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Summary 28 

To gain insight into the evolution of the epigenetic regulation of gene expression in primates, we 29 

extensively profiled a new panel of human, chimpanzee, gorilla, orangutan, and macaque 30 

lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, 31 

further complemented with WGS and WGBS. We annotated regulatory elements and integrated 32 

chromatin contact maps to define gene regulatory architectures, creating the largest catalog of 33 

regulatory elements in primates to date. We report that epigenetic conservation and its correlation 34 

with sequence conservation in primates depends on the activity state of the regulatory element. Our 35 

gene regulatory architectures reveal the coordination of different types of components and highlight 36 

the role of promoters and intragenic enhancers in the regulation of gene expression. We observed that 37 

most regulatory changes occur in weakly active intragenic enhancers. Remarkably, novel human-38 

specific intragenic enhancers with weak activities are enriched in human-specific mutations. These 39 

elements appear in genes with signals of positive selection, tissue-specific expression and particular 40 

functional enrichments, suggesting that the regulatory evolution of these genes may have contributed 41 

to human adaptation. 42 

Keywords: Epigenomics, gene regulation, evolution, positive selection. 43 
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Introduction 56 

Changes in chromatin structure and gene regulation play a crucial role in evolution1,2. Gene 57 

expression differences have been extensively studied in a variety of species and conditions3–6. 58 

However, there is still much unknown about how regulatory landscapes evolve, even in closely 59 

related species. Previous work has focused on the dynamics of the addition and removal of regulatory 60 

elements with signals of strong activity during mammalian evolution –mainly defined from ChIP-seq 61 

experiments on a few histone marks7–10. These analyses suggested that enhancers evolve faster than 62 

promoters8,11. The number of active enhancers located near a gene –its regulatory complexity –has 63 

also been reported to influence the conservation of gene expression in mammals9.  64 

Moreover, in a selected group of primates –mostly chimpanzees and macaques– changes in histone 65 

mark enrichments are associated with gene expression differences12. Several studies have also 66 

targeted the appearance of human-specific methylation patterns13,14 and active promoters and 67 

enhancers in different anatomical structures and cell types8,10. All these studies have proven that 68 

comparative epigenomics is a powerful tool to investigate the evolution of regulatory elements15,16. 69 

However, a deeper understanding of the evolution of gene regulation requires the integration of multi-70 

layered epigenome data. Only such integration can provide the necessary resolution of regulatory 71 

activities for investigating recent evolutionary time frames, as is the case within the primate lineage. 72 

Here, we provide an in-depth comparison of the recent evolution of gene regulatory architectures 73 

using a homologous cellular model system in human and non-human primates.  74 

 75 

Results 76 

Comprehensive profiling of primate lymphoblastoid cell lines (LCLs) 77 

We have extensively characterized a panel of lymphoblastoid cell lines (LCLs) from human, 78 

chimpanzee, gorilla, orangutan, and macaque, including two independent biological replicates for 79 

each species. This characterization includes chromatin immunoprecipitation data (ChIP-seq) from 80 

five key histone modifications (H3K4me1, H3K4me3, H3K36me3, H3K27ac, and H3K27me3) and 81 

deep-transcriptome sequencing (RNA-seq) (Fig. 1). We integrate these datasets into gene regulatory 82 

architectures (Fig. 2a and Supplementary Figs. 1 and 2) to (1) understand how primate gene 83 

expression levels are controlled and how expression changes between species occur and to (2) study 84 

patterns of evolutionary conservation of regulatory elements in primates. To complement this 85 

resource, we have also processed high coverage whole-genome and whole-genome bisulfite 86 

sequencing data, as well as chromatin accessibility data (Supplementary Tables 1-10 and Additional 87 
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files 1-5). Taken together, this is the most extensive collection of great apes and macaque 88 

transcriptomic and epigenomic data to date. 89 

 90 

Annotation of regulatory elements 91 

We used the signal of the ChIP-seq experiments from the five histone marks to identify regulatory 92 

regions with characteristic marks of promoters or enhancers (Supplementary Figs. 1 and 2). We 93 

defined regulatory regions for each cell line as those containing chromatin states (overrepresented 94 

combinations of histone marks detected by ChromHMM17) enriched in any regulatory-related histone 95 

mark (Fig. 2a and Supplementary Fig. 1). We merged overlapping regulatory regions in the two 96 

replicates of every species to define species regulatory elements.  97 

We classified the chromatin states of the regulatory elements based on a hierarchy of functionally 98 

interpretable epigenetic states. This hierarchy differentiates chromatin states into promoter (P) and 99 

enhancer (E) states, with three different levels of activity each: strong (s), poised (p), or weak (w) 100 

(Methods and Supplementary Fig. 1). We improved these assignments by applying a linear 101 

discriminative analysis (LDA) with normalized histone and open chromatin enrichments (Methods 102 

and Supplementary Figs. 3 and 4). The refined classification results in more similar regulatory 103 

landscapes between biological replicates (Wilcoxon signed rank-test: P < 0.05 in all species; 104 

Supplementary Figs. 5 and 6), with more regulatory elements with the same state in all species 105 

(Wilcoxon signed rank-test: P = 0.03; Supplementary Figs. 7 and 8).  106 

On average, we found ~11,000 and ~76,000 regulatory elements with promoter and enhancer states 107 

per species, respectively (Fig. 2b), of which 69% and 33% are strong, 8% and 4% are poised, and 108 

14% and 45% are weak, respectively (Supplementary Fig. 9 and Supplementary Table 1). Strong and 109 

poised activities are more associated with promoter states, whereas weak activities are more 110 

frequently associated with enhancer states (Chi-square test: P < 2.2 x 10-16 in all species; 111 

Supplementary Fig. 10). We associated regulatory elements with genes using 1D gene proximity and 112 

existing high-resolution 3D chromatin contact data for one of the human LCLs (Fig. 2a and Methods). 113 

On average, 70% of the regulatory elements are associated with genes, of which 93% are protein-114 

coding and 61% are 1-to-1 orthologous protein-coding genes in all primate species (Fig. 2c). The set 115 

of regulatory elements associated with a gene defines its regulatory architecture.  116 

Altogether, this catalog of regulatory elements provides a comprehensive view of the regulatory 117 

landscape of LCLs in humans and non-human primates. In contrast to other commonly used 118 

definitions of promoters and enhancers limited to strongly active regions, our multi-layered 119 
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integration approach allows the additional annotation of weak and poised activities7,8. These activities 120 

are of particular relevance to improve the definition of elements in regulatory gene architectures. In 121 

sum, a detailed primate regulatory catalog enables the study of the evolution of these regulatory 122 

activities using LCLs as a proxy of their regulatory potential in other cell types or conditions. 123 

 124 

The evolutionary dynamics of promoters and enhancers in primate LCLs recapitulate previous 125 

observations in more distant mammals 126 

Inter-species differences in regulatory regions can be associated with genomic or epigenetic changes. 127 

Inconsistencies in the quality of genome assemblies make it difficult to distinguish actual inter-128 

species genomic differences, an issue aggravated in multi-species comparisons. To overcome this 129 

problem, we restricted our analyses to unambiguous 1-to-1 orthologs between all species. We 130 

detected 28,703 1-to-1 orthologous genomic regions in the five species with a promoter or enhancer 131 

state in at least one species (Supplementary Fig. 11). Most of these orthologous regulatory regions 132 

(~76%, Binomial test:  P < 2.2 x 10-16) are associated with genes (Methods). In downstream analyses, 133 

we focused on these regions integrating the regulatory architectures of protein-coding and non-coding 134 

genes.  135 

We quantified the conservation of epigenetic states in regulatory regions as the number of primate 136 

species with the epigenetic state in the orthologous regions. In the regulatory architectures of protein-137 

coding genes, promoter states are more conserved than enhancer states (Supplementary Figs. 12-14), 138 

with 73% and 60% of regions with a promoter or enhancer state being fully conserved across 139 

primates, respectively (Fisher’s exact test: P < 2.2 x 10-16, OR = 1.84; Supplementary Fig. 13). Less 140 

than 14% and 8% of orthologous regulatory regions with a promoter or enhancer state are specific to 141 

a primate species, respectively (Supplementary Fig. 13). These results for protein-coding genes fall 142 

in line with the higher conservation of promoters previously observed in mammals7. In contrast, for 143 

non-coding genes, promoter states are less conserved than enhancer states (Fisher’s exact test: P < 144 

2.2 x 10-16, OR = 0.39; Supplementary Fig. 14), with 46% and 69% of fully conserved and 26% and 145 

3% of species-specific elements, respectively.  146 

Intrigued by the different epigenetic conservation patterns in protein-coding and non-coding genes, 147 

we studied the repurposing and acquisition of regulatory elements. We defined recently repurposed 148 

promoters –or enhancers– as regulatory regions with a promoter state in only one species and 149 

enhancer states in the remaining species –or vice versa. Similarly, recently gained promoters or 150 

enhancers are those regions with a promoter or enhancer state in one species and without regulatory 151 

states in any other species.  152 
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In agreement with previous studies in more distant species18, nearly all (93%) recently evolved 153 

promoter states are acquired through repurposing events, whereas the majority (90%) of recently 154 

evolved enhancer states are gained (Chi-square test: P < 2.2 x 10-16; Methods and Supplementary 155 

Figs. 15 and 16). The regulatory architectures of protein-coding and non-coding genes –the latter 156 

evaluated in human due to underrepresentation of non-coding gene annotations in non-human 157 

species– show this same pattern (Fisher’s exact test: P < 2.2 x 10-16, OR = Inf,   and P = 6.2 x 10-16, 158 

OR = 138 respectively; Supplementary Fig. 15).  159 

Our findings confirm those in more distant species7,18 and reinforce the generality of these 160 

evolutionary dynamics in protein-coding genes. The acquisition of regulatory states in the regulatory 161 

architectures of non-coding genes resembles that of protein-coding genes. However, the lower 162 

conservation of promoter states associated with non-coding genes suggests that their overall higher 163 

conservation is not an intrinsic characteristic of promoter states and that it depends on their specific 164 

regulatory relevance in different genes. 165 

 166 

The activity of promoter and enhancers influences their epigenetic and sequence conservation 167 

Taking advantage of our classification of promoters and enhancers into three different activities 168 

(strong, poised, and weak), we further explored the patterns of evolutionary conservation of the 169 

different regulatory states. Globally, orthologous regulatory regions conserve their regulatory state 170 

(Randomization analyses: 1,000 simulations, P < 0.05; Supplementary Figs. 17-19 and 171 

Supplementary Table 11), but different promoter and enhancer activities show characteristic patterns 172 

of conservation (Kruskal-Wallis test: P < 2.2 x 10-16; Fig. 3a and Supplementary Figs. 20-22).   173 

Strong promoters are the most conserved activities: 80% of them are fully conserved in primates. On 174 

the contrary, poised and weak promoters are poorly conserved (Fig. 3a). All enhancer activities show 175 

a similar pattern of evolutionary conservation (Fig. 3a). Enhancer states with strong activities are 176 

second in conservation after strong promoters. Nearly 40% of the orthologous regulatory regions with 177 

strong enhancer states are fully conserved. Poised enhancers follow closely, with 36% of them 178 

conserved in the five species. Lastly, around 21% of the regions with a weak enhancer conserve their 179 

activity across primates. The regulatory regions associated with protein-coding and non-coding genes 180 

show the same conservation trends (Supplementary Figs. 23 and 24). However, strong activities in 181 

promoter states are less common for non-coding than for protein-coding genes, leading to lower 182 

conservation of promoter compared to enhancer states. This shows that differences in activity 183 

composition can lead to differences in the conservation of the regulatory architectures. 184 
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The epigenetic states in a given cell type and their evolutionary conservation reflect the specific 185 

function of the regulatory regions in this cell type. These regions are expected to show different states 186 

in other cell types and so their evolutionary patterns might also be different. To investigate whether 187 

changes in activity are likely to affect the epigenetic conservation of regulatory elements, we assessed 188 

the association between epigenetic and sequence conservation –which is cell type-independent. First, 189 

we observed that epigenetic conservation significantly correlates with the conservation of the 190 

underlying sequence –quantified as z-scores of background normalized PhastCons values19– in all 191 

epigenetic states but weak promoter states (Fig. 3b, Methods and Supplementary Fig. 25). These 192 

correlations are seen in  the architectures of protein-coding but not in non-coding genes 193 

(Randomization analyses: 1,000 simulations; Fig. 3b, Supplementary Figs. 26-30). Of note, 194 

orthologous regulatory regions with fully conserved epigenetic states show significant differences in 195 

sequence conservation (Kruskal-Wallis test: P < 2.2 x 10-16; Supplementary Fig. 31). In particular, 196 

strong and weak promoters are associated with higher and lower sequence conservation scores 197 

respectively, whereas all enhancer states range in between these values. (Dwass-Steel-Critchlow-198 

Fligner test, Supplementary Fig. 31). The sequence conservation scores associated with strong and 199 

poised enhancers are not significantly different. Note also that conserved poised promoters are 200 

associated with very high conservation z-scores, which probably did not reach significance due to 201 

their low number (n = 9 pP). Orthologous regions associated with non-coding genes are fewer and 202 

less epigenetically conserved (Supplementary Figs. 24 and 27), which could explain the lack of 203 

correlation between the conservation of the sequence and the epigenetic state observed in all but 204 

strong enhancers (Supplementary Fig. 30).  205 

These results demonstrate that a detailed classification of promoters and enhancers with different 206 

activities into regulatory architectures provides a deeper understanding of their evolutionary 207 

constraints and dynamics, expanding previous observations in mammals7 that could mostly be made 208 

for active regulatory activities. The consistent association of epigenetic and sequence conservation 209 

also suggests that the epigenetic conservation observed in LCLs is a good proxy for the conservation 210 

of the regulatory activity of these elements in our primate species. 211 

 212 

Definition of different types of components in the regulatory architectures 213 

To characterize the evolution of regulatory elements based on their specific role in gene expression, 214 

we classified regulatory elements into five different components according to the role they had in the 215 

gene regulatory architectures (Fig. 4a, Methods). We first classified regulatory elements based on 216 

their proximity to a gene into three types of components: genic promoters (gP), intragenic enhancers 217 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2019.12.18.872531doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.872531
http://creativecommons.org/licenses/by-nc/4.0/


 

(gE), and proximal enhancers (prE). As gene expression is controlled by a combination of short- and 218 

long-distance regulatory interactions20, we used available 3D chromatin contact maps for human 219 

LCLs21–23 to link interacting regulatory elements to their target gene/s and define two additional types 220 

of components: promoter-interacting enhancers (PiE) and enhancer-interacting enhancers (EiE) (Fig. 221 

4a).  222 

We were able to link to genes and classify, on average, nearly 3,500 otherwise orphan distal 223 

regulatory elements per species (Supplementary Fig. 32). We annotated ~12,500 genic promoters, 224 

~35,000 intragenic enhancers, ~6,700 proximal enhancers, ~6,200 promoter-interacting enhancers, 225 

and ~1,800 enhancer-interacting enhancers per species (Fig. 4b and Supplementary Fig. 33), of which 226 

48%, 69%, 40%, 62%, and 61% are associated with 1-to-1 orthologous protein-coding genes in all 227 

primate species (Fig. 4c).  228 

To assess the consistency of our classification of regulatory components, we focused on 1-to-1 229 

orthologous protein-coding genes considering all their associated regulatory elements (i.e. 6 230 

epigenetic states x 5 components = 30 regulatory subcategories). We found high concordance 231 

between the epigenetic state (based on ChIP-seq and ATAC-seq data, Fig. 2a) and the component 232 

(based on the type of association with the gene, Fig. 4a) of the regulatory elements. On average, 75% 233 

of genic promoters have a promoter state, and 90% of gene-associated enhancers have an enhancer 234 

state (Fisher’s exact test: P < 2.2 x 10-16 in all species, average OR = 64; Supplementary Fig. 34). 235 

This concordance is also consistent across species (Chi-square test: P < 2.2 x 10-16 in all species; Fig. 236 

4d and Supplementary Fig. 35). Genic promoters are enriched in regulatory elements with strong 237 

promoter and poised promoter and enhancer states. Strong enhancers are mostly enriched at intragenic 238 

and promoter-interacting enhancers, whereas weak enhancers are strongly associated with proximal 239 

enhancers (Supplementary Figs. 34 and 35). 240 

Gene expression levels are positively associated with the presence of strong activities in their 241 

regulatory architectures and are negatively associated with the presence of poised or weak activities 242 

(Kruskal-Wallis test: P < 0.05 in all species and regulatory components; Supplementary Fig. 36). 243 

These associations are particularly strong in genic promoters and intragenic enhancers (Dwass-Steel-244 

Critchlow-Fligner test; Supplementary Fig. 37). Despite the consistency between the components’ 245 

activities and gene expression, our results suggest that different types of components might contribute 246 

differently to the regulation of gene expression. 247 

 248 

 249 
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Distinct regulatory components influence gene expression and its evolution differently 250 

To explore the ability of our classification of components to discriminate different regulatory roles, 251 

we disentangled the underlying network of regulatory co-dependencies between the different 252 

regulatory components and gene expression in our cell-type. For this, we used Sparse Partial 253 

Correlation Analysis (SPCA)24 of the normalized RNA-seq and histone mark enrichments 254 

(aggregated by promoter and enhancer state in every type of regulatory component) (Methods). This 255 

approach establishes a stringent protocol (Benjamini-Hochberg’s correction, P < 1.8 x 10-22 for all 256 

selected partial correlations) that selects informative partial correlations24.  257 

To unravel the contribution of each type of component to gene expression, we defined their consensus 258 

signal (or eigencomponents) inspired by the notion of eigengenes25 (Methods). An SPCA based on 259 

the eigencomponents shows a consistent global structure of regulatory interactions, with genic 260 

promoters and intragenic enhancers directly regulating gene expression coordinately, promoter-261 

interacting enhancers connected with promoters and enhancer-interacting enhancers connected with 262 

promoter-interacting enhancers (Fig. 4e and Supplementary Table 12). This regulatory scaffold is 263 

consistently observed for the residuals of the histone marks for these eigencomponents 264 

(Supplementary Fig. 38 and Supplementary Table 13) when SPCA was performed for all the histone 265 

marks together (Supplementary Fig. 39 and Supplementary Table 14) and for each of them separately 266 

(Supplementary Figs. 40-44 and Supplementary Table 15). To account for the possibility of 267 

incompleteness in some of our architectures, we replicated all the analyses using only genes with full 268 

regulatory architectures (i.e., genes associated with regulatory components of every type) obtaining 269 

consistent results (Supplementary Figs. 45-52 and Supplementary Table 15).  270 

In agreement with the structure of regulatory interactions recovered by our SPCAs, a generalized 271 

linear model of gene expression based on H3K27ac, H3K27me3, and H3K36me3 signals at genic 272 

promoters and intragenic enhancers and their interactions (15 variables) explains ~67% of gene 273 

expression variability (Supplementary Table 16). Remarkably, this is only 6% lower than an 274 

exhaustive naive model, including the signal from all histone marks at all types of regulatory 275 

components with all possible interactions (1,225 variables) (Supplementary Table 17). These results 276 

confirm that the epigenetic activities of genic promoters, intragenic enhancers, and their interactions 277 

are likely the most direct determinants of gene expression regulation in our regulatory architectures. 278 

However, their co-dependency with the other components suggests that they are dependent, in turn, 279 

on the coordination of the whole architecture. These networks reflect that regulatory co-dependencies 280 

between components depend on the distance of the elements in the network of chromatin contacts 281 

(with genic promoters and intragenic enhancers being in the gene locus, promoter-interacting 282 

enhancers interacting directly, and enhancer-interacting enhancers interacting indirectly with it). The 283 
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robustness of these networks of direct co-dependencies, their ability to explain gene expression, and 284 

their correspondence with the spatial disposition of the elements show that these components reflect 285 

specific regulatory roles. 286 

Previous studies have found that gene expression evolution is associated with changes in the 287 

regulatory complexity of a gene (the number of close regulatory elements)9. Since we could classify 288 

the regulatory elements of a gene into different components (Supplementary Fig. 53), we were able 289 

to investigate the association of gene expression changes (Supplementary Figs. 54 and 55) with the 290 

evolutionary differences in the complexity of each type of component. We found that the effect of 291 

changes in complexity on gene expression levels depends on the epigenetic state gained or lost and 292 

the type of regulatory component affected (Supplementary Fig. 55). Evolutionary changes that alter 293 

the epigenetic state at genic promoters, specifically the presence of either a strong promoter or poised 294 

enhancer, as well as the number of intragenic enhancers with either strong or poised enhancer states, 295 

show the most robust associations with gene expression differences (Supplementary Fig. 55). The 296 

number of proximal enhancers in any enhancer epigenetic state and strong promoters and strong and 297 

poised enhancers in promoter-interacting enhancers also show significant though modest effects 298 

(Supplementary Fig. 55). These results highlight that the additive nature of gene regulation depends 299 

on regulatory architectures. This dependency can be captured either by the aggregation of histone 300 

enrichment signals (as in our SPCAs) or by quantifying the number of regulatory components with 301 

specific activities. Moreover, they confirm that our regulatory components represent different 302 

regulatory roles with a different contribution to gene expression evolution and which evolutionary 303 

relevance should be investigated separately. 304 

 305 

Poised and weak enhancers in genic promoters and intragenic enhancers appear in brain-306 

specific genes with neuronal functions 307 

We next explored to what extent the conservation and species-specificity of the characteristic 308 

regulatory states in every component (overrepresented combinations, Supplementary Fig. 56) is 309 

important for particular functional processes. For this, we examined their functional annotation and 310 

tissue-specificity in their expression (GTEx data26, Supplementary Table 18). We found significant 311 

enrichment for the genes targeted by conserved strong promoter states in genic promoters, conserved 312 

strong and weak enhancer states in intragenic enhancers, and conserved poised enhancer states in 313 

genic promoters and proximal enhancers (Fisher’s exact test: Benjamini-Hochberg’s correction, FDR 314 

< 0.05; Methods, Fig. 5a, Supplementary Fig. 57 and Supplementary Table 19). Remarkably, among 315 
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the genes associated with species-specific epigenetic states, only those linked to human-specific weak 316 

enhancers in intragenic enhancers had significant functional enrichments. 317 

These enrichments show the expected association of conserved strong epigenetic states (strong 318 

promoter states in genic promoters and strong enhancer ones in intragenic enhancers) with genes 319 

involved in relevant cellular processes, such as metabolism, chromatin organization, and regulation 320 

of the cell cycle (Fig. 5a, Methods, Supplementary Fig. 57 and Supplementary Tables 20 and 21). 321 

Functions specific to LCLs like those involving viral processes are specifically enriched in strong 322 

enhancers. Moreover and regardless of whether there is an enrichment, all three strong epigenetic 323 

states show similar expression profiles across tissues (Fig. 5b and Supplementary Figs. 58-60), with 324 

high expression levels in LCLs and most other tissues and wide expression breadth (Fig. 5c and 325 

Supplementary Fig. 61). 326 

In contrast, conserved poised enhancer states in genic promoters and proximal enhancers target 327 

protein-coding genes enriched in developmental and proliferative functions, echoing their known 328 

implication in these processes (Fig. 5a, Supplementary Fig. 57 and Supplementary Tables 22 and 23). 329 

Surprisingly, genes with conserved poised enhancer states in their genic promoters are also enriched 330 

in neuronal functions and higher expression levels in brain (Fig. 5b-c and Supplementary Figs. 57-331 

60). Genes associated with both types of conserved poised enhancer states show overall minimal 332 

expression levels but high tissue-specificity (median tissue specificity index (τ, Tau) > 0.85 in both; 333 

Methods and Supplementary Fig. 61). 334 

Protein-coding genes targeted by intragenic enhancers with conserved weak enhancer states are 335 

enriched in various functional annotations, including neuronal ones, such as cell projection and 336 

synapse (Fig. 5a, Supplementary Fig. 57 and Supplementary Table 24). This gene setshows 337 

remarkably low expression in LCLs coupled with higher expression in the brain, which is in 338 

agreement with the observed functional annotation (Fig. 5b-c). Also, the tissue-specificity of this 339 

group is higher than that of conserved strong regulatory activities both in promoters and enhancers 340 

(median τ = 0.72, Dwass-Steel-Critchlow-Fligner test: P < 2.2 x 10-16 in the three tests; 341 

Supplementary Fig. 61). This apparent brain-specificity is not found in genes associated with other 342 

weak enhancer states that have overall higher expression levels and not particular specificity, as 343 

would be expected from weak epigenetic states (Supplementary Figs. 60 and 61). 344 

Finally, we focused on genes targeted by components with human-specific epigenetic states.  These 345 

genes are solely enriched in neuron parts and synapse (Fig. 5a and Supplementary Table 25). Similar 346 

to genes associated with their analogous conserved group, these genes are typically expressed at low 347 

levels with  highest expression in tissues unrelated to LCLs, particularly brain, tibial nerve, and 348 
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testis, while having marginal or no expression in numerous other tissues, including LCLs (Wilcoxon-349 

Nemenyi-McDonald-Thompson test: P < 1 x 10-4; Rank-biserial correlation effect size between brain 350 

and LCLs = 0.633; Fig. 5b-c, Supplementary Figs. 58 and 59 and Supplementary Table 26). 351 

Remarkably, these genes have higher tissue-specific expression than those with conserved strong but 352 

not weak activities in their components (median τ = 0.84, Dwass-Steel-Critchlow-Fligner test: P < 353 

4.5 x 10-14 when compared to strong activities and P = 0.06 compared to genes with weak enhancer 354 

states; Supplementary Fig. 61). 355 

Intrigued by the high tissue-specificity of the genes with novel human weak enhancers, we sought to 356 

identify the tissues driving this tissue-specificity taking its analogous conserved group as reference. 357 

Testis and brain are the tissues with the highest number of tissue-specific genes (τTissue > 0.8), but 358 

most interestingly, whereas the fraction of testis-specific genes is comparable between gene sets 359 

(Two-tailed Fisher’s exact test: P = 0.54, OR = 1.20), brain-specific genes are more than 2-fold 360 

enriched in genes with human-specific intragenic enhancers (Two-tailed Fisher’s exact test: P = 0.02, 361 

OR = 2.29; Supplementary Fig. 62).  362 

Altogether these results show that while conserved strong epigenetic states are involved in the 363 

regulation of important genes highly expressed in LCLs and other tissues, conserved poised enhancer 364 

states and conserved and human-specific weak enhancer states in intragenic enhancers are involved 365 

in the regulation of genes marginally expressed in LCLs, but with particular functional roles and 366 

tissue-specific expression patterns. These unexpected associations are likely to reflect the importance 367 

of particular epigenetic states in certain regulatory components to regulate specific processes. 368 

  369 

Genes with novel human-specific intragenic weak enhancers are targeted by positive selection 370 

The unanticipated association of the genes targeted by human-specific weak enhancer states in 371 

intragenic enhancers with neuronal functions prompted us to study the relationship these genes might 372 

have with positive selection. In fact, among the genes associated with intragenic enhancers with novel 373 

human-specific weak activities, we found several genes previously proposed as candidates for 374 

positive selection in humans27–30. Some of these genes are FOXP2, PALMD, and ROBO1, which have 375 

known brain-related functions31–34 or ADAM1835, CFTR36,37, and TBX1538.  376 

To assess whether genes with human-specific enhancer states have been targeted by recent human 377 

adaptation, we investigated their co-occurrence in genes associated with signals of positive 378 

selection27–30 (Methods and Supplementary Table 27). We found that more than one third (38%) of 379 

the genes with novel weak intragenic enhancers are associated with genes targeted by positive 380 
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selection (Fisher’s exact test: P = 6.52 x 10-18, OR = 5.69). The results of this analysis (Fig. 6a) 381 

indicates that this enrichment is reflected in a significant association of genes targeted by intragenic 382 

enhancers (but not in any other component type), genes targeted by intragenic enhancers with weak 383 

enhancer states (but not strong or poised enhancer states) and genes targeted by intragenic enhancers 384 

with human-specific weak enhancer states (but not in fully conserved or the remaining weak enhancer 385 

states). No enrichment in signals of positive selection is observed for genes with genic promoters 386 

showing conserved poised enhancer states, even though they are also involved in brain-specific and 387 

neuronal functions. 388 

Finally, we explored whether these recently evolved human-specific intragenic enhancers are 389 

associated with human-specific mutations. For this, we collected a set of over 2.8 million single 390 

nucleotide changes fixed in humans (hSNCs) that differ from fixed variants in the genomes of the 391 

remaining non-human primates (Methods and Supplementary Table 27). We observed that the hSNCs 392 

density is higher in human-specific intragenic enhancers (Mann-Whitney U test: P = 0.01; Methods 393 

and Supplementary Fig. 62). More than one-third of the genes with novel human-specific intragenic 394 

enhancers with weak enhancers states and with hSNCs also have signals of positive selection, a 395 

proportion very similar to the expected 38% (see above). This result suggests that although human-396 

specific mutations and positive selection signals are both associated with the presence of intragenic 397 

enhancers with human-specific weak activities, they are not mutually conditioned. As such, it implies 398 

that none of these signals is necessary (nor sufficient) to explain the appearance of intragenic 399 

enhancers with human-specific weak activities. 400 

Among the 11 genes with both signals of positive selection and hSNCs (Fig. 6b), there are several 401 

interesting candidates for adaptive evolution of different traits. Many of these genes are associated 402 

with neuronal functions (ROBO1, CLVS1, SEMA5A, KCNH7, SDK1, and ADGRL2), but also with 403 

pigmentation (LRMDA) or actin organization in cardiomyocytes (FHOD3). Other interesting genes 404 

that include human-specific weak intragenic enhancers are only associated with signals of human 405 

selection (FOXP2, TNIK, ASTN2, NPAS3, or NTM) or hSNCs in these enhancers (PALMD, VPS13C, 406 

IGSF21, or CADM2). Interestingly, we found only one antisense RNA gene, MEF2C-AS1 showing 407 

both signals of positive selection and a human-specific enhancer with hSNCs (Supplementary Fig. 408 

63). This gene has been associated with ADHD39, and its target gene MEF2C, is a very well known 409 

target of genetic alterations (many of them also affecting MEF2C-AS1) associated with severe 410 

intellectual disability40, cerebral malformation40, or depression40,41. 411 

Remarkably, three human-specific intragenic enhancers accumulate more hSNCs than expected 412 

(Randomization test: 10,000 simulations, Bonferroni correction, P < 0.02 in all cases; Methods and 413 

Supplementary Figs. 63 and 64), a number of enhancers which is also significantly higher than 414 
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expected (Randomization test: 10,000 simulations, P = 8 x 10-4; Supplementary Fig. 65). Two of 415 

these genes are protein-coding genes with known functions in brain cell types and with signals of 416 

positive selection. CLVS1 is a protein-coding gene with brain-specific expression (τBrain = 0.964) 417 

required for the normal morphology of endosomes and lysosomes in neurons42. ROBO1 is a broadly 418 

expressed integral membrane protein that participates in axon guidance and neuronal migration (τ = 419 

0.388)43,44 that has also been associated with human speech and language acquisition since the split 420 

from chimpanzees32. The third enhancer is included in AC005906.2, a long intergenic non-protein-421 

coding gene specifically expressed in brain (τBrain = 1). Interestingly, this gene overlaps with KCNA1, 422 

a voltage-gated potassium channel with the same brain-specific expression pattern (τBrain = 0.995) and 423 

for which mutations have been associated with neurological malfunctions45. 424 

Our results show that the most common regulatory innovation detected in human LCLs, the presence 425 

of human-specific weak enhancer activities in intragenic enhancers, targets neuron-related brain-426 

specific genes that are significantly associated with signals of positive selection and an excess of 427 

hSNCs in these components. These DNA changes were especially concentrated in three of them. Two 428 

of the genes in which these elements are harbored, CLVS1 and ROBO1, exemplify the confluence of 429 

signals of positive selection and excess of hSNCs in human-specific regulatory regions targeting 430 

protein-coding genes important for normal neuronal structure, migration, and axon guidance in the 431 

human brains. 432 

 433 

Discussion 434 

The evolution of human and non-human primates is an area of major interest, but ethical, legal, and 435 

practical constraints often limit access to direct biological material. In this study, we have generated 436 

a unique, comprehensive, and unified dataset of epigenomic landscapes in LCLs for human and four 437 

non-human primate species. Despite the artificial nature of our cellular model46–48, previous studies 438 

have shown the value of LCLs as an experimentally convenient model of somatic cells that accurately 439 

resembles the phenotype of its cell type of origin49 and which can be robustly used for comparative 440 

studies in humans and primates12,50–52. Moreover, its clonality ensures a cell type-specific 441 

experimental system reducing the confounding factors associated with cell population diversity in 442 

bulk tissue samples.  443 

Using this cell model, we reproduced previous observations on the dynamics of the evolution of 444 

regulatory elements reported in more distant species using liver samples7,9,18 which we show can be 445 

extrapolated to closely related species (at least for great apes and macaques). Moreover, we have 446 

expanded these observations to explain how these dynamics result from the different evolutionary 447 
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constraints associated with their epigenetic activities. Therefore, we show that considering weak and 448 

poised activities is of major relevance to fully understand the evolution of regulatory regions. 449 

We also observed that different epigenetic activities have characteristic evolutionary patterns with 450 

higher conservation for strong promoter and strong and poised enhancer states. The correlations 451 

between epigenetic and sequence conservations are also different for each epigenetic state with higher 452 

correlations for strong and poised promoter and enhancer states. These differences are likely due to 453 

their different influence on gene expression. Therefore, previously reported higher conservation of 454 

promoters probably reflects the often bigger influence of these elements in gene expression. This 455 

hypothesis is also confirmed by the lower conservation of promoter states observed in the regulatory 456 

architectures of the non-coding genes where strong promoter states are scarce. 457 

Here, we have introduced a classification of regulatory elements as components of gene regulatory 458 

architectures into genic promoters and intragenic, proximal, promoter-interacting, and enhancer-459 

interacting enhancers. The network of regulatory co-dependencies of these types of components 460 

reveals that the epigenetic activities of each type of regulatory component influence gene expression 461 

levels differently. In brief, coordinated epigenetic activities in genic promoters and intragenic 462 

enhancers form the core of these architectures and explain gene expression levels. Regulatory 463 

activities in promoter-interacting enhancers are also coordinated with promoter components, and 464 

activities in enhancer-interacting enhancers are associated with promoter-interacting enhancers. 465 

These results show that the influence of regulatory components on gene expression reflects the 466 

structure of the regulatory architecture.  467 

The importance of this structure in gene expression evolution is reflected in the different association 468 

of gene expression changes with the regulatory complexity of each activity in the distinct components. 469 

The addition or removal of strong promoter activities in promoter components or strong and poised 470 

enhancer activities in intragenic enhancers consistently co-occurs with gene expression changes 471 

between primate species. The remaining components show fewer changes linked to expression 472 

differences, but they can still be instrumental for gene expression evolution, probably through their 473 

influence on promoters and intragenic enhancers. Our conceptual framework provides a starting point 474 

for future in-depth investigations on the inter-dependence of different regulatory regions and 475 

mechanisms in the evolution of gene regulation. In this sense, we stress the importance of considering 476 

promoter and enhancer activity states in the different types of gene components to achieve a more 477 

detailed description of the regulatory processes.  478 

Despite the larger influence of strong activities on gene regulation, our results in LCLs suggest that 479 

major insights can arise from the analysis of the elements with a repressive or negligible regulatory 480 
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role in our cell model. Genic promoters and proximal enhancers with poised enhancer activities and 481 

intragenic enhancers with weak enhancer activities carry information about the degree of regulatory 482 

innovation in unrelated cell types. Conserved poised activities are targeted by genes associated with 483 

cell proliferation and differentiation. In the case of poised enhancer states in genic promoters, these 484 

genes are specifically expressed in brain. Moreover, we found that recently evolved weakly active 485 

intragenic enhancers in the human lineage are the most common regulatory innovation observed in 486 

our LCLs. These human-specific weak enhancers occur in genes showing patterns of brain-specific 487 

gene expression, neuronal functions, and signals of positive selection, suggesting that these genes 488 

may have contributed to human adaptation in several traits. These functional and evolutionary 489 

patterns are different from those in genes targeted by any conserved activity in any other component, 490 

including conserved poised enhancers in genic promoters that also target genes with brain-related 491 

functions.  492 

We have identified a subset of genes in which regulatory innovation in these intragenic enhancers 493 

converges with other signals of positive selection. Among these genes, we highlight two protein-494 

coding genes key in neuronal structure, migration, or axon guidance: CLVS1 and ROBO1, also 495 

accumulating an excess of human-specific mutations in the corresponding human-specific enhancers. 496 

The confluence of epigenetic and sequence innovations in the human lineage for these genes points 497 

to their putative relevance in recent human evolution. Our findings suggest that the appearance of 498 

novel intragenic enhancers with tissue-specific and functionally relevant implications in certain genes 499 

is often bound to the co-appearance of weaker activity signals that can be detected in other cell types. 500 

These echoes that we detect as human-specific weak enhancer activities provide an unexpected 501 

window to the study of regulatory evolution in the human lineage. Further research will be needed to 502 

clarify the specific role of these elements in different tissues and cell types.  503 

Taken together, our results show that the evolution of gene regulation is deeply influenced by the 504 

coordination of epigenetic activities in gene regulatory architectures. Our insights call for 505 

incorporating better integrative datasets and refined definitions of regulatory architectures in 506 

comparative evolutionary studies to fully understand the interplay between epigenetic regulation and 507 

gene expression. 508 

 509 

 510 

 511 

 512 
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Methods 513 

Definition of regulatory elements 514 

We used ChromHMM to jointly learn chromatin states across samples and segment the genome of 515 

each sample17. ChromHMM implements a multivariate Hidden Markov Model aiming to summarize 516 

the combinatorial interactions between multiple chromatin datasets. Bam files from the five histone 517 

modifications profiled were binarized into 200 bp density maps. Each bin was discretized in two 518 

levels, 0 or 1, depending on their enrichment computed by comparing immunoprecipitated (IP) versus 519 

background noise (input) signal within each bin and using a Poisson distribution. Binarization was 520 

performed using the BinarizeBam function of the ChromHMM software17. A common model across 521 

species was learned with the LearnModel ChromHMM function for the concatenated genomes of all 522 

samples but O1 (orangutan sample 1) due to its anomalous epigenetic profiles (Supplementary Fig. 523 

76). Several models were trained with a number of chromatin states ranging from 8 to 20. To evaluate 524 

the different n-state models, for every sample, the overlap and neighborhood enrichments of each 525 

state in a series of functional annotations were explored. A 16-state model was selected for further 526 

analysis based on the resolution provided by the defined chromatin states, which capture the most 527 

significant interactions between histone marks and the state enrichments in function-annotated 528 

datasets (Supplementary Fig. 2). The genomic coordinates of regulatory elements (RE) were defined 529 

for each sample by merging all consecutive 200 bp bins excluding elongating (E1 and E2), repressed 530 

heterochromatin (E16) and low signal (E15) chromatin states. Species regulatory elements were 531 

defined as the union of sample regulatory elements. For orangutan we did not include regulatory 532 

elements specific to O1.  533 

Assignment of a regulatory state to regulatory elements 534 

Regulatory elements were assigned a chromatin-state based annotation. Combining the information 535 

gathered through the overlap and neighborhood enrichment analyses in functionally defined regions, 536 

we established a hierarchy to designate poised (p), strong (s) and weak (w) promoter and enhancer 537 

states. Chromatin states E8, E9 and E11 defined promoter states (P); E8 and E9 were strongly 538 

enriched at TSSs, CGI, UMR (unmethylated regions) and open chromatin regions, while E11 was 539 

mostly located downstream the TSS; the presence of E14 defined poised promoter states (pP); 540 

absence of E14 and presence of E9 or E11 defined strong promoter states (sP); remaining P were 541 

classified as weak promoter states (wP). Non-promoter regulatory elements were assigned an 542 

enhancer state (E). The presence of E14 defined poised enhancer states (pE); absence of E14 and 543 

presence of E3, E4, E5, E6 and E12 defined strong enhancer states (sE): E5 and E6 were strongly 544 
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enriched LMRs (low methylated regions) whereas E3, E4 and E12 were highly abundant at introns; 545 

remaining E were classified as weak enhancer states (wE) (Supplementary Figs. 2 and 66). 546 

One of the limitations of chromatin states is that bin assignments are based on the presence or absence 547 

of particular epigenetic marks. However, oftentimes, the lines separating different regulatory 548 

elements are blurry: e.g. the distinction between promoter and enhancer states generally resides in the 549 

H3K4me3/H3K4me1 balance. Hence, some misclassifications are expected due to insufficient 550 

precision of the qualitative classification. Considering the quantitative relationship between co-551 

existing histone modifications can help to accurately annotate epigenetic states in regulatory 552 

elements. We used linear discriminant analysis (LDA)53 to refine chromatin-state based annotations. 553 

This method is commonly applied to pattern recognition and category prediction. LDA is a technique 554 

developed to transform the features into a lower-dimensional space, which maximizes the ratio of 555 

between-class variance to the within-class variance, thereby granting maximum class separation. We 556 

performed LDA analysis using the lda function in the R package MASS (version 7.3-47)54. The 557 

predictor variables were the background-noise normalized IP signals from the five different histone 558 

modifications profiled and chromatin accessibility signal at species regulatory elements. The 559 

categorical variable to be predicted based on the underlying enrichments was the chromatin-state 560 

based annotation. The regulatory state at the species level was determined based on the regulatory 561 

state in each of the biological replicates. Thus, the regulatory state of a regulatory element with 562 

different epigenetic states in the two replicates (ambiguous), could be aP or aE, when both samples 563 

of a given species were annotated as either P or E but differ in their activity; P/E, when a regulatory 564 

element was classified as P in one biological replicate and E in the other one; and P/Non-RE or 565 

E/Non-RE, when the regulatory elements was so only in one replicate (Supplementary Fig. 7 and 566 

Supplementary Table 1). To control for interindividual variability, only regulatory elements with the 567 

same activity in the two replicates were considered for downstream analyses. 568 

Analysis of evolutionary conservation at orthologous regulatory regions 569 

We studied patterns of evolutionary conservation of promoter and enhancer states using a set of 570 

21,753 one-to-one orthologous regions associated with genes in which at least one species showed a 571 

promoter or enhancer epigenetic state. We define recently repurposed promoters as orthologous 572 

regulatory regions in which one species shows a promoter state while the others show an enhancer 573 

state or vice versa. Novel promoter or enhancer states refer to those orthologous regulatory regions 574 

in which a given species showed a promoter or enhancer state while the others showed no evidence 575 

of regulatory activity (classified as non-regulatory).  576 
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To study the patterns of evolutionary conservation of regulatory states, we focused on the subset of 577 

10,641 one-to-one orthologous regions in which at least one species showed a strong, poised or weak 578 

regulatory state (we do not include orthologous regions including elements with ambiguities, ie. 579 

different activities between biological replicates). To statistically assess the different evolutionary 580 

dynamics observed for the different regulatory states we first ran randomization analysis. We 581 

randomized (1,000 randomizations) the regulatory states associated with each species in orthologous 582 

regulatory regions. We determined the P-value as the number of randomizations with an average 583 

conservation equal to or above the observed conservation for each regulatory state. We further 584 

explored the different patterns of conservation combining: (1) Kruskal-Wallis test (kruskal.test R 585 

function)55 to test whether the global distributions of the number of species in which each particular 586 

state was conserved were different for the different regulatory states and (2) Dwass-Steel-Critchlow-587 

Fligner test to assess the significance of every pairwise comparison (dscfAllPairsTest function from 588 

the R package PMCMRplus version 1.4.4)56 and (3) Glass rank biserial correlation coefficient for 589 

Mann-Whitney U test to compute the effect sizes associated with all statistically significant pairwise 590 

comparisons (wilcoxonRG function from the R package rcompanion version 2.3.25)57. 591 

To study the patterns of evolutionary conservation of the sequence underlying orthologous regulatory 592 

regions, we assigned each orthologous regulatory region a conservation score. We computed this 593 

score based on the phastCons30way sequence conservation track19. To control for background 594 

sequence conservation levels, we first computed the average and standard deviations 595 

phastCons30way in TADs defined in the cell line GM1287858 (Supplementary Fig. 25). Then, we 596 

used these summary statistics to calculate the z-score for each bp in every orthologous regulatory 597 

region, using the average and standard deviations values of the TAD in which each orthologous 598 

regulatory region was found. We averaged the z-scores within each orthologous regulatory regions 599 

in bins of 200 bp that overlap 50 bp with the next bin and assign each orthologous regulatory region 600 

the maximum z-score values associated with its bins. We computed the Spearman rho correlation 601 

between the z-scores and the number of species in which each orthologous regulatory region was 602 

conserved, separately for each regulatory state. To determine the statistical significance of these 603 

correlations we used randomization analysis. For each regulatory state we created 1,000 sets 604 

randomizing the z-score associated with each orthologous regulatory region and calculated the 605 

Spearman correlation in each randomization. We determined the P-value as the number of 606 

randomizations with a Spearman rho correlation value equal to or above the observed correlation 607 

(Supplementary Figs. 28-30). 608 

 609 
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Classification of regulatory elements in different types of components of gene regulatory 610 

architectures  611 

We pre-classified each regulatory element into gene regulatory component based on their genomic 612 

location with respect to their corresponding species ENSEMBL release 9159 gene annotations. 613 

Regulatory elements found up to 5 Kb upstream to the nearest TSS were classified as genic promoters 614 

(gP). Additional regulatory elements located up to 10 Kb to the nearest TSS were classified as 615 

proximal enhancers (prE). Regulatory elements that overlapped a gene were classified as intragenic 616 

enhancers (gE). Other regulatory elements that could not be linked to a gene based on their genomic 617 

proximity were initially classified as distal enhancers (dE). 618 

Then, we made use of available interaction data for the cell line GM12878 (HiC21,  HiChIP-619 

H3K27ac22 and ChIA-PET23) to map interactions between regulatory elements. Each interacting pair 620 

was mapped independently to hg38 coordinates using the liftOver tool from the UCSCTOOLS/331 621 

suite60, and only interactions for which both pairs could be mapped were kept. Subsequently, 622 

interactions were mapped to the non-human primate reference genome assemblies. For inter-species 623 

mappings, coordinates were mapped twice, going forward and backward, and only pairs that could 624 

be mapped in both directions were kept. Interacting regulatory elements were defined as those that 625 

overlapped with each pair of any given interaction. First-order interactions were annotated between 626 

promoters and enhancers, allowing the definition of promoter-interacting enhancers (PiE). Second-627 

order interactions were annotated between enhancer components (gE, prE or PiE), allowing the 628 

definition of enhancer-interacting enhancers (EiE) (Fig. 4a and Supplementary Fig. 1).  629 

Considering both classifications of regulatory elements, according to their epigenetic state and 630 

regulatory component, regulatory elements were separated into 30 (6x5) different subcategories. We 631 

used a Chi-square test to identify the component-epigenetic state combinations enriched in 632 

orthologous regulatory regions with fully conserved and species-specific epigenetic states 633 

(Supplementary Fig. 56).  634 

Gene expression levels and regulatory states in gene components 635 

To investigate the influence of the activity state of regulatory elements in each type of component on 636 

gene expression levels, we classified 1-to-1 orthologous protein-coding genes, separately for each 637 

species, into six mutually excluding categories, one for each regulatory state within each type of 638 

component (component-state combinations). Whereas genes can only be associated with one genic 639 

promoter and hence, they can only be classified into one category for genic promoters depending on 640 

the corresponding epigenetic state of the regulatory element, genes can be associated with more than 641 

enhancer component (gE, prE, PiE and EiE). In those cases we classified genes into a given 642 
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component-state category accordingly to the presence of at least one regulatory element with a given 643 

epigenetic state in that component using the following state hierarchy: pE > pP > sE > sP > wE > wP 644 

(Supplementary Fig. 36).  To statistically assess the influence of each state in each component we 645 

used (1) Kruskal-Wallis test (kruskal.test function as implemented in R)55 to test whether the 646 

distributions of the expression levels of genes associated with each component-state combination 647 

were different for the different regulatory states, (2) Dwass-Steel-Critchlow-Fligner test to assess the 648 

significance of every pairwise comparison (dscfAllPairsTest function from the R package PCMRplus 649 

version 1.4.4)56 and (3) Glass rank biserial correlation coefficient effect size for Mann-Whitney U 650 

test to compute the effect sizes associated with all statistically significant pairwise comparisons 651 

(wilcoxonRG function from the R package rcompanion version 2.3.25)57 (Supplementary Fig. 37).  652 

Partial correlation analysis 653 

To disentangle the network of direct co-dependencies between the different components, regulatory 654 

states, histone marks and gene expression, we performed a series of partial correlation analyses24,61. 655 

To tackle the diversity of architectures detected for the different genes, we added up the calibrated 656 

signal of all the regulatory elements with a given regulatory state (promoter or enhancer) in a given 657 

type of component for any gene architecture. This decision was based on the observed relationship 658 

between the number of strong elements in a gene architecture and the expression level of its target 659 

gene. Separation of histone signals in each type of component between those contributing to a 660 

promoter or to an enhancer was intended to reflect the potential differences in their role in gene 661 

expression regulation. As a result of this design, our system has 51 variables (RNA-seq signal + 5 662 

histone mark signals x 2 regulatory states x 5 components) and 57,370 cases (5,737 genes x 5 species 663 

x 2 samples). 664 

All partial correlation analyses were performed using an adaptation of a recently published Sparse 665 

Partial Correlation Analysis protocol24 based on the continuous values of the accumulated ChIP-seq 666 

signals (instead of their ranks) to take advantage of their pseudo-quantitative nature. This protocol 667 

combines the recovery of statistically significant partial correlations with a cross-validation process 668 

to filter out those relationships leading to overfitted reciprocal linear LASSO models (significant 669 

partial correlations unlikely to be biologically meaningful). In our case, in every analysis, we 670 

recovered those partial correlations recovered in at least four of the five species without leading to 671 

overfitting when determining the reciprocal explanatory power in the remaining species. This 672 

protocol is intended to detect biologically relevant co-dependences out of the set of significant partial 673 

correlations and as a result, this approach filters out many significant partial correlations with very 674 

low explanatory power. In fact, all the partial correlations recovered in any of the analyses performed 675 

showed very low P-values (Benjamini-Hochberg’s correction62, P < 1.8 x 10-22).  In our case, given 676 
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the relatively small amount of data, we focused on recovering those partial correlations that are likely 677 

to be relevant in any species. For these analyses, we used a modified version of the R code provided 678 

by the authors (http://spcn.molgen.mpg.de/code/sparse_pcor.R/) to perform 5-fold cross-validation 679 

analyses separati by species instead of the original 10-fold cross-validation protocol suitable for larger 680 

datasets. Network visualizations were performed with Cytospace63. 681 

In a partial correlation model, direct co-dependencies are established between individual variables. 682 

However, we know that coordination of the different histone marks within components is important 683 

to define the global epigenetic configuration of a component (also captured in our epigenetic states), 684 

which itself could be considered the relevant variable for this analysis. To better address this situation 685 

in our analysis, we defined a consensus signal for every component following the same approach 686 

established by WGCN25 to define eigengenes as representative variables of clusters of co-expressed 687 

genes. In brief, we defined eigencomponents as the variables summarizing the common signals of the 688 

different histone marks in a component (actually calculated as the first PCA component of these five 689 

variables). So that eigencomponents keep the meaning of the activities, they were defined as 690 

codirectional with H3K27ac signals in each component (eigenvectors negatively correlated with 691 

H3K27ac signals were multiplied by -1). We performed a Sparse Partial Correlation Analysis of these 692 

10 eigencomponents and RNA-seq that recovers very clearly the structure of direct co-dependecies 693 

between the epigenetic configuration of the different components and gene expression (Fig. 4e and 694 

Supplementary Table 12). 695 

In addition, we defined the remaining unexplained signal of every histone mark by its 696 

eigencomponent as the residuals of a linear model of the original variables and the corresponding 697 

eigencomponent. A Sparse Partial Correlation Analysis of these residuals (Supplementary Fig. 38 698 

and Supplementary Table 13) shows that even these residuals reflect the same inter-component 699 

structure and highlights that our eigencomponents miss some relevant information for the definition 700 

of this regulatory coordination (mainly weaker co-dependencies involving promoter states in 701 

intragenic and promoter-interacting enhancers and enhancer states in promoters). 702 

To assess to what extent eigencomponents reflect the behavior of the whole network of co-703 

dependencies of the histone marks or of each of the specific histone marks, we also performed SPCAs 704 

using the actual ChIP-seq enrichment signals. A global partial correlation analysis considering all 51 705 

variables shows a very clear structure of direct co-dependencies with a strong intra-component 706 

contribution for the two states of every single component and a clear but more modest exclusive inter-707 

component contribution (Supplementary Fig. 39 and Supplementary Table 14). Analyses to 708 

determine the Sparse Partial Correlation Network of each of the histone marks and RNA-seq without 709 

considering the possible influence of the remaining histone marks (Supplementary Figs. 40-44 and 710 
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Supplementary Table 15) retrieve very similar networks pointing to the common backbone of inter-711 

component co-dependences reflected in our SPCA of the eigencomponents.  712 

Our dataset of regulatory components shows a quite unbalanced contribution of the components to 713 

the architectures, with intragenic enhancers being the most abundant type of component and 714 

promoter-interacting and enhancer-interacting enhancers being the least abundant (Supplementary 715 

Fig. 33). These differences could be at least partially related to our inability to recover some of the 716 

chromatin interaction-mediated regulatory associations. More importantly, this imbalance, if not real, 717 

could affect the ability of our partial correlation networks to reflect the contribution of those 718 

components less represented in our datasets. To explore this point, we recovered the subset of genes 719 

(an average of 1068 genes per sample) with full architectures (those with at least one element in every 720 

type of component) and repeated all the Sparse Partial Correlation Analyses explained above with 721 

this dataset of genes. In all the cases, we obtained very similar results, recovering fewer relevant 722 

partial correlations due to the smaller number of genes, but with no signal of any relevant difference 723 

in the global structure of the coordinated network of components and gene expression (Supplementary 724 

Figs. 45-52 and Supplementary Tables 12-15).   725 

All the components of the connected network can be very influential in gene expression through their 726 

direct or indirect connection with gene expression. However, our Sparse Partial Correlation Networks 727 

point consistently to the direct co-dependency of RNA-seq with the genic promoter and intragenic 728 

enhancer components and the co-dependency between them. To quantify the explanatory power of 729 

these dependencies for gene expression, we performed a simple generalized linear model (glm 730 

function as implemented in R55) for RNA-seq using H3K27ac, H3K27me3 and H3K36me3 signals 731 

in genic promoters and intragenic enhancers and the interactions between them. This model was able 732 

to explain 67% of the gene expression variance (Supplementary Table 15), a percentage 5% higher 733 

than the 62% explained by a naïve model including the signals of all histone marks in all the 734 

components but no interaction between them (Supplementary Table 16), supporting that genic 735 

promoters and intragenic enhancers contained nearly all the epigenetic information needed to define 736 

gene expression levels in our data. 737 

Differential gene expression analyses 738 

We identified genes with differential expression levels across species using the iDEGES/edgeR 739 

pipeline in the R package TCC (version 1.12.1)64,65 at an FDR of 0.1 and testing all species pairwise 740 

comparisons. Then, we determined the patterns of differential expression, species and direction of the 741 

gene expression change, using a two-step approach. For every gene, the Q-values obtained in species 742 

pairwise comparisons were ordered from smallest to largest. Different expression labels were then 743 
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assigned to each species according to the ordered Q-values. Once all species had an assigned label, 744 

the average normalized expression values between groups were compared to determine the 745 

directionality of the change. We separate differentially expressed genes into two categories: genes 746 

with species-specific expression changes and gene with non-species-specific expression changes. 747 

To investigate the relationship between changes in gene expression and changes in the regulatory 748 

architecture of a gene, for every type of regulatory component we run a Wilcoxon signed-rank test 749 

evaluating whether the number of regulatory elements with a given regulatory state in that particular 750 

regulatory component was significantly associated with higher expression levels, for strong and weak 751 

activities, or lower expression levels, for poised activities. P-values obtained for each regulatory role 752 

were corrected for multiple testing using the Benjamini–Hochberg procedure62. 753 

Over-representation analyses (ORA) of functional annotations 754 

We defined sets of genes associated with fully conserved and species-specific component-epigenetic 755 

state combinations and explored their functional enrichments. To ensure the representativeness of the 756 

functional enrichments, for the gene lists associated with each type of component, we excluded genes 757 

associated with components with different epigenetic states activities (i.e., genes associated with both 758 

conserved strong and weak intragenic enhancers) or associated with both conserved and species-759 

specific components levels (i.e, genes associated with both a conserved and a species-specific weak 760 

intragenic enhancer) and kept those gene lists with a minimum of 15 genes for enrichment analyses. 761 

Of note, orangutan-specific component-epigenetic state combinations were excluded from the 762 

analysis because they were defined using only one LCL replicate (see above) and they are likely to 763 

be enriched in inter-individual variable activities.  764 

Over-representation of Gene Ontology (GO) terms was performed using the WebGestaltR function 765 

from the R package WebGestaltR (version 0.4.3)66 with minNum = 25 and remaining default options. 766 

This function controls the false discovery rate (FDR) by applying Benjamini-Hochberg procedure 767 

(default threshold FDR = 0.05)62,67. Previous analyses have shown that recent enhancers tend to occur 768 

in the same genes that already have highly conserved enhancers9. To control for the particular 769 

background of each component, we built different background gene sets including the set of human 770 

genes associated with at least one-to-one orthologous regulatory regions of each type of component, 771 

hence we have specific and different backgrounds for genic promoters, intragenic enhancers and 772 

promoter-interacting enhancers. To represent and compare enriched GO terms between component-773 

state combinations, we performed a clustering of all significantly enriched GO terms using 774 

REVIGO68. We associated each GO term with the proportion of genes from each component-state 775 

combination that overlapped that GO term. In the case of GO terms enriched in more than one gene 776 
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set, we chose the highest proportion of genes. We used this list as input for REVIGO. Given that 777 

REVIGO only reports the clustering of approximately 350 GO terms and our input list was larger 778 

than that, we used the R package GofuncR (version 1.8.0)69 to retrieve the parent GO terms of the 779 

remaining unassigned GO terms and add them to the corresponding group as defined by REVIGO. 780 

REVIGO group names were manually assigned, taking into account the most representative parent 781 

term (Supplementary Table 19). 782 

Analysis of tissue-specific gene expression patterns 783 

We defined sets of human genes associated with fully conserved component-state combinations, and 784 

human genes associated with human-specific gains/losses of regulatory elements. Note that these 785 

gene lists are not mutually exclusive since a gene can we associated with different types of conserved 786 

or species-specific component-state combinations (e.g., a gene with both a human-specific intragenic 787 

enhancer with weak activity and a fully conserved intragenic enhancer with a strong activity). We 788 

obtained expression levels (median TPM values) across a collection of different tissues from the latest 789 

GTEx release (v8)26. We only included tissues with at least 70 samples and grouped tissue subregions 790 

into the same tissue category, as stated in Supplementary Table 18. For each component-state 791 

combination we followed a two-step approach to remove consistently low-expressed genes across 792 

tissues. For that we first assigned a value of 0 to all genes with a median expression level below 0.1 793 

TPM and then we excluded from the analyses those genes that had an accumulated expression value 794 

in all tissues below 0.1xNumber of tissues (n = 29 tissues). For each component-state combination, 795 

differences in median expression across tissues were assessed with the Friedman test using the 796 

friedman.test function as implemented in R55. We used the Wilcoxon-Nemenyi-McDonald-797 

Thompson test implemented in the pWNMT function of the R package NSM3 (version 1.14)70 to 798 

assess whether expression levels were significantly different for all pairwise tissue combinations. 799 

Then, we made use of the rank-biserial correlation to calculate the effect sizes for all statistically 800 

significant pairwise tests with the wilcoxonPairedRC function of the R package rcompanion (version 801 

2.3.25)57.  802 

We then evaluated the tissue-specificity of the genes associated with the different component-state 803 

combinations. For this we calculated the tissue specificity index71 (τ, tau) for each gene, which is 804 

defined as: 805 

𝜏 = ∑ (1 − 𝑥!)/𝑁	 − 1"
!#$  (1) 806 

where 𝑁 is the number of tissues and 𝑥! is the expression value normalised by the maximum 807 

expression value. This value ranges from 0, for housekeeping genes, to 1, for tissue-specific genes 808 

(values above 0.8 are used to identify tissue-specific genes)72. Tissue-specificity indices were 809 
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calculated for all genes included in the latest GTEx release26. Gene expression levels (median TMP) 810 

of grouped tissue categories (Supplementary Table 18) were normalised within and across tissues 811 

before calculating τ as implemented in the R package tispec (version 0.99.0)73. The calcTau function 812 

from this package provides a tau value for each gene and also a tau expression fraction for each tissue 813 

(which also ranges from 0 to 1) that indicates the specificity of a given gene for that tissue. 814 

After calculating τ values, we compared their distributions between gene datasets with the Kruskall-815 

Wallis test and assessed the significance of every pairwise comparison with the Dwass-Steel-816 

Critchlow-Fligner test (dscfAllPairsTest function from the R package PMCMRplus version 1.4.4)56. 817 

Glass rank biserial correlation coefficient was used to compute the effect sizes associated with all 818 

statistically significant pairwise comparisons using the wilcoxonRG function from the R package 819 

rcompanion version 2.3.2557 (P < 0.05). 820 

Association of genes containing intragenic enhancers with signals of positive selection in 821 

humans 822 

We built a database of human genomic regions with previously detected signals of positive selection 823 

in humans27–29 and selective sweeps in modern compared to archaic humans30. BEDtools74 was used 824 

to assign these regions to both protein-coding and non-coding genes following similar criteria to those 825 

used for building the gene regulatory architectures (Methods’ section Classification of regulatory 826 

elements in different types of components of gene regulatory architectures). We assigned these 827 

regions to a protein-coding gene if they were located within the gene or up to 5 Kb upstream of its 828 

TSS. Then, we made use of available interaction data for the cell line GM12878 (HiC21,  HiChIP-829 

H3K27ac22 and ChIA-PET23) to assign positively selected regions to their interacting protein-coding 830 

genes. We defined the 2,004 genes associated with at least one positively selected region as the set of 831 

genes with signals of positive selection in the human lineage. We computed the overlaps between this 832 

gene list and the lists of genes associated with the different component-state combinations. We used 833 

one or two-tailed Fisher's exact test to assess the enrichment significance.  834 

Analyses of the density of human-fixed single nucleotide changes (hSNCs) in intragenic 835 

enhancers with weak enhancer states 836 

In order to study the distribution of human-fixed changes in a specific type of regulatory element, we 837 

first generated a dataset with human-specific changes. We used sequencing data from a diversity 838 

panel of 27 orangutans, 42 gorillas, 11 bonobos and 61 chimpanzees75–77, as well as 19 modern 839 

humans from the 1000 genomes project78, all mapped to the human reference assembly hg19. We 840 

applied a basic filtering for each site in each individual (sequencing coverage >3 and <100), and kept 841 

sites where at least half of the individuals in a given species had sufficient data. Furthermore, at least 842 
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90% of the kept individuals at a given site in a given species had to share the same allele, otherwise 843 

the site was labeled as polymorphic in the population. Indels and triallelic sites were removed, and 844 

only biallelic sites were kept. We used data from a macaque diversity panel79, applying the same 845 

filters described above. The allele at monomorphic sites was added using bedtools getfasta74 from the 846 

macaque reference genome rheMac8. Since this panel uses the macaque reference genome, we 847 

performed a liftover to hg19 using the R package rtracklayer80 and merged the data with the great ape 848 

diversity panel. 849 

Lineage-specific changes were retrieved as polymorphisms with sufficient information. Hence, 850 

human-specific changes (hSNCs) were defined as positions where each species carry only or mostly 851 

one allele within their respective population, the majority of individuals in each population have a 852 

genotype call at sufficient coverage, and the human allele differs from the allele in the other 853 

populations.  854 

BEDtools74 was used to annotate those hSNCs in conserved or human-specific weak intragenic 855 

enhancers and the density of changes was calculated as the number of hSNCs present in each enhancer 856 

divided by the length of the enhancer. 857 

To determine which human-specific intragenic weak enhancers were enriched in human-specific 858 

changes, we compared their density to what would be expected at random. For that, we first 859 

established the number of hSNCs that fall in human intragenic enhancers with weak enhancer states 860 

associated with 1-to-1 orthologous regulatory regions (our universe of enhancers). In each simulation, 861 

this number of mutations was randomly placed in this universe and we computed the density for each 862 

of the human-specific weak intragenic enhancers (10,000 simulations). With this approach, we 863 

corrected for the differences in the length of the enhancers. The P-value for each enhancer was 864 

computed as the number of simulations with a density equal to or above the observed density for that 865 

particular enhancer. All P-values were corrected by multiple testing using the Bonferroni method 866 

with the number of tests equal to the number of human-specific weak intragenic enhancers. 867 

We then assessed whether the number of enhancers that were statistically enriched in hSNCs (or 868 

number of hits) was greater than what would be expected at random. In order to do that, for each 869 

enhancer we defined its mutation density critical value adjusting by multiple testing and using the 870 

simulated values. For example, in a hypothetical case of 100 enhancers and 10,000 simulations, for 871 

each enhancer we would order its simulated density of hSNCs from smallest to largest and take the 872 

5th value as the critical one (given that our chosen alpha equals 5%, but it has to be corrected by 100 873 

tests; therefore it becomes 0.05%). Once we established a critical value for each human-specific 874 

intragenic weak enhancer, we determined, for each simulation, how many enhancers had a density 875 
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equal to or above their corresponding critical value. Finally, we computed the P-value comparing the 876 

number of artificial hits in each simulation with the  number of observed hits. 877 
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Figures: 908 

Figure. 1 Overview of the study design and data generated. a, One human and eight non-human 909 

primate lymphoblastoid cell lines (LCLs) were cultured to perform a variety of high-throughput 910 

techniques including whole genome sequencing (WGS), whole genome bisulfite sequencing 911 

(WGBS), chromatin-accessibility sequencing (ATAC-seq), chromatin immunoprecipitation 912 

sequencing (ChIP-seq) targeting five different histone modifications (H3K27me3, H3K4me1, 913 

H3K27ac, H3K4me3 and H3K36me3) and transcriptome sequencing (RNA-seq). We integrated 914 

previously published datasets from an extensively profiled human LCL (GM12878) to balance the 915 

number of human samples (Supplementary Methods). b, Number of sequencing reads generated per 916 

sample and experiment. Striped lines indicate data retrieved from previously published 917 

experiments81,82. 918 

Figure 2. Epigenetic and regulatory characterization of regulatory elements annotated in 919 

primates. a, Approach followed to annotate and classify regulatory elements (RE). In short, promoter 920 

and enhancer states with three activity levels (strong, poised or weak) were annotated for DNA 921 

regions based on a combination of chromatin marks and ATAC-seq signals. Regulatory elements 922 

(RE) were then linked to genes based on 1D gene proximity and 3D published chromatin maps for 923 

LCLs. RE not associated with any gene are referred to as orphan RE. Extended representation in 924 

Supplementary Fig. 1. b, Number of regulatory elements with promoter and enhancer epigenetic 925 

states in each species. c, Number of regulatory elements associated with genes and orphan regulatory 926 

elements in each species. Genes are divided in 1-to-1 orthologous protein-coding (1-1 orth PC), 927 

protein-coding (PC) and non-protein-coding genes. Dashed lines in  b, and c, indicates the average 928 

number of RE with promoter and enhancer states annotated across species.  929 

Figure 3. Different regulatory activities have different patterns of epigenetic and sequence 930 

conservation. a, Barplots show the average number of orthologous regulatory regions across species 931 

with the corresponding color-coded epigenetic state conserved in 1, 2, 3, 4 or 5 species. b, Distribution 932 

of the sequence conservation scores (calculated as z-scores of the distribution of phastCons30way19 933 

values for non-coding regions in the same Topologically Associated Domain58; Methods) of human 934 

orthologous regulatory regions with different epigenetic states conserved in 1, 2, 3, 4 or 5 of our 935 

primate species.  936 

Figure 4. Epigenetic signals in gene regulatory architectures explain gene expression levels. a, 937 

Classification of regulatory elements according to their regulatory roles in gene architectures. Of note, 938 

EiE may interact with any type of enhancer in a regulatory architecture (prE,  gE, PiE and EiE).  b, 939 

Average number of orthologous protein-coding genes associated with each type of regulatory 940 
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element. c, Average number of regulatory elements across species associated with 1-to-1 orthologous 941 

protein-coding genes classified as gP, gE, prE, PiE and EiE. Error bars show the standard deviation 942 

across species and differently shaped dots show the number corresponding to each species. d, 943 

Proportion of regulatory elements with a given epigenetic state associated with 1-to-1 orthologous 944 

protein-coding genes for each type of regulatory component. Dots and error bars show the average 945 

proportion and standard deviation across species, respectively. e, Sparse Partial Correlation Networks 946 

showing the statistical co-dependence of the RNA-seq (Gene expression) and the consensus ChIP-947 

seq signals for the five histone marks in the every component represented by the eigencomponents 948 

(minimal partial correlation = -0.41; maximal partial correlation = 0.33; all partial correlations 949 

Benjamini-Hochberg's P < 4.1 x 10-303). Edge widths are proportional to absolute partial correlation 950 

values within each network. The networks are based on the 5,737 1-to-1 orthologous protein-coding 951 

genes associated with at least one regulatory element in all species. Only nodes for values with 952 

significant and relevant partial correlations are represented. 953 

Figure 5. Weak and poised enhancer states echo brain-specific regulation. a, Functional 954 

enrichment of conserved and human-specific activities in genic promoters and intragenic enhancers. 955 

The size of circles indicates the proportion of genes included in each functional category from the 956 

total number of genes contained in the corresponding regulatory group. Number of genes in each 957 

category and extended functional annotation in Supplementary Fig. 57. b, Heatmap of standardised 958 

expression across tissues in state/component regulatory groups with functional enrichments. Number 959 

of genes included in each category and representation with groups without functional enrichment in 960 

Supplementary Fig. 58. c, Median expression levels in testes, LCLS, brain and whole blood of genes 961 

groups in b. 962 

Figure 6. Intragenic enhancers with weak activities co-localize with signals of recent human 963 

selection. a, Specific enrichment of genes with signals of positive selection in genes that harbor 964 

human-specific intragenic enhancers with a weak enhancer state. Epigenetic states for each species 965 

are depicted in white, grey or blue boxes. b, Top: Schematic representation of a human-specific 966 

intragenic weak enhancer with a hSNC (nucleotide change in humans shown in red) contained in a 967 

gene with signals of selection. Bottom: Venn diagram illustrating the overlap between the 41 genes 968 

containing human-specific weak intragenic enhancers with signals of selection and the 30 genes with 969 

these enhancers and with human single nucleotide changes (hSNCs) fixed in humans and distinct 970 

from other non-human primates. 971 

 972 

 973 
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