LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8 samples, while the LCL_461_B95-8 531 

sample was run in a separate experimental batch. 532 

 533 

Single-cell RNA sample preparation, and sequencing 534 

 Single-cell RNA samples for LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8 were 535 

prepared using the General Sample Preparation demonstrated protocol from 10x Genomics (10x, 536 

Manual Part # CG00053) adapted from the original published methods.49 Briefly, disaggregated 537 

LCLs were resuspended in fresh 1x PBS supplemented with 0.04% BSA, stained with trypan blue 538 

to assess viability, and counted using a hemocytometer for preparation to target concentration.  539 
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 Single-cell libraries for sequencing were prepared from each sample using the methods 540 

described in the 10x Genomics Single Cell 3’ Reagent Kit Protocol (v2 chemistry, Manual Part # 541 

CG00052). In brief, GEMs were prepared using the 10x Chromium Controller, after which cDNA 542 

synthesis and feature barcoding were performed and sequencing libraries for each sample were 543 

constructed. Sequencing runs were performed on an Illumina HiSeq 3000/4000 (Illumina, San 544 

Diego). Samples for LCL_777_B95-8 and LCL_777_M81 were sequenced in a pooled run in a 545 

single HiSeq lane.  546 

 Raw base call files (*bcl.gz) from sequencing runs were processed using CellRanger v.2.0.0 547 

to generate fastq files (*fastq.gz) via CellRanger’s ‘mkfastq’ command. CellRanger’s ‘count’ 548 

command was then used to align reads from the three in-house LCL samples to the human 549 

reference genome (hg38) with the Type 1 EBV reference genome (NC_007605) concatenated as 550 

an extra chromosome (reflecting the episomal nature of the EBV genome within infected B cells). 551 

This process yielded gene-barcode matrices (UMI count matrices) for subsequent analysis. 552 

 553 

Sample QC, analysis, and visualization 554 

 UMI count matrices for all five LCL samples were analyzed using the Seurat single-cell 555 

analysis package for R (Seurat v.3.1.5).84,85 Filtered barcode matrices were loaded into Seurat, 556 

after which genes present in fewer than three cells and cells expressing fewer than 200 unique 557 

RNA molecules (features) and more than 65000 unique features were filtered out. Additionally, 558 

cells in which mitochondrial genes accounted for greater than 5% of all transcripts were excluded 559 

from analysis. Beyond the uniform application of QC steps, we did not investigate the potential 560 

for batch-specific effects across the five samples run in four experiments. After QC thresholding, 561 

feature data were normalized and scored for cell cycle markers. Cell cycle scoring was used to 562 

regress out S and G2M gene features to remove variance (and unwanted effects on clustering) 563 

in the datasets arising from cell cycle phase. Cell cycle-corrected data were then scaled, and 564 

selection was performed to find the highest-variance features. Principal Component Analysis 565 
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(PCA) was performed on selected (n = 2000) variable features, and PCs were subsequently used 566 

to define distinct subpopulations within each of the five samples. For visualization, PCs were used 567 

to generate clusters at various resolutions and dimensionally reduced using t-distributed 568 

Stochastic Neighbor Embedding (tSNE). The R code used to process data and produce figures 569 

presented in this manuscript is provided as a supporting file (“ig_evo_sim.py”) and is available on 570 

GitHub (https://github.com/esorelle/ig-evo-sim). 571 

 572 

Stochastic simulations 573 

 The concept of a discrete-time Markov chain was adapted to simulate the evolution of 574 

phenotype frequencies, using immunoglobulin heavy chain isotype distributions within LCLs as 575 

an example. Briefly, the simulation takes as input a cell population of size n comprising B cells of 576 

different Ig heavy chain isotype classes at user-defined initial frequencies, fixed probabilities of 577 

proliferation in synchronous rounds of cell division, and a constant cell death rate assumption 578 

(also user-defined). Within the scope of computational feasibility, users can specify the number 579 

of rounds of cell division to simulate and the number of simulation trials to run. Additionally, users 580 

may choose to generate simulated cluster data modeled from distinct 2D normal distributions for 581 

each isotype for a specified number of trials at fixed intervals (i.e., every nth cell division round). 582 

The simulation was implemented in Python, and the code used to generate the simulated data is 583 

provided as a supporting file. The code is also available at (add as public GitHub repo) and may 584 

be freely implemented and modified. 585 

 586 

 587 

 588 

 589 

 590 

 591 
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Source Data Files 
 
Raw sequencing data for the three previously unpublished samples (LCL_777_B958, 
LCL_777_M81, and LCL_461_B958) are deposited in the NCBI Sequence Read Archive (SRA) 
and can be accessed along with processed data from the NCBI Gene Expression Omnibus (GEO, 
Series Accession: GSE158275). 
 
 
 
Source Code 
 
R code used for UMI count matrix processing, analysis, and figure generation is provided as a 
supplementary file. Python code used for clonal evolution simulations is available on github 
(https://github.com/esorelle/ig-evo-sim).  
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Figure 1 – figure supplement 1. Distributions of features used for QC across five LCL samples. 
 
 

 
Figure 1 – figure supplement 2. Summary of QC statistics across five LCL samples. 
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Figure 1 – figure supplement 3. Distributions of representative markers used for cell cycle scoring 
and regression. 
 
 
 
 
 
 
 
 
 

 
Figure 1 – figure supplement 4. Elbow and Jackstraw plots used for determination of principal 
components to use for dimensional reduction and clustering. 
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 Figure 1 – figure supplement 5. Expression of key genes groups in LCL 777 B95-8. 
 
 
 
 

Figure 1 – figure supplement 6. Expression of key genes groups in LCL 777 M81. 
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 Figure 1 – figure supplement 7. Expression of key genes groups in LCL 461 B95-8. 
 
 
 
 

Figure 1 – figure supplement 8. Expression of key genes groups in GM12878. 
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 Figure 1 – figure supplement 9. Expression of key genes groups in GM18502. 
 
 
 

Figure 1 – figure supplement 10. Pairwise Pearson correlation values across key gene groups in 
LCL 777 B95-8. 
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 Figure 1 – figure supplement 11. Pairwise Pearson correlation values across key gene groups in 
LCL 777 M81. 
 
 
 
 
 

Figure 1 – figure supplement 12. Pairwise Pearson correlation values across key gene groups in 
LCL 461 B95-8. 
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Figure 1 – figure supplement 13. Pairwise Pearson correlation values across key gene groups in 
GM12878. 
 
 
 
 

Figure 1 – figure supplement 14. Pairwise Pearson correlation values across key gene groups in 
GM18502. 
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 Figure 1 – figure supplement 15. Principal component (PCs 1-8) heatmaps for LCL 777 B95-8. 
 
 
 
 
 
 
 

Figure 1 – figure supplement 16. Principal component (PCs 1-8) heatmaps for LCL 777 M81. 
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 Figure 1 – figure supplement 17. Principal component (PCs 1-8) heatmaps for LCL 461 B95-8. 
 
 
 
 
 
 
 

Figure 1 – figure supplement 18. Principal component (PCs 1-8) heatmaps for GM12878. 
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 Figure 1 – figure supplement 19. Principal component (PCs 1-8) heatmaps for GM18502. 
 
 
 
 
 

Figure 2 – figure supplement 1. Expression of individual genes within activation and differentiation 
gene sets. (A) Expression of genes involved in activation / pro-survival of B cells. (B) Expression of genes 
involved in B cell differentiation. (C) Correlation of each activation and differentiation gene with IgG1 
expression for GM18502 (a sample with a single isotype class). 
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 Figure 2 – figure supplement 2. Expression of metabolic and oxidative stress genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – figure supplement 3. Expression of NF-B subunits c-REL, RELA, and RELB. 
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Figure 2 – figure supplement 4. Expression of BCL family genes across LCL samples. 
 

Figure 2 – figure supplement 5. Expression trends in key transcriptional regulators controlling 
activated B cell (ABC) and antibody-secreting cell (ASC) phenotypes. 
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 Figure 2 – figure supplement 6. Expression of host targets upregulated by EBNA2. 
 
 

Figure 2 – figure supplement 7. Expression of host targets repressed by EBNA3. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.311886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.311886
http://creativecommons.org/licenses/by/4.0/


47 
 

 Figure 4 – figure supplement 1. Clustering resolution screens for LCL 777 B95-8. 
 
 
 

Figure 4 – figure supplement 2. Clustering resolution screens for LCL 777 M81. 
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 Figure 4 – figure supplement 3. Clustering resolution screens for LCL 461 B95-8. 
 
 
 

Figure 4 – figure supplement 4. Clustering resolution screens for GM12878. 
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 Figure 4 – figure supplement 5. Clustering resolution screens for GM18502. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – figure supplement 6. Expression of MHC class I genes HLA-A, HLA-B, and HLA-C.  
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Figure 4 – figure supplement 7. Total RNA counts, unique feature, and mitochondrial percentage 
distributions across LCL samples. 
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