

Figure S1 - Trait analysis in surface, Pachón, surface-Pachón F1 and surface-Pachón F2 fish.
(A) 24-hour sleep profile depicting the amount slept at 1-hour intervals over a 24 -hour time frame. Black = surface fish, Grey = F1 hybrids, White = Pachón cavefish. Shaded areas of the graph represent when lights were off. (B) Bout number (Kruskal-Wallis: $\mathrm{H}_{2}=94.36, \mathrm{p}<0.0001$; Dunn's multiple comparisons post hoc test: SF vs. F1: $z=3.243, \mathrm{p}$ $=0.0071$, Pa vs. F2: $p>0.9999$. All other: $p<0.0001$). (C) Bout duration (Kruskal-Wallis: $\mathrm{H}_{2}=37.35, \mathrm{p}<0.0001$; Dunn's multiple comparisons post hoc test: $\mathrm{F} 1 \mathrm{vs} . \mathrm{F} 2: \mathrm{z}=1.418$, $p=0.9372$, Pa vs. F1 and Pa vs. F2: $p>0.9999$. All other: $p<0.0001$). (D) Comparison of bout duration and about number in F2 hybrid crosses. (Spearman-rank correlation: $r=0.3604, p<0.0001$; linear regression is included as a descriptive: slope $=0.1636$.) Image of 22dpf fish with adipose where Nile Red stain is pseudocolored green (scale=1mm)). (F) Image of 22dpf fish without adipose (scale=1mm). Graphs (B) and (C) are representations of median \pm quartile.

Figure S2 - Relationship between albinism and morphological traits in cave-surface F2 hybrid fish. (A) Eye diameter in albino vs. pigmented F2 hybrids, corrected for standard length (Mann-Whitney, $u=6211, \mathrm{p}<0.0001$). This graph is a representation of median \pm quartile. (B) Proportion of pigmented and albino F2 hybrid individuals with adipose.
Fisher's Exact Test. Error bars calculated using z^{*}-value of 1.96 and denote the margin of error of the sample proportion. (Fishers Exact tests: $\mathrm{p}=0.0805$).

Figure S3 - Sleep architecture in surface-cave hybrid fish harboring an engineered oca2 mutation. Average bout duration (A-C) and total number of bouts (D-F) were assessed in Pachón-surface F1 hybrids (A, D), Molino-surface F1 hybrid (B,E) and Tinaja-surface F1 hybrid fish (C,F). Average bout duration in (A) oca2 ${ }^{+/ \Delta P A}(\mathrm{n}=21)$ compared to oca2 ${ }^{\text {22bp/ } / P A}(\mathrm{n}=17$) siblings (Mann-Whitney, $\mathrm{U}=93, \mathrm{p}=0.0114$). (B) oca2 ${ }^{+/ \Delta M O}(n=38)$ compared to oca2 ${ }^{\text {L2bp/ } / M O}(n=32)$ siblings (Mann-Whitney, $U=447$, $\mathrm{p}=0.0581$). (C) oca2 $2^{+\pi i}(\mathrm{n}=56)$ compared to oca2 $2^{125 p / T i}(\mathrm{n}=33)$ siblings (Mann-Whitney, $\mathrm{U}=884, \mathrm{p}=0.7386$). Number of bouts in (D) oca2 ${ }^{+/ \angle P A}(\mathrm{n}=21)$ compared to oca $2^{225 p / / \triangle P A}$ ($\mathrm{n}=17$) siblings (t -test, $\mathrm{t}=0.9381, \mathrm{p}=0.3544$). (E$)$ oca2 ${ }^{+/ \Delta M \mathrm{Mo}}(\mathrm{n}=38$) compared to oca2 $2^{\text {22bp/AMo }}\left(\mathrm{n}=32\right.$) siblings (t test, $\mathrm{t}=1.631, \mathrm{p}=0.1075$). (F) oca2 ${ }^{+/ \pi i}(\mathrm{n}=56)$ compared to oca2 $2^{22 b p / T i}(\mathrm{n}=33)$ siblings (t -test, $\mathrm{t}=0.2707, \mathrm{p}=0.7873$).

B

Haplotypes Local tree

Figure S4 - Population genetics analysis at the oca2 locus. (A) hapFLK p-values across oca2 (region within dotted lines). Red line $=1 \%$ FDR cutoff. Blue line $=5 \%$ FDR cutoff. The 24 exons are shown in green boxes at the bottom of the plot. P-values were plotted along the antisense strand, so exon 24 is on the left end of the plot, near 37,900,000 bp, and exon 1 is on the right end of the plot near $38,050,000 \mathrm{bp}$. Peaks above the 1% FDR cutoff are present at exon 14 and a peak above the 5% FDR cutoff is present at exon 1.
(B) Local population tree for the oca2 region of chromosome 13 (37,904,635$38,048,888 \mathrm{bp}$) using Reynolds distances based on haplotype frequencies.

Table S1 - P-values for branches within the haplotype-based population tree. Branch segments occur between nodes 1-8, corresponding to those shown in Supplementary Fig 4.

Branch	Std. Errort-value	$\operatorname{Pr}(>\|t\|)$	P -value	
$8<->4$	-0.388	0.01322	-29.36	0.000087
$8<->5$	-0.118	0.01322	-8.96	0.002900
$7<->1$	-0.312	0.01322	-23.63	0.000170
$7<->2$	-0.266	0.01322	-20.09	0.000270
$6<->7$	-0.009	0.01536	-0.57	0.610000
$6<->3$	-0.215	0.01145	-18.8	0.000330
$6<->8$	-0.05	0.01536	-3.25	0.048000

