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Abstract 
 
Degenerate neural circuits perform the same function despite being structurally different. 

However, it is unclear whether neural circuits with interacting neuromodulator sources can 

themselves be degenerate while maintaining the same neuromodulator function. Here, we 

address this by computationally modelling the neural circuits of neuromodulators serotonin 

and dopamine, local glutamatergic and GABAergic interneurons, and their possible 

interactions, under reward/aversion-based conditioning tasks. We show that a single sparsely 

connected neural circuit model can recapitulate many separate experimental findings, but not 

all, suggesting multiple parallel circuits. Using simulations and dynamical systems analysis, 

we demonstrate that several different stable circuit architectures can produce the same 

observed network activity profile. Further, simulating dopamine (D2) receptor agonists in 

rewarding task can distinguish among sub-groups of these degenerate networks; a testable 

model prediction. Overall, this work suggests the plausibility of degeneracy within 

neuromodulator circuitry and has important implication for the stable and robust maintenance 

of neuromodulator functions.  
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The nervous system can be modulated by a group endogenous chemical messengers, often 

called neuromodulators (Kaczmarek and Levitan, 1987). Neurons or synapses, and hence 

neural circuits, that succumb to neuromodulation often change circuit configuration and 

function (Marder, 2012; Marder et al., 2014). However, neural circuits can also be degenerate, 

that is, circuits consisting of different elements and/or structure while performing the same 

function or yielding the same output (Cropper et al., 2016). This can allow robust maintenance 

of functions and behaviour in the face of changes in the underlying structure (Edelman and 

Gally, 2001; Whitacre, 2010). Although it has been shown that neuromodulators can 

selectively regulate degenerate neural circuits (Marder et al., 2014; Cropper et al., 2016), it is 

unclear whether neural circuits with neuromodulator-containing neurons can themselves be 

degenerate, which could in turn provide stable widespread neuromodulator influences on 

targeted neural circuits (Fig. 1a).  
 

In this theoretical study, we investigate the plausibility of degenerate and stable 

neuromodulator circuits by focusing on the neural circuits in the midbrain which are the source 

of ascending pathways of two highly studied monoaminergic neuromodulators, serotonin (5-

hydroxytrptamine; 5-HT) and dopamine (DA). These neuromodulators have major roles in 

modulating various cognitions, emotions and behaviours, and are linked to the pathogenesis 

and pharmacological treatment of many common neuropsychiatric and neurological disorders 

(Müller and Cunningham, 2020). The majority of 5-HT-producing neurons are found in the 

dorsal and median raphe nuclei (DRN and MRN), while most DA-producing neurons reside in 

the ventral tegmental area (VTA) and substantia nigra compacta (SNc) (Müller and 

Cunningham, 2020). Importantly, there is increasing evidence for direct synaptic interactions 

between these two neuromodulators, particularly at the level of the VTA (Di Giovanni et al., 

2008; Boureau and Dayan, 2011; De Deurwaerdère and Di Giovanni, 2017).  

 

At the functional level, DA and 5-HT are known to play a critical role in reward and punishment 

(Hu, 2016). For example, there is strong evidence that DA neuronal activity signals reward 

prediction error (difference between predicted and actual reward outcome) to guide 

reinforcement learning (Doya, 2002). Specifically, DA neurons are phasically excited upon 

unexpected reward outcome or reward-predictive cues, and inhibited upon unexpected reward 

omission or punishment (Schultz et al., 1997; Cohen et al., 2012; Watabe-Uchida et al., 2017), 

although there is heterogeneity amongst DA neurons in this regard (Cohen et al., 2012; 

Lammel et al., 2014; Morales and Margolis, 2017; de Jong et al., 2019).  

 

In comparison to DA neurons, DRN 5-HT neurons exhibit greater complexity in function, with 

recent studies reporting that 5-HT neuronal activity encodes both reward and punishment. For 
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instance, Cohen et al. (2015) found that certain 5-HT neurons (labelled “Type I”) were 

phasically activated only by reward predicting cues, but not punishment in a classical 

conditioning paradigm. On the other hand, another population of 5-HT neurons (“Type II”) 

signalled both expected reward and punishment with sustained elevated activity towards 

reward outcome (Cohen et al., 2015). The latter study also found that baseline firing of Type-

I 5-HT neurons was generally higher in rewarding than punishment trials, and this effect lasted 

across many trials, suggesting information processing over a long timescale. Moreover, DA 

neurons did not exhibit this property. Similar 5-HT neuronal responses to reward and 

punishment were reported in other rodent (Liu et al., 2014; Li et al., 2016; Zhong et al., 2017; 

Matias et al., 2017) and non-human primate (Hayashi et al., 2015) studies. This differential 

responding of DA and 5-HT neurons to reward and punishment is not easy to reconcile within 

a simple model of two opposing neuromodulatory systems as proposed previously (Boureau 

and Dayan, 2011).  

 

Other studies reveal further complexity in reward/punishment processing, specifically in the 

form of altered activity of non-5-HT/DA midbrain neurons. For example, DRN neurons utilising  

gamma-aminobutyric (GABA) were tonically inhibited during reward-waiting with further 

inhibition during reward acquisition, but phasically activated by aversive stimuli (Li et al., 

2016). In contrast, GABAergic neuronal activity in the VTA exhibited sustained activity upon 

rewarding cue onset but no response to the presence or absence of actual reward outcome 

(Cohen et al., 2012). Further, other studies found that VTA GABAergic neuronal activity was 

potently and phasically activated by punishment outcome, which in turn inhibited VTA DA 

neuronal activity (Tan et al., 2012; Eshel et al., 2015). Another study showed that 

glutamatergic (Glu) neurons in the DRN reinforced instrumental behaviour through VTA DA 

neurons (McDevitt et al., 2014).  

 

This complexity of signalling within the DRN-VTA system in response to reward and 

punishment may reflect the DRN and VTA having shared afferent inputs (Watabe-Uchida et 

al., 2012; Ogawa et al., 2014; Dorocic et al. (2014); Beier et al., 2015; Tian et al., 2016; 

Watabe-Uchida et al., 2017; Ogawa and Watabe-Uchida, 2018). Another possibility is that the 

DRN and VTA interact with each other. Indeed, a growing number of studies have suggested 

that there are direct and indirect interactions among distinctive neuronal types between and 

within the DRN and VTA (Di Giovanni et al., 2008; Boureau and Dayan, 2011; Watabe-Uchida 

et al., 2012; Ogawa et al., 2014; McDevitt et al., 2014; Beier et al., 2015; De Deurwaerdère 

and Giovanni, 2017; Xu et al., 2017; Valencia-Torres et al., 2017; Wang, et al., 2019; Li et al., 

2019).  

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.25.313999doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313999


 5 

Taken together, information of reward and punishment signalled by neuronal activities within 

the DRN and VTA seems to be diverse, heterogeneous, distributed and mixed. Some of these 

signalling responses are illustrated in Fig. 1b. This led to the following questions (Fig. 1a). 

First, can these experimental findings from separate studies be reconciled and understood in 

terms of a single neural circuit model encompassing both the DRN and VTA? Second, can 

there be degenerate DRN-VTA neural circuits, which are stable? Third, can some of these 

degenerate circuits be identifiable, for example, through pharmacological means?  

 

To address these questions, we developed a biologically plausible DRN-VTA computational 

neural circuit model based on our previous multiscale modelling framework (Joshi et al., 2017; 

Wong-Lin et al., 2017). The modelling takes into account known direct and indirect pathways 

between DRN 5-HT and VTA DA neurons, as discussed above. Upon simulating the model 

under reward and punishment conditions, we found that many, but not all of the experimental 

findings, could be captured in a single DRN-VTA model. Further, several distinct model 

architectures could replicate the same neural circuit activity response profile, hence 

demonstrating degeneracy. Applying dynamical systems theory, we found that all these 

circuits were dynamically stable. To distinguish the degenerated models, we simulated drug 

effects of DA D2-receptor based agonist and were able to distinguish between sub-groups of 

these seemingly degenerate model architectures. Overall, our study demonstrated the 

plausibility of degeneracy and stability of neural circuits of neuromodulators.  

 

 
Fig. 1. Potential degenerate neuromodulator circuits constrained by stereotypical 
signalling. a, Multiple neuromodulators that influence neural circuits, cognition and behaviour, 
may be embedded within degenerate neural circuits. Neuromod: Specific neuromodulator 
type. b, Schematic of DRN and VTA activity profiles in reward and punishment tasks. Activities 
(firing rates) aligned to timing of unexpected punishment outcome (left, vertical red dashed 
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lines) and learned reward-predictive cue (right, vertical green dashed lines) and reward 
outcome (right, vertical red dashed lines). Top-to-bottom: VTA DA neural activity exhibits 
phasic excitation (inhibition) at reward-predictive cue (punishment) outcome (e.g. Cohen et al 
(2012), Tan et al. (2012)). VTA GABAergic neural activity shows phasic excitation upon 
punishment (e.g. Tan et al. (2012), Eshel et al. (2015)), while exhibiting post-cue tonic activity 
which is not modulated by the presence/absence of actual outcome (e.g. Cohen et al. (2012)). 
DRN Type-I 5-HT neurons shows phasic activation by reward-predicting cue (right) but not 
punishment (left). DRN Type-II 5-HT neurons signal punishment outcome (left) and sustained 
activity towards expected reward outcome (right) (e.g. Cohen et al. (2015)). DRN GABAergic 
neurons have phasic activation upon punishment but have tonic inhibition during waiting and 
reward delivery (e.g. Li et al. (2016)). DRN glutamatergic neurons deduced to be excited by 
reward-predicting cue, in line with VTA DA neural activation (McDevitt et al., 2014), and 
assumed not to respond to punishment outcome. Baseline activity for Type-I 5-HT DRN 
neurons are higher in reward than punishment tasks (e.g. Cohen et al. (2015)). 
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Results 
 
Computational modelling of the DRN-VTA circuit 
 

To develop the DRN-VTA neural circuit models, we made use of our dynamic mean-field 

(neuronal population-based) modelling framework (Joshi et al., 2017) for neuromodulator 

interactions. The modelling approach was constrained by data from known 

electrophysiological, neuropharmacological and voltammetry parameters (see Methods). 

Each neural circuit model architecture investigated consisted of DRN 5-HT, VTA DA, VTA 

GABA, DRN GABA, and DRN Glu neuronal populations. Direct and indirect interactions 

among these five neuronal populations were then explored. The main aim of this work was to 

evaluate the plausibility of neuromodulator circuit degeneracy and stability rather than 

replicate every neuronal populations in these brain regions. Thus, DRN DA neurons were not 

considered in the model due to the lack of studies in standard reward/punishment conditioning 

tasks. VTA Glu neurons were also not considered as they constituted a lower proportion (2-

5%) of cells in this region (Yamaguchi et al., 2015).  

 

A directed interaction between two neuronal populations, in which the source was a 

neuromodulator, was mathematically described by the neuromodulator neuronal population 

firing (rate) activity, followed by the release-and-uptake dynamics of the neuromodulator, 

which in turn induced certain population-averaged currents on the targeted neuronal 

population (Joshi et al., 2017). An induced current, 𝐼", which could be effectively excitatory or 

inhibitory depending on experimental findings, can be described by  

 

𝜏"
$%&
$'
= −𝐼" +

+&
,-./0&([&]/[&]4)

     (1) 

 

where 𝑥 was some neuromodulator (5-HT or DA), 𝜏" the associated time constant, 𝑘" some 

constant that determined the current amplitude, and constants 𝑔" and [𝑥]9 that controlled the 

slope and offset of the function on the right-hand-side of Equation (1). The release-and-uptake 

dynamics for a neuromodulator 𝑥 was described by  

 
$["]
$'

= [𝑥]:𝑅" −
<=>&,&["]
@=,&-["]

    (2) 
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where [𝑥] was the concentration of 𝑥, [𝑥]: the release per neural firing frequency (Joshi et 

al., 2017), and constants 𝑉BC"," and 𝐾B," were constants determined from voltammetry 

measurements. See Methods for further details.  

 

If the source of the interaction came from GABAergic (or Glu) neurons, then for simplicity, we 

assumed an instantaneous inhibitory (or excitatory) current-based synaptic influence on the 

targeted neuronal populations (see Methods). This reflected the faster ionotropic receptor-

based synaptic dynamics compared to metabotropic receptor-based neuromodulatory effects 

(Jalewa et al., 2014), while also reducing the number of free model parameters. Similarly, we 

also ignored the relatively faster neuronal membrane dynamics. Threshold-linear input-output 

function for each neuronal population was used (Jalewa et al., 2014; Joshi et al., 2017), and 

described by  

 

𝐹 = 𝑔[𝐼 − 𝐼9]-     (3) 

 

where 𝐹 was the neural population firing rate (output), 𝐼 the total input current into a neural 

population, 𝑔 was the slope, and 𝐼9 some threshold current, and with [𝐼]- = 𝐼 if 𝐼 ≥ 0, and 0 

otherwise. Then, 𝐼 is a function of the summed currents, including the neuromodulator-induced 

currents 𝐼"’s and ionotropic receptor-based currents (proportional to presynaptic neural firing 

rates; see Methods). For simplicity, fast co-transmission of neurotransmitters was only 

considered in one modelling instance (co-release of 5-HT and glutamate via fast 5-HT3 and 

ionotropic receptors, in Fig. 4l) based on findings by Wang et al. (2019). From a modelling 

perspective, the DRN (Type I) 5-HT and Glu neuronal populations, which have rather similar 

activity profiles (Fig. 1b, 3rd and 6th rows) could also be effectively grouped and considered as 

a single 5-HT neuronal population that “co-transmit” both 5-HT and Glu to DA neurons (Wang 

et al., 2019).  

 

For each model circuit architecture that we investigated, we considered separately the 

inclusion of either Type I or II 5-HT neurons in the circuit (Cohen et al., 2015), and the 

possibility of excitatory and inhibitory projections from 5-HT to DRN Glu/GABA and DA 

neurons, and from DA to GABA neurons in the VTA (Figs. 1 and 4). To allow tractability in the 

search for the many possible connectivity structures, the models’ connections were largely 

based on experimental evidence. For example, connections between VTA GABAergic and 

DRN Glu neurons were not considered as, to date, there is little experimental support. We 

also focused only on learned reward (with reward-predicting cue followed by reward outcome) 

and unexpected punishment conditions, simulated using a combination of tonic and/or phasic 
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afferent inputs (Fig. 2; Methods). Note that we did not consider other conditions and network 

learning effects (e.g. Hu (2016); Zhou et al. (2018)) as the main aim was to demonstrate the 

plausibility of DRN-VTA circuit degeneracy and stability. This was done through the 

investigation of various DRN-VTA circuit architectures with network activity profiles that closely 

resembled those in Fig. 1b. Note also that all activity profiles in Fig. 1b were based on 

experimental studies except VTA Glu neural activity, which we deduced to be similar to that 

of DA neural activity in the reward task (McDevitt et al., 2014) and assumed to be non-

responsive in the punishment task. See Methods for further details regarding the modelling 

procedures, parameters, simulations, and analyses.  

 
A DRN-VTA model can reconcile many signalling patterns 

 
We began with a parsimonious, sparsely connected DRN-VTA model architecture and 

adjusted the strength of the afferent inputs and the internal connection weights of the network 

such that the network activity profiles attained qualitatively similar profiles to that illustrated in 

Fig. 1b (see Methods). The resultant network configuration (Fig. 2) was our most sparsely 

connected DRN-VTA circuit model. All other subsequent architecture considered would 

henceforth be derived from this basic architecture.  

 

 
 
Fig. 2. A sparsely connected DRN-VTA circuit model. Grey: brain region. Coloured circle: 
neuronal population. Legend: network’s afferent inputs. Model architecture implicitly 
encompasses either Type I or II 5-HT neurons with two different inputs for reward/punishment 
task (bright red arrows if Type I; blue arrows if Type II; black arrows denote common inputs 
for reward/punishment task for both Types). Circuit connections: triangular-end arrows 
(excitatory); circle-end arrows (inhibitory). Thicker arrows: stronger connection weights. 
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Constant long-term reward inputs simultaneously to 5-HT and DA neurons to alter baseline 
activities. Sustained activity for expectation of reward outcome implemented with tonic input 
between cue and reward outcome. All other inputs are brief, at cue or reward/punishment 
outcome, producing phasic excitations/inhibitions. Note: Self-inhibitory (self-excitatory) 
connections within GABAergic (Glu) neurons, and autoreceptor inhibitions within 5-HT or DA 
neurons were implemented (see Methods, and Supplementary Fig. 1) but not shown here. 
This is the most sparsely connected model architecture considered in this work.  
 

This minimal network architecture readily recapitulated many of the neuronal signalling 

changes in the DRN and VTA in separate experimental studies, both for reward (Fig. 3, black 

dashed) and punishment (Fig. 3, orange bold) tasks. Moreover, only modifications to afferent 

inputs to DRN 5-HT and VTA GABA neurons (see Methods) were required to replicate the 

signalling of Type I or II 5-HT neurons (Figs. 3a and b, respectively), while maintaining the 

same internal connectivity structure. For example, a lack of sustained reward-based activity 

of Type I 5-HT activity (Fig. 3b, 2nd row, black dashed) required additional external input to 

sustain VTA GABAergic neural activity (Fig. 2; Fig. 3a, bottom row, black dashed). It should 

be noted that this was based on the assumption that the activity profiles for these non-5-HT 

neurons were qualitatively similar, regardless of the 5-HT neuronal types (Fig. 2). See 

Supplementary Notes 1 for detailed discussion on modelling the activity profiles. 

 

 

 
Fig. 3. DRN-VTA model replicates signalling patterns and suggests multiple parallel 
circuits. a-b, Model with reward (black dashed lines) and punishment (orange bold lines) 
tasks with 5-HT neurons that are of Type I (a) or Type II (b). Time label from cue onset. Green 
(red) vertical dashed-dotted lines: cue (outcome) onset time (as in Fig. 1b). Top-to-bottom: 
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VTA DA, DRN 5-HT, DRN GABAergic, DRN Glu, and VTA GABAergic neural populations. c, 
Hypothesis for multiple different DRN-VTA circuits operating in parallel, which may consist of 
different clusters of neuronal sub-populations and different set of afferent inputs. Vertical dots 
denote the potential of having more than two distinctive circuits.  
 

 

To understand across-trial reward versus punishment effects in the model, we implemented a 

higher constant excitatory input into both DRN 5-HT and VTA DA neurons under reward 

compared to punishment conditions (Fig. 2, long black arrows). This particular model required 

differential inputs to 5-HT and DA neurons (Methods) such that the overall tonic 5-HT neural 

activity was higher for reward than punishment trials, while DA neural activity remained 

unchanged (Fig. 4, black dashed vs orange bold lines in top two rows), again consistent with 

experimental observation (e.g. Cohen et al., 2015). In the model, although both 5-HT and DA 

neurons directly received constant across-trial reward-based excitatory inputs, the indirect 

inhibitory pathway from 5-HT neurons through VTA GABA neurons onto VTA DA neurons 

nullified the overall effects on DA neurons (Figs. 2 and 3). In other words, increased firing of 

5-HT neurons could be activating VTA GABAergic neurons to a level sufficient to inhibit VTA 

DA neurons and thereby cancelling out the net long-term reward signals (Fig. 2). See 

Supplementary Notes 2 for discussion on the effects and implications of phasic DRN Glu 

neuronal activity.  

 

However, under these conditions, with both Types I and II 5-HT neurons, the baseline DRN 

and VTA GABAergic activities in the reward task were slightly different than those in the 

punishment task (Fig. 3, 3rd and 5th rows, black dashed vs orange bold), which have yet to be 

observed in experiments. The model’s inability to recapitulate all experimental findings with a 

single neural circuit architecture might perhaps suggest that there are more complex features 

in the system, such as further division of neuronal subgroups. This also holds for other model 

architectures (see below, Fig. 4). For example, a sub-population of DRN GABAergic neurons 

might be directly connected to 5-HT neurons (as in Fig. 1b), while another DRN GABAergic 

neuronal sub-population might not be connected such that across-trial reward signal inputs 

are distributed differently than that of Fig. 1b. Moreover, high chemical and functional diversity 

amongst DRN 5-HT neurons is now well recognised (Okaty et al., 2019). Hence, it might be 

possible that there could exist multiple neural circuits with different circuit architectures 

operating in parallel, as illustrated in Fig. 3c.  

 
Taken together, we have shown that, under reward and punishment conditions, many of the 

observed signalling patterns in different DRN and VTA neuronal types could readily be 
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reconciled within a single sparsely connected DRN-VTA circuit model. However, not all the 

signalling patterns could be captured, suggesting that multiple different neuronal sub-

populations and circuits may be operating in parallel within the DRN-VTA system. Next, we 

shall investigate whether various different DRN-VTA neural circuits could produce the same 

output, i.e. be degenerate.  

 

Multiple degenerate DRN-VTA circuits 

 

To search for degenerate DRN-VTA models, we evaluated various combinations of 

connections within and between the DRN and VTA, and where necessary, adjusted any 

afferent inputs (Methods). We used the network activity profile illustrated in Figs. 3a and b as 

an output “target” to check whether other different circuits could replicate a similar activity 

profile. Given the variability of neuronal firing rates reported in the literature, to be considered 

a degenerate neural circuit, we set an inclusion criterion that permitted maximal deviations of 

the firing activities of the DRN 5-HT, DRN GABA, DRN Glu, VTA DA, and VTA GABA neural 

populations to be less than 10%, 17%, 10%, 10% and 17%, respectively, from those illustrated 

in Fig. 3, respectively (see Methods, Supplementary Table 1, and Supplementary Fig. 2). This 

was quantified within a 3 s time duration, from 1 s before cue onset to 1 s after outcome onset, 

encompassing both baseline and stimulus-evoked activities. Within our inclusion criteria, we 

discarded any neural circuit architecture which could not replicate the activity profiles shown 

in Fig. 3.  

 

Various neural circuits were created by systematic addition and modification of connections 

of our sparsely connected DRN-VTA circuit (now presented as Fig. 4k), until we reached a 

highly connectivity model structure (Fig. 4a) yet which was constrained by experimental 

findings (see above). Each of the circuits was simulated and evaluated in both reward and 

punishment tasks using both Type I and II 5-HT neurons, as done above. Both excitatory and 

inhibitory connections from DRN 5-HT to DRN Glu/GABA and VTA DA neurons were explored. 

Thus, based on these combinations, we obtained a total of 84 different neural circuit model 

architectures (including the one in Fig. 3 and its variants, as Fig. 4k) that fitted our definition 

of degeneracy (with respect to Fig. 3). The high-level model architectures were illustrated in 

Fig. 4 (see also Fig. 5, and Supplementary Tables 2 and 3). For instance, model architecture 

‘a’ in Fig. 4a (see Supplementary Fig. 1 for detailed architecture) actually consisted of 32 

distinctive models with different 5-HT neuron types and connectivity signs (see Supplementary 

Table 3). Interestingly, the model parameters remained the same with either excitatory or 

inhibitory connections (Fig. 2, diamond connections; Supplementary Table 2). Supplementary 
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Fig. 2 shows an example of the percentage change in firing rates (from activity profile 

template) with model architecture ‘l’ and an excitatory 5-HT-to-DA connection, using Type-I 5-

HT neurons under the reward task. See Supplementary Notes 3 for further discussion on the 

connectivity of the degenerate models and how they address mixed findings in the literature. 

 

 
 
Fig. 4. Neural circuit model architectures with similar network activity profiles. The activity profiles 
(not shown) were similar to that in Figs. 3a and b, confining within set ranges of values (see text). a-k, 
Architectures of decreasing connectivity, with Fig. 3 in (l). l, with an asterisk denotes the only model 
with fast 5-HT to VTA DA connection, simulating fast 5-HT3 or Glu receptor mediated connection or 
their combination (co-transmission). a, l, Additional inhibitory input to DRN GABA neurons in reward 
task. All labels, connections and nomenclature have the same meaning as that in Fig. 2, except that, 
for simplicity, the relative connection weights (thickness) are not shown, and the diamond-end arrows 
denote connections which are either excitatory or inhibitory, with both explored. Self-connectivity not 
shown (see an example in Supplementary Fig. 1 for a detailed version of Fig. 4a). Note: Each 
architecture consists of several distinctive model types (with a total of 84 types) with different 5-HT 
neuronal or excitatory/inhibitory connectivity types (see Supplementary Tables 2 and 3, and Fig. 5).  
 

 

Degenerate DRN-VTA circuit models are dynamically stable 

 
After identifying the above degenerate models, we used dynamical systems theory to 

determine whether they were dynamically stable, i.e. whether (local) perturbation from their 

steady states would eventually cause a return to their initial steady states (see Methods). 

Specifically, the stability of each neural circuit could be determined by first finding the possible 

steady state(s) (i.e. fixed point(s)). This was achieved by setting all the dynamical (differential) 
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equations to zero and finding the algebraic solutions for the dynamical variables (Eqns. 1-2; 

Methods). Then the eigenvalues of the system’s Jacobian matrix at the steady states were 

computed (see Methods for mathematical derivation of the steady states and the Jacobian 

matrix). For a neural circuit to be dynamically stable, the real part of all the eigenvalues 

associated with the steady state has to be negative. This was exactly what we found for all 

the degenerate neural circuits in Fig. 4 (Fig. 5; Methods), with no imaginary part in the 

eigenvalues.  

 

Fig. 5a plotted the complete set of the real part of the eigenvalues for model #1 with 

architecture ‘a’ (Fig. 4a). This model has inhibitory connections from VTA DA to VTA GABA 

neurons and from DRN 5-HT to VTA DA/Glu neurons, using Type I 5-HT neurons and under 

punishment conditions (Supplementary Table 3). It was observed that the eigenvalues with a 

phasic input (blue) were generally larger (magnitude wise) than those with tonic input (red). 

This was more pronounced for the eigenvalues with the largest magnitude (maximal 

eigenvalues) (Fig. 4a, asterisk). Moreover, all the eigenvalues were negative, indicating a 

dynamically stable network model even in the presence of additional phasic stimulus input. 

The non-maximal eigenvalues were similar to those of the other models (not shown). 

 

We repeated the analysis for all 84 models, under both phasic and tonic input conditions. This 

analysis is presented in Fig. 5b only for the maximal eigenvalues (red circles and blue 

crosses). Note that for each model, different 5-HT neuron, connectivity types 

(excitatory/inhibitory), and tasks, were evaluated (e.g. model ‘a’ had 32 different types) 

(Supplementary Tables 2 and 3). In general, with phasic activities (blue crosses), the models 

were more stable than with tonic activities (red circles). However, during phasic activations, 

there were 18 models with rather small (close to zero) eigenvalues (magnitude wise), albeit 

still negative. This was not observed for tonic activations, where the (most negative) 

eigenvalues were found to hover within a small range of values (−0.017 to −0.016), except 

models with architecture ‘l’ (~ −0.03). In fact, the latter models, which were the only ones with 

a fast 5-HT-to-DA connection (Fig. 5b, models #77-84), were the most stable under both 

phasic and tonic conditions. The other non-maximal eigenvalues remain similar to those of the 

other models (not shown). Further, there was no difference identified between the excitatory 

(models #77-80) and inhibitory (models #81-84) connections. Moreover, most of their 

eigenvalues in phasic condition were more negative than their tonic counterparts.  
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Fig. 5. Negative real eigenvalues at steady states of degenerate models. a, Complete set 
of the real part of the eigenvalues for Model #1 (Supplementary Tables 2 and 3) with 
architecture illustrated in Fig. 4a. Horizontal axis: Components from PCA ranked from the 
largest to the smallest eigenvalues (magnitude wise). Blue (red): More negative eigenvalues 
with phasic (blue) than tonic (red) input. Asterisk: Leading/Maximal eigenvalue (largest 
magnitude) for each input condition. b, For each of the 84 models, only the real part of the 
eigenvalue with the largest magnitude is plotted under phasic (blue cross) and tonic (red circle) 
input condition. Model category a to l* refer to the different architectures in Fig. 4, in which 
each has their own distinctive model types (e.g. different 5-HT neuronal or excitatory/inhibitory 
connectivity types). Eigenvalues for all model types have negative real parts, indicating 
dynamically stable. For most models, the eigenvalues are generally more negative during 
phasic than tonic activities.  
 
D2 mediated drugs can distinguish some degenerate DRN-VTA circuits 
 
Given the large number of degenerate and stable DRN-VTA circuits that were possible, how 

can one distinguish among at least some of them? To address this, we investigated the circuit 

responses to simulated D2 receptor agonists. This approach was selected due to the extensive 

D2 receptor mediated connectivity within the degenerate DRN-VTA circuits (Fig. 4). In 

particular, these connections involved those from VTA DA neurons to DRN 5-HT, DRN GABA 

and VTA GABA neurons, and also self-inhibition (D2 autoreceptor-mediated) of DA neurons 

(see Methods for references). To mimic the effects in the model of D2 receptor agonist drugs, 

we gradually increased the strengths of connections mediated by D2 receptors 

(Supplementary Fig. 1, orange connections emanating from DA neurons) by some factor (X) 

and observed the neural activity changes.  

 

As we gradually increased the strengths of these specific sets of connection, subsets of the 

degenerate models gradually behave differently from the activity profile template of Figs. 3a 

and b (Figs. 6a and b), allowing us to distinguish between these model groups. Fig. 6c showed 

an example of such differences. However, such evaluation under punishment condition (Fig. 

6a) was slightly more limited than reward condition (Fig. 6b) in terms of distinguishing the 
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degenerate circuits. See Supplementary Notes 4 for detailed discussion at each discrete 

increment of connection strength. Interestingly, these effects of D2 receptor activation 

remained regardless of whether the circuits encompassed Type I or Type II 5-HT neurons. 

Thus, the modelling predicted that a gradual increment of the level of D2 receptor activation 

(such as through administration of D2 agonist drugs) could lead to differential suppressions 

and/or enhancements of firing rate activities that could be used to distinguish subsets of the 

degenerate DRN-VTA circuits.  

 

 

Fig. 6. D2 receptor agonist can distinguish subsets of DRN-VTA neural circuits. a-b, 
Drug administered in punishment (a) and reward (b) task with efficacy factor X increments of 
1, 2, 10, 40, 70 and 100 times. Letters in yellow label model circuit architectures as in Fig. 4. 
(See Supplementary Tables 4-8 for details.)  c, High D2 receptor agonist substantially changed 
DA and 5-HT activities with model architecture ‘e’ and Type-I 5-HT neurons in reward task. D2 
agonist dosage was enhanced by 100 times (compared with Fig. 3). Time label from cue onset.  
 

 

Discussion 
 

In this work, we addressed whether neural circuits that utilised neuromodulators can 

themselves be degenerate by computationally modelling DRN-VTA circuits, which shared 

structural and functional structural and functional bidirectional relationship among their 

constituent neuron types. Moreover, these circuits are involved in the regulation of key 

cognitive, emotional and behavioral processes, and implicated in many common and disabling 

neuropsychiatric conditions. To begin, we developed a biologically-based, mean-field 

computational model of the DRN-VTA circuit (Fig. 2) with several neuronal types, and tested 

it under classic conditions of reward and punishment. The modelling was partially constrained 

by known connectivity within and between the DRN and VTA regions, and their inputs from 
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multiple other brain regions, including mixed combinations of inputs (Watabe-Uchida et al., 

2012; Ogawa et al., 2014; Dorocic et al. (2014); Beier et al., 2015; Tian et al., 2016; Watabe-

Uchida et al., 2017; Ogawa and Watabe-Uchida, 2018).  

 

We found that a parsimonious, sparsely connected version of the DRN-VTA model could 

reconcile many of the diverse phasic and tonic neural signalling events reported in the DRN 

and VTA in (unexpected) punishment and (learned) reward tasks observed across separate 

experimental studies (Figs. 1 and 3). This model was evaluated using Type I and Type II 5-

HT neurons in the DRN as defined electrophysiologically in a previous study (Cohen et al., 

2015). In the case of Type II 5-HT neurons under the reward task, the model predicted that 

sustained 5-HT neuron activity between cue and reward outcome (Cohen et al., 2015) would 

lead to the gradual inhibition of DRN GABA neuron activity and enhancement of VTA GABA 

neuron activity, as previously observed experimentally (Cohen et al., 2012; Li et al., 2016). 

The sparsely connected model could also reproduce experimental observations (Cohen et al., 

2015) of an increase in baseline firing of Type I 5-HT neurons across several trials in the 

rewarding task, without similar effects on VTA DA neurons, or in the punishment task (Fig. 3). 

This model suggested that slow, across-trial reward-based excitatory inputs could potentially 

be directly targeted to both DRN 5-HT and VTA DA neurons, and that inhibitory 5-HT to GABA 

to DA connectivity cancelled out the effects of the direct input to VTA DA neurons, rendering 

only long timescale changes on baseline activity of DRN 5-HT neurons (Fig. 2). Such a 

cancellation effect is reminiscent of parallel excitatory and inhibitory pathways operating in 

conditioning tasks (e.g. Zhou et al. (2018)).  

 

Despite the strong predictive validity of the model, it was not able to fully capture some of the 

activity profiles with Type I 5-HT neurons, namely, the differential baseline activities of VTA 

GABA neurons and DRN GABA neurons between reward and punishment conditions. 

Perhaps our model of DRN-VTA circuit might not be sufficiently complex to capture all the 

signalling effects reported in experimental studies, even though we observed similar results 

with more complex model architectures (e.g. as in Figs. 4a and l). Thus, further additional 

neuronal populations and DRN-VTA circuits could be operating in parallel (Fig. 3c). Such 

parallel circuits could be validated experimentally in the future, for example, using gene-

targeting of specific DRN and VTA neuron subtypes and projections. Indeed, there is 

increasing evidences that DRN 5-HT neurons are more chemically diverse than previously 

expected, and that there is a high level of functional diversity in output pathways of the DRN 

and VTA (Watabe-Uchida et al., 2012; Ogawa et al., 2014; Dorocic et al. 2014; Weissbourd 

et al., 2014; Beier et al., 2015; Tian et al., 2016; Fernandez et al., 2016; Watabe-Uchida et al., 
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2017; Zhou et al., 2017; Morales and Margolis, 2017; Ren et al., 2018; Ogawa and Watabe-

Uchida, 2018; Okaty et al., 2019).  

 

To demonstrate degeneracy in the DRN-VTA system, we showed that several variants of the 

DRN-VTA circuit model could readily recapitulate the same neural signalling profiles, even 

with occasional slight changes made to their afferent inputs (Fig. 4). We then applied 

dynamical systems theory and showed that all these degenerate circuits were dynamically 

stable (Fig. 5). Compared to the sparsely connected model, more highly connected and 

degenerate versions of the DRN-VTA model predicted a relatively weaker direct DRN 5-HT-

VTA DA neuron connectivity than that of DRN Glu-VTA DA neurons (McKevitt et al., 2014). 

However, previous studies had demonstrated a direct influence of DRN 5-HT on VTA DA 

neuron activity as well as reward (e.g. De Deurwaerdère and Di Giovanni (2017)). More recent 

work has shown that DRN 5-HT terminals in the VTA co-release glutamate and 5-HT, eliciting 

fast excitation (via ionotropic receptors) onto VTA DA neurons and increased DA release in 

the nucleus accumbens to facilitate reward (Wang et al., 2019). Hence, we developed a model 

of this fast 5-HT-to-DA connection and found such system to be plausible in terms of capturing 

the stereotypical reward and punishment signalling (Fig. 4l). Interestingly, we found that this 

model configuration was dynamically more stable than all other architectures (Fig. 5b). Future 

modelling work could explore the effects of co-transmission of neurotransmitters on neural 

circuit degeneracy and functioning. This may require the involvement of more biologically 

realistic spiking neuronal network models across multiple scales (Cullen and Wong-Lin, 2015; 

Canavier et al., 2016; Wong-Lin et al., 2017).  

 

Finally, we simulated increased D2 receptor activation by increasing the connection strengths 

emanating from the VTA DA neurons. This allowed us to distinguish some of the degenerate 

DRN-VTA neural circuits by identifying substantial deviations in specific neural population 

activities (Figs. 6a and b). Interestingly, more degenerate neural circuits could be identified in 

rewarding than in punishment tasks (compare Fig. 6a to Fig. 6b). Experimental verification of 

such results could pose a challenge. Together, our computational modelling and analytical 

work supported the existence of degeneracy and stability in the DRN-VTA circuits. Some of 

these degenerate circuits were dynamically more stable than others, and a subset of the 

degenerate circuits could be distinguished through pharmacological means.  

 

From a more general perspective, our computational modelling and analytical framework 

could be applied to the study of degeneracy and stability of neural circuits involving the 

interactions of other neuromodulators such as norepinephrine/noradrenaline (e.g. Jalewa et 

al., 2014; Joshi et al., 2017). It should also be noted that in the development of the models, 
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we had resorted to a minimalist approach by focusing only on sufficiently simple neural circuit 

architectures that could replicate closely to the experimentally observed data. Future 

modelling work may investigate the relative relevance of these connections with respect to 

larger circuits involving cortical and subcortical brain regions across multiple scales, especially 

during adaptive learning (e.g. Wang and Wong-Lin, 2013; Zhou et al., 2018).  

 

Overall, through computational modelling and mathematical analysis, our study suggests the 

plausibility of degenerate and stable neural circuits that encompass serotonin and dopamine 

neuromodulators. More generally, the work opens up a new avenue of investigation on 

degeneracy in neuromodulatory circuits and has important implication on the stable and robust 

maintenance of neuromodulatory functions.  

 

 

Methods 
 
Input-output functions of neural population firing rates 
 
The computational models developed were based on our previous mean-field, neural 
population based modelling framework for neuromodulator circuits (Joshi et al., 2017), in 
which the averaged concentration releases of neuromodulators (e.g. [5-HT]) were monotonic 
functions of the averaged firing rate of (e.g. 5-HT) neuronal populations via some 
neuromodulator induced slow currents. All 5 neural populations’ firing rates were described by 
threshold-linear functions (general form in Eqn. (3)) (Jalewa et al., 2014; Joshi et al. 2017):  
 

𝐹MNOP = 𝑔MNOP	[𝐼MNOP − 𝐼9,MNOP]-    (4) 
 

𝐹RS = 𝑔RS	[𝐼RS − 𝐼9,RS]-     (5) 
 

𝐹TUV = 𝑔TUV	[𝐼TUV − 𝐼9,TUV]-      (6) 
 

𝐹TSWSNRXY = 𝑔TSWSNRXY[𝐼TSWSNRXY − 𝐼9,TSWSNRXY]-    (7) 
 

𝐹TSWSN<PS = 𝑔TSWSN<PS	[𝐼TSWSN<PS − 𝐼9,TSWSN<PS]-    (8) 
 
where [𝑥]- = 𝑥 if 𝑥 ≥ 0, and 0 otherwise. The threshold input values for 𝐼9,RS was −10 (a.u.) 
for DA neurons, and 𝐼9,MNOP was 0.13 (a.u.) for 5-HT neurons, to allow spontaneous activities 
mimicking in vivo conditions (Fig. 3). 5-HT neurons had a threshold-linear function with gain 
value 𝑔5−𝐻𝑇 of about 1.7 times higher than that for DA neurons, and so we set their for DA and 
5-HT neurons to be 0.019 and 0.033 (Hz), respectively (e.g. Shepard and Bunney, 1991; 
Richards et al., 1997; Crawford et al., 2010; Wong-Lin et al., 2012; Challis et al., 2013). For 
simplicity, we assumed the same current-frequency or input-output function in either tonic or 
phasic activity mode (Jalewa et al., 2014; Joshi et al., 2017).  
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Afferent currents and connectivity 
 
The afferent current, 𝐼, for a neural population consisted of summed contributions from 
external excitatory inputs 𝐼."' including those induced by reward or aversive stimuli, and 
recurrent interactions with other neural populations (see below) e.g. 𝐼MNOP,RS for effective DA-
induced currents in 5-HT neurons. Additionally, for a neuromodulator population, 
autoreceptor-induced current, 𝐼CV'], was included.  
 
Due to limited experimental evidences, and to reduce the parameter search space, we did not 
consider the following connections from: (i) DRN GABA to VTA DA neurons; (ii) DRN GABA 
to VTA GABA neurons; (iii) VTA GABA to DRN Glu neurons; (iv, v) DRN Glu to DRN GABA 
neurons, and vice versa; and (vi) VTA DA to DRN Glu neurons. Then the total (population-
averaged) afferent input currents to DA and 5-HT neurons were, respectively, described by  
 

𝐼RS = −	𝐼RS,CV'] ± 𝐼RS,MNOP + 𝐼RS,TUV − 𝐼RS,TSWSN<PS + 𝐼RS,."'   (9) 
 

𝐼MNOP = −	𝐼MNOP,CV'] + 𝐼MNOP,RS + 𝐼MNOP,TUV − 𝐼MNOP,TSWSNRXY − 𝐼MNOP,TSWSN<PS + 𝐼MNOP,."' 
 (10) 

 
where the first terms on the right-hand sides of Eqns. (6) and (7) were autoreceptor-induced 
self-inhibitory currents, the second terms were the 5-HT-to-DA (labelled with subscript 𝐷𝐴, 5 −
𝐻𝑇) and DA-to-5-HT (with subscript 5 − 𝐻𝑇,𝐷𝐴) interactions, the third terms were excitatory 
interactions from DRN Glu neurons, the fourth/fifth terms were inhibitory interactions from local 
DRN/VTA GABAergic neurons, and the last terms were additional external constant biased 
inputs from the rest of the brain and the influence of behaviourally relevant stimuli (due to 
rewards or punishments; see below). 5-HT neurons have a possible additional negative 
interaction from VTA GABA neurons (second last term on right-hand-side) (Li et al., 2019). 
Negative or positive sign in front of each term indicated whether the interaction was effectively 
inhibitory or excitatory. The ± sign indicated effectively excitatory (+) or inhibitory (−) 
interactions which we investigated (Figs. 2, 4 and 5), given their mixed findings in the literature 
(see also Eqns. (11-13)). This form of summed currents was consistent with some 
experimental evidence that showed different afferents modulating the tonic and phasic 
activation (e.g. Floresco et al. (2003); Tian et al. (2016)).  
 
Similarly, the total (population-averaged) afferent current to the glutamatergic (Glu), and VTA 
and DRN GABAergic neurons, can respectively be described by  

 
𝐼TUV = 𝐼a.Ub,TUV ± 𝐼TUV,MNOP + 𝐼TUV,."'     (11) 

 
𝐼TSWSNRXY = −𝐼a.Ub,TSWSNRXY ± 𝐼TSWSNRXY,MNOP

+ 𝐼TSWSNRXY,RS−𝐼TSWSNRXY,TSWSN<PS + 𝐼TSWSNRXY,."' 
(12) 

 
𝐼TSWSN<PS = −𝐼a.Ub,TSWSN<PS + 𝐼TSWSN<PS,MNOP ± 𝐼TSWSN<PS,RS + 𝐼TSWSN<PS,."' (13) 
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where, the subscript 𝐺𝑙𝑢 denoted DRN Glu neural population, and subscripts 𝐺𝐴𝐵𝐴 − 𝑉𝑇𝐴 
and 𝐺𝐴𝐵𝐴 − 𝐷𝑅𝑁 denoted GABAergic neural populations in the VTA and DRN, respectively. 
The subscript 𝑠𝑒𝑙𝑓 denoted self-connection.  
 
The averaged synaptic currents of non-5-HT/DA ionotropic glutamatergic & GABAergic 
neurons, namely, 𝐼RS,TUV, 𝐼MNOP,TUV,  𝐼RS,TSWSN<PS, 𝐼MNOP,TSWSN<PS, 𝐼MNOP,TSWSNRXY, 𝐼a.Ub,TUV, 
𝐼a.Ub,TSWSNRXY, 𝐼a.Ub,TSWSN<PS and 𝐼TSWSNRXY,TSWSN<PS were typically faster than currents 
induced by (metabotropic) 5-HT or DA currents. Thus, we assumed the former currents to 
reach quasi-steady states and described (Jalewa et al., 2014) and represented by 𝐼./l =
±	𝐽./l	𝐹./l, where the subscript 𝑒/𝑖 denoted excitatory/inhibitory synaptic current, 𝐽 the 
connectivity coupling strength (Methods), 𝐹 the presynaptic firing rate for neural population 
𝑒/𝑖, and the sign ± for excitatory or inhibitory currents. Further, dimensionless coefficients or 
relative connectivity weights, 𝑊′𝑠 (with values ≥ 0), were later multiplied to the above 
neuromodulator induced current terms (right-hand-side of terms in Eqs. (9-13); see Eqns. (20-
24)). Both the 𝐽′𝑠 and 𝑊′𝑠 were allowed to vary to fit the network activity profiles of Fig. 1b 
within certain tolerance ranges (see below) while exploring different neural circuit architectures 
(Fig. 4) (see Supplementary Table 2 for specific values). The self-connection weights 𝐽′𝑠 within 
the DRN Glu, DRN GABA and VTA GABA neurons were set at 0.5, 0.5, and 10 respectively, 
for all network activity’s response profiles.  
 
Autoreceptor-induced currents were known to trigger relatively slow G protein-coupled 
inwardly-rectifying potassium (GIRK) currents (Tuckwell and Penington, 2014). For 5-HT1A 
autoreceptors, the inhibitory current 𝐼MNOP,CV']	was described by (Ritter et al., 2008; Tuckwell 
and Pennington, 2014; Joshi et al., 2017)  
 

𝜏CV'],MNOP
$%>qrs,t/uv

$'
= −𝐼CV'],MNOP +

+>qrs,t/uv
,-./0>qrs,t/uv([t/uv]/[t/uv]4)

  (14) 
 

and similarly, for DA autoreceptor induced inhibitory current 𝐼CV'],RS:  
 

𝜏CV'],RS
$%>qrs,wx

$'
= −𝐼CV'],RS +

+>qrs,wx
,-./0>qrs,wx([wx]/[wx]4)

   (15) 
 
where 𝜏CV'],MNOP  was set at 500 ms (Joshi et al., 2017) and 𝜏CV'],RS at 150 ms (Benoit-Marand 
et al., 2001; Courtney et al., 2012; Cullen and Wong-Lin, 2015). The threshold values [5 −
𝐻𝑇]9 and [𝐷𝐴]9 were set at 0.1 µM. These parameters can be varied to mimic the effects of 
autoreceptor antagonists/agonist (Joshi et al., 2017). The gains 𝑔CV'],MNOP and 𝑔CV'],RS were 
set at 10 µM-1 each, and 𝑘CV'],MNOP = 𝑘CV'],RS = 80 a.u.. These values were selected to allow 
reasonable spontaneous neural firing activities and baseline neuromodulator concentration 
levels (see below), and similar to those observed in experiments.  
 
Similarly, we assumed sigmoid-like influence of [5 − 𝐻𝑇] ([𝐷𝐴]) on DA (5-HT) neural firing 
activities between the DRN and VTA populations such that the induced current dynamics 
could be described by (Wang and Wong-Lin, 2013; Joshi et al., 2017):  
 

𝜏RS,MNOP
$%wx,t/uv

$'
= −𝐼RS,MNOP +

+wx,t/uv
,-./0wx([t/uv]/[t/uv]z)

   (16) 
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𝜏MNOP,RS

$%t/uv,wx
$'

= −𝐼MNOP,RS +
+t/uv,wx

,-./0t/uv([wx]/[wx]z)
   (17) 

 
with the time constants 𝜏MNOP,RS = 1 s, and 𝜏RS,MNOP = 1.2 s (Aman et al., 2007; Haj-Dahmane, 
2001). We set 𝑘MNOP,RS = 𝑘RS,MNOP = 0.03 a.u. and 𝑔MNOP = 𝑔RS = 20 µM-1, [5 − 𝐻𝑇], =
0.3nM, [𝐷𝐴], = 0.1 nM such that the neural firing activities and baseline neuromodulator 
concentration levels were at reasonable values (see below) and similar to those in 
experiments (e.g. Bunin et al., 1998; Hashemi et al. 2011). For simplicity, we assumed Eqns. 
(16) and (17) to be applied equally to all targeted neural populations, but with their currents 
multiplied by their appropriate weights 𝑤′𝑠 (see above).  
 
Release-and-reuptake dynamics of neuromodulators 
 
The release-and-reuptake dynamics of 5-HT followed the form of a Michaelis-Menten equation 
(Bunin et al., 1998; Joshi et al., 2011; Hashemi et al., 2011; Joshi et al., 2017):  
 

$[MNOP]
$'

= [5 − 𝐻𝑇]:	𝑅MNOP −
<=>&,t/uv	[MNOP]
@=,t/uv	-	[MNOP]

    (18) 

 
where [5 − 𝐻𝑇]: = 0.08 nM was defined as the release per firing frequency (Joshi et al., 2011; 
Flower and Wong-Lin, 2014; Joshi et al., 2017) (value selected to fit to reasonable baseline 
activities (Hashemi et al. 2011); see below), and the Michaelis-Menten constants 𝑉BC",MNOP =
1.3 µM/s (maximum uptake rate) and 𝐾B,MNOP = 0.17 µM (substrate concentration where 
uptake proceeds at half of maximum rate) were adopted from voltammetry measurements 
(Hashemi et al. 2011).  
 
Similarly, the release-and-reuptake dynamics for DA was described by  
 

$[RS]
$'

= [𝐷𝐴]:	𝑅RS −
<=>&,wx	[RS]
@=,wx	-	[RS]

    (19) 

 
where 𝑉BC",RS = −0.004 µM/s and 𝐾B,RS = 0.15 µM (May et al., 1988). We set [𝐷𝐴]: = 0.1 
nM to constrain the ratio [𝐷𝐴]:/[5 − 𝐻𝑇]: = 1.25 according to May et al. (1988), Bunin et al. 
(1998), and Hashemi et al. (2011). For simplicity, we assumed Eqns. (18) and (19) to be 
applied equally to all targeted neural populations.  
 
Reward and punishment conditions with Type-I and Type-II 5-HT neurons 
 
We focused on only the classical, fully learned reward conditioning task, and unexpected 
punishment task. For each trial or realisation of simulation within a set of condition 
(reward/punishment, excitatory/inhibitory connection), we set the cue onset time at 4.5 s (to 
allow the network to stabilise substantially). The within-trial protocol for the external input 
current, 𝐼."', was implemented as a function of time 𝑡 as followed, depending on the simulated 
conditions. Note that all external input currents were assumed to be excitatory, regardless of 
reward or punishment task, unless stated.  
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For reward task with Type-I 5-HT neurons: (i) constant input currents 𝐼MNOP,."' and 𝐼RS,."' to 5-
HT and VTA DA neurons, respectively, of amplitude 50	𝑎. 𝑢. to simulate long-term reward; (ii) 
brief 0.2 s pulse 𝐼TUV,."'	to DRN Glu neurons of amplitude 1000	𝑎. 𝑢. at 4.5 s; (iii) constant step 
input current 𝐼TSWSN<PS,."'	to VTA GABAergic neurons with amplitude 200 𝑎. 𝑢. from 4.5 to 5.7 
s to simulate sustained activity; and (iv) no external input 𝐼TSWSNRXY,."'	to DRN GABAergic 
neurons. For punishment task with Type-I 5-HT neurons: (i) no external input to VTA DA, 5-
HT neurons and DRN Glu neurons; (ii) brief 0.2 s pulse to VTA (𝐼C::) and DRN GABAergic 
(𝐼C::Ml) neurons with amplitude 1000	𝑎. 𝑢.	at 5.7 s.  
 
For reward task with Type-II 5-HT neurons: (i) constant input current to 5-HT and VTA DA 
neurons with amplitude 50	a.u. to simulate long-term reward; (ii) additional step input current 
to 5-HT neurons with amplitude 100	a.u. from 4.5 to 5.7 s to simulate sustained activity; (iii) 
brief 0.2 s pulse to DRN Glu neurons of 1000	a.u. at 4.5 s; (iv) no external input to VTA and 
DRN GABAergic neurons. For punishment task with Type-II 5-HT neurons: (i) no external input 
to VTA DA and GABAergic neurons, and DRN Glu neurons; (ii) brief 0.2 s pulse to DRN 
GABAergic and 5-HT neurons with amplitude of 1000	a.u. at 5.7 s.  
 
In addition, for transient inputs, we have used multiplicative exponential factors exp(−𝑡/𝜏) with 
𝜏 of 50 ms to smooth out activity timecourses (e.g. afferent synaptic filtering), but they do not 
affect the overall results. To simulate long-term, across-trial reward/punishment signalling, we 
assumed a higher constant excitatory input to both 5-HT and DA neurons in reward than 
punishment trials. When searching for the neural circuit architecture using either Type I or II 
5-HT neurons, we limited ourselves as much as possible to the same internal DRN-VTA circuit 
structure. This also reduced the complexity of the parameter search space.  
 
Baseline neural activities and acceptable deviations  
 
We define the neural circuit activities under baseline condition (right before cue onset) to follow 
that in Figs. 3a and 3b. Namely, the baseline firing rates for 5-HT, DRN GABA, DRN Glu, DA 
and VTA GABA neurons in punishment task were 3.0,	21.5,	4.1,	4.8	and 13.5 Hz, respectively, 
and those in reward task were 4.5,	19.4,	4.1,	4.8	and 16.3 Hz, respectively. The baseline [5 −
𝐻𝑇] and [𝐷𝐴] levels were constrained to be at 10 and 1.5 nM, respectively. However, it is 
known that these activities can vary widely across subjects, species and studies. Hence, while 
searching for degenerate neural circuit architecture, we had to define acceptable ranges of 
neural activities in which we could claim that the variant neural circuit still behaved similarly to 
that of the model in Fig. 3. Specifically, based on multiple experimental studies (see 
Supplementary Table 1), we set an inclusion criterion that permitted maximal deviations of the 
5-HT, DRN GABA, DRN Glu, DA and VTA GABA neural populations to be less than 10%, 
17%, 10%, 10% and 17% from their above defined baseline activities, respectively.  
 
Simulating the effects of D2 agonist 
 
DA and 5-HT induced currents can lead to overall excitatory or inhibitory effects, depending 
on receptor subtype(s) and the targeted neurons. In particular, DA enhances VTA GABAergic 
neuronal activity via D2 receptors and depolarizes the membrane of 5-HT neurons (e.g. Ludlow 
et al., 2009; Haj-Dahmane, 2001; Aman et al., 2007; Courtney et al., 2012; Ford, 2014). DA 
also regulates the activity of other DA neurons via D2 auto-inhibitory receptors (Adell and 
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Artigas, 2004). To study how D2 receptor mediated drugs can affect DRN-VTA architecture 
differently, we simulated different D2 agonist dosage levels simultaneously by multiplying the 
connection weights (Fig. 4) of D2 receptor mediated currents (see above; orange connections 
in Supplementary Fig. 1) by a factor ‘X’ (Fig. 6) of 10, 40, 70 and 100 times. Then for each 
dosage, we separately observed the deviation in activity profiles for each neural population 
with respect to the allowed range. Again, we considered the maximal percentage changes 
due to the drug as significant if the percentage changes in at least one population activity 
profile were more than the inclusion criterion defined for each population (see above, and 
Supplementary Tables 1 and 4-8).  
 
Numerical simulations and codes 
 
Simulations were performed using MATLAB with forward Euler numerical integration method 
on the dynamical (ordinary differential) equations (see above). A simulation time step of 1 ms 
was used and smaller time steps did not affect the results. MATLAB were used for analyses 
of network stability and sensitivity. Source codes and MATLAB scripts are available upon 
reasonable request.  
 
Network stability analysis 
 
The 5 neural population firing rates (Eqns. (4-8)), when combined with their associated 
afferent currents (Eqns. (9-13)) with explicit parameter values and relative connectivity 
weights, 𝑊’s and 𝐽’s (Supplementary Fig. 1 and Supplementary Table 2), can be rewritten, 
respectively, as:  
 
𝐹MNOP = 𝑔MNOP[−	𝐼CV'],MNOP +𝑊M$	𝐼MNOP,RS + 𝐽MM.	𝐼MNOP,TUV − 𝐽MMl	𝐼MNOP,TSWSNRXY −
																	𝐽Ml	𝐼MNOP,TSWSN<PS + 99.87 +	𝐼MN��,���]-                                                                         (20) 
 
𝐹RS = 𝑔RS[−𝐼CV'],RS ±𝑊$M	𝐼RS,MNOP + 𝐽$M.	𝐼RS,TUV − 𝐽$l	𝐼RS,<PSNTSWS + 210 + 𝐼RS,."']-							  (21) 

 
𝐹TUV = 𝑔TUV[	𝐽a.Ub,TUV	𝐹TUV ±𝑊M.M	𝐼TUV,MNOP + 100	 + 𝐼TUV,."']-                                    (22) 
 
𝐹TSWSNRXY = 
																										𝑔TSWSNRXY[−𝐽a.Ub,TSWSNRXY	𝐹TSWSNRXY ±
																										𝑊MlM	𝐼TSWSNRXY,MNOP	+	𝑊Ml$	𝐼TSWSNRXY,RS −𝑊Mll	𝐼TSWSNRXY,TSWSN<PS + 450 +
																										𝐼TSWSNRXY,."']-                                    (23) 
 
𝐹TSWSN<PS = 
												𝑔TSWSN<PS[−𝐽a.Ub,TSWSN<PS	𝐹TSWSN<PS +𝑊lM	𝐼TSWSN<PS,MNOP ±𝑊l$	𝐼TSWSN<PS,RS +
																								200 + 𝐼TSWSN<PS,."']-                                          (24)                                                                                                     
 
We also inserted the explicit parameter values to the dynamical equations (Eqns. (14-19)) to 
obtain:  
 

500 $%>qrs,t/uv
$'

= −𝐼CV'],MNOP +
�9

,-./z4([t/uv]/4.z)
                                             (25) 
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150 $%>qrs,wx
$'

= −𝐼CV'],RS +
�9

,-./z4([wx]/4.z)
     (26) 

 
1200 $%wx,t/uv

$'
= −𝐼RS,MNOP +

9.9�
,-./�4([t/uv]/4.z)

     (27) 
 

1000 $%t/uv,wx
$'

= −𝐼MNOP,RS +
9.9�

,-./�4([wx]/4.�)
     (28) 

 
$[MNOP]

$'
= 9.9��t/uv

,999
− 9.99,�[MNOP]

9.,�-[MNOP]
     (29) 

 
$[RS]
$'

= 9.,�wx
,999

− 9.99�[RS]
9.,M-[RS]

      (30) 
 
To check for network stability for each of the considered degenerate neural circuits, we first 
find each network’s steady state (or fixed point) by setting the rate of change for all the 
dynamical equations to zero, i.e. $%>qrs,t/uv

$'
= $%>qrs,wx

$'
= $%wx,t/uv

$'
= $%t/uv,wx

$'
= $[MNOP]

$'
=

$[RS]
$'

= 0, and then solving them algebraically. The solution of these equations will give the 
steady-state value (equilibrium point) of the system. Specifically, the currents (dynamical 
variables) from Eqns. (25-28) (e.g. 𝐼CV'],MNOP =

�9
,-./z4([t/uv]/4.z)

) were substituted into Eqns. 
(20-24).  
 
Using only the linear parts of the above threshold-linear functions (which were validated post-
hoc), and after some algebraic manipulations, we obtained the following system of equations, 
in matrix form:  
 

�
𝐹TUV

𝐹TSWSN<PS
𝐹TSWSNRXY

�

= �
1 − 𝑔TUV	𝐽a.UbNTUV 0 0

0 1 + 𝑔TSWSN<PS	𝐽a.Ub,TSWSN<PS 0
0 𝑔TSWSNRXY	𝐽Mll 1 + 𝑔TSWSNRXY	𝐽a.Ub,TSWSNRXY

�

N,

 

⎝

⎜
⎛

9.9�	�t�t���q
,-./�4([t/uv]/4.z)

+ 9
,-./z ([wx]/4.z)

+ 𝑔TUV(100 + 	𝐼TUV,."')
9.9�	�¡t��x¢x/£vx
,-./�4([t/uv]/4.z)

	+ 9.9�	�¡¤��x¢x/£vx
,-C./�4([wx]/4.z)

	+ 𝑔TSWSN<PS(200 + 	𝐼TSWSN<PS)
9.9��t¡t��x¢x/w¥¦
,-./�4([t/uv]/4.z)

+ 9.9�	�t¡¤��x¢x/w¥¦
,-C./�4([wx]/4.z)

+ 𝑔TSWSNRXY(450 + 	𝐼TSWSNRXY)⎠

⎟
⎞

                                (31) 

 

ª𝐹MNOP𝐹RS
« = �

𝑔MNOP ¬
N�9

,-./z4([t/uv]/4.z)
+ 9.9�	�t¤

,-C./�4([wx]/4.z)
+ 99.87 + 𝐼MNOP,."'­

−𝑔RS(
9.9�	�¤t

,-./�4([t/uv]/4.z)
+ �9

,-./z4([wx]/4.z)
− 210 − 𝐼RS,."')

� +

																						ª𝑔MNOP 0
0 𝑔RS

« ª	𝐽MM. −	𝐽Ml −	𝐽MMl
	𝐽$M. −	𝐽$l 0 «�

𝐹TUV
𝐹TSWSN<PS
𝐹TSWSNRXY

�                     (32) 

 
But by setting Eqns. (29) and (30) to be zero, we have, 𝐹RS =

�9[RS]
9.,M-[RS]

 and 𝐹MNOP =
,®.¯M[MNOP]
9.,�-[MNOP]

 
at steady state. Substituting these two into Eqns. (31) and (32), we can solve for the values of 
[DA] and [5-HT] at steady state.  
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Next, to check whether the system is stable at the steady state, we compute the 5-by-5 
Jacobian matrix 𝑀±C²]³lC´ (Strogatz, 2018) for the 5 dynamical equations (Eqns. (25-30)), 
which can be computed using partial derivatives on the right-hand-side of these equations:   
 
𝑀±C²]³lC´ =

⎝

⎜
⎜
⎜
⎜
⎛

−1/500
0
0
0

9.99�
,999

𝑔MNOP
0

		

0
−1/150

0
0
0

9.,
,999

𝑔RS

				

0
0

−1/1200
0
0

− 9.,
,999

𝑔RS

						

0
0
0

−1/1000
9.9�
,999

𝑔MNOP
0

				

�9
M99

,9./z4([t/uv]/4.z)

(,-./z4([t/uv]/4.z))�

0
			 9.9�
,¯99

¯9./�4([t/uv]/4.z)

(,-./�4([t/uv]/4.z))�

0
N9.99,�

9.,�-[MNOP]
+ 9.99,�[MNOP]

(9.,�-[MNOP])�

0

			

0
�9
,M9

,9./z4([wx]/4.z)

(,-./z4([wx]/4.z))�

0
9.9�
,999

¯9./�4([wx]/4.�)

(,-./�4([wx]/4.�))�

0
− 9.99�
9.,M-[RS]

+ 9.99�[RS]
(9.,M-[RS])�⎠

⎟
⎟
⎟
⎟
⎞

 

            

                                 (33) 
 
The eigenvalues of this Jacobian matrix were computed for each steady state for each model 
type under each simulated condition (e.g. reward/punishment task). If the real parts of all the 
eigenvalues of the Jacobian matrix were negative at a given steady state, then the model was 
considered to be dynamically stable at that steady state (Strogatz, 2018).  
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