
PYMEVisualise User Guide

The python-microscopy team

Sep 28, 2020

Contents

1 Installation 2
1.1 System requirements . 2
1.2 Installation on Windows using executable . 2

2 Data exploration 3
2.1 Importing data . 3
2.2 The data pipeline . 5
2.3 Colour channels . 5
2.4 ROI selection / the “Output Filter” . 6
2.5 Interactive display . 6

3 Data correction and quality control 6
3.1 Chaining . 6
3.2 Drift correction . 7
3.3 Fourier Ring Correlation . 7
3.4 Photophysics . 7

4 Image Reconstruction 9

5 Surface extraction 10
5.1 Isosurfaces . 10
5.2 Spherical harmonics . 11
5.3 Mesh manipulation . 14

6 Quantification 14
6.1 Pairwise distances . 14
6.2 Single-molecule tracking . 14
6.3 Other algorithms . 16

7 Animation 16

8 Synthetic data 16

9 Editing the pipeline “recipe” 16

10 Programmatic usage 19
10.1 Shell . 19
10.2 Jupyter notebook . 19
10.3 Plugins . 20

11 Further reading 20

1

12 Appendix 20
12.1 Ratiometric colour settings . 20
12.2 Isolating a single channel for processing . 20

References 22

1 Installation

PYMEVisualize is a part of PYthon Microscopy Environment (PYME) (http://python-microscopy.org/), an
open-source package providing image acquisition and data analysis functionality for a number of microscopy
applications, but with a particular emphasis on single molecule localisation microscopy (PALM/STORM/PAINT
etc . . .). There are multiple routes for installation, detailed at https://www.python-microscopy.org/doc/Installation/
Installation.html . The simplest installation route uses a packaged installer on Windows or macOS (see Windows
instructions below).

1.1 System requirements

PYMEVisualize runs on Windows, OSX, and Linux. It will run on relatively low spec machines (even a Raspber-
ryPI), but for an enjoyable user experience we recommend:

• ~2GHz dual core CPU

• 4 GB RAM

• Hardware OpenGL support

• Wheel mouse for zooming in the interactive display

1.2 Installation on Windows using executable

1. Download the latest package from http://python-microscopy.org/downloads/.

2. Double-click python-microscopy-XX.XX.XX-Windows-x86_64.exe.

3. If prompted with Windows protected your PC, click More info and then Run anyway, as shown in Fig. 1.1 a.

4. Follow instructions in the installer, leaving all options at their default.

6. When the installation is finished, locate the PYMEVisualise shortcut on the desktop. Double click it to
launch PYMEVisualize, as shown in Fig. 1.1 b.

Fig. 1.1: Single-click installation and how to launch PYMEVisualize. (a)Potential Windows Defender error mes-
sages that can be safely ignored to install PYMEVisualize. (b) Double-click the PYMEVisualize logo on the
desktop to start PYMEVisualize.

2

http://python-microscopy.org/
https://www.python-microscopy.org/doc/Installation/Installation.html
https://www.python-microscopy.org/doc/Installation/Installation.html
http://python-microscopy.org/downloads/

2 Data exploration

2.1 Importing data

Data can be opened using the File→Open menu command after launching PYMEVisualize, or by specifying the
filename on the command line (e.g. PYMEVis C:\path\to\file.h5r)1 .

Three data formats are currently supported for localisation data: HDF5 (.h5r/.hdf), delimited text .txt/.csv, and
matlab .mat files. In each case, the data should take the form of a table of values where each row corresponds to
a detected single molecule event and each column corresponds to a parameter. The .txt/.csv and .mat importers
are flexible and support a variety of different column layouts, with the only hard requirements being that there
are columns x and y for the position of a molecule and that all columns have equal lengths. Files may contain as
many other columns as they like, and columns can be in any order. To take full advantage of PYMEVisualise, the
following parameters should also be included: the time/frame number at which the event was detected, the event
amplitude, event width, and the estimated localisation error, accessed through the column names t, A, sig, and
error_x, respectively.

.h5r/.hdf formats

The .h5r format is a custom format based on top of HDF5 and used by the analysis components of PYME to save
localisation results and metadata. It has fixed table and column names and everything needed is read automatically
from the file. It is significantly faster to read and has a smaller file size than .mat and .txt/.csv

The .hdf format is a slightly more generic HDF5 based format which has more freedom with how data is arranged
within the HDF5 container. This is a good target for programs wishing to save data for use in PYME and avoid
the performance issues inherent in saving as .txt.

Delimiter separated text (.txt/.csv)

PYME supports both tab and comma delimited text files using the .txt and .csv extensions, respectively. In both
cases, the column names are defined using an import dialog (Fig. 2.1 a). It is possible to pre-populate the column
names to speed up the process by adding a python style comment (signified by a leading #) to the first line of the
file containing a list of delimiter separated column names. The dialog will still be shown for confirmation, but the
correct column names should already be entered.

Matlab .mat files

We support MATLAB files in two formats: each column stored as a separate variable in the .mat file, or all columns
in a single variable (2D array). The first format is preferred. If the variable names in the .mat file correspond to
the standard variable names (x, y, z, etc . . .) described in Importing data, .mat files will open automatically.
Alternatively, an import dialog (Fig. 2.1 a) will allow mapping of column names upon import, as described in
Delimiter separated text (.txt/.csv). If the .mat file contains a single array, the import dialog (Fig. 2.1 b) is a little
more primitive, but the same principle applies: each column needs to be given a name, and the parameters x and
y must be defined. The names are specified by typing a comma separated list of parameters into the supplied
box. Each of the parameters must be enclosed in double quotes, and there must be exactly the same number of
parameters as there are columns in the 2D MATLAB array.

1 You can also associate PYMEVisualise with a particular file type by using the “Open With” command in the windows explorer and
locating the PYMEVis.exe (under Scripts in the directory you installed PYME to).

3

Fig. 2.1: Import dialog boxes for .txt/.csv and .mat file. (a) The dialog box that pops up when opening a text (.txt)
or comma-separated value (.csv) file or a multi-column MATLAB (.mat) file. It lists a guess for each parameter
name and the first ten values in that column. Columns can be renamed to match the recommended parameters not
yet defined (yellow). The green text on the left indicates that required parameters (x and y) have been defined. (b)
The dialog box that pops up when opening a single-array MATLAB (.mat) file. The name of the 2D MATLAB
array containing localisation data is specified in the Matlab variable name box, and parameter names for each
column within that array are specified by typing a comma-separated list of parameters into the Field Names box.

Metadata

Acquisition metadata describing camera properties, localization routines, etc., can be important for quality con-
trol and analysis. Metadata is automatically loaded from .hdf/.h5r files, and improved metadata handling for
other file formats is on our TODO list. In the meantime, missing metadata can be supplied by the user in the
Shell tab of PYMEVisualize (see Shell). For example, estimation of dye photophysics requires the Camera.
CycleTime metadata entry (see Photophysics). To set Camera.CycleTime to 100 milliseconds, enter
pipeline.mdh['Camera.CycleTime'] = 0.100 into the shell. For more information on metadata,
see http://python-microscopy.org/doc/metadata.html.

Fig. 2.2: The PYMEVisualize GUI with a loaded data set. (a) Interactive display of ~1.7 million data points from
a super-resolution image of the endoplasmic reticulum in a U2OS cell, courtesy of Yongdeng Zhang and Lena
Schroeder. (b) The expanded filter for this image. (c) An example editing dialog for the error_x filter.

Having successfully loaded a dataset, the window should resemble Fig. 2.2 a. If nothing is displayed, don’t panic:
the most common reason is that the filter (see The filter section below) is throwing away all the data points.

4

http://python-microscopy.org/doc/metadata.html

2.2 The data pipeline

Data loaded into PYMEVisualise is processed using a configurable pipeline, accessed in the PYMEVisualize
graphical user interface under the Data Pipeline tab (see Fig. 2.2 b for an example). By default, the pipeline
loads with two sections, ProcessColour which extract and process colour information, if present in the input,
and FilterTable which filters on localization precision etc . . . Expanding portions of the pipeline, such as
FilterTable (see Fig. 2.2 b, and the section below), allows for direct manipulation of their settings. Many of the
additional manipulations accessible from the menus, such as drift correction and repeated localization chaining,
will add steps to this pipeline. The parameters of these steps are then adjustable and will update the output in
real-time. The entire pipeline can also be saved and re-loaded at a later date.

The filter

The filter (Fig. 2.2 b) restricts analysis and visualization to a subset of the data source. It allows specification of
a valid range for each parameter, and points with parameters in these ranges are kept. The filter is used to discard
erroneous events where, for example, the localization fit yielding the point picked up a noise spike or did not
converge.

The filter is controlled from within the data pipeline in the sidebar, and can be expanded by clicking on FilterTable.
Right clicking in the table gives you the option to add and, if a parameter is selected, edit or delete a parameter.
Double-clicking on a parameter also enables editing. Editing parameters brings up a dialog, as shown for the
error_x parameter in Fig. 2.2 c. A histogram of the selected parameter is displayed and the current bounds are
indicated by red vertical lines. These lines can be dragged with the mouse to change the filter bounds. The filter
editor (and all other histogram editors) also understand the following keys if they have focus (i.e. if the user clicks
on the histogram).

m sets the bounds to the minimum and maximum values of the variable

p sets the bounds to the 1st and 99th percentiles

l toggles log scaling on y-axis

The text editing boxes above the histogram can also be used to update parameter bounds. The filter will typically
come with default bounds for A (the point amplitude), sig (the standard deviation of the fitted Gaussian), and
error_x (the estimated error in the x position). The default values in PYMEVisualize are for imaging at ~647
nm excitation with a 1.47NA objective, and quite likely need changing. Notably, A will need to be changed for
different intensity calibrations, and sig will need to be changed when working at different wavelengths.

2.3 Colour channels

PYMEVisualise uses a probabilistic mechanism of channel assignment through which each fluorophore is given
a probability of belonging to each of the colour channels present in the sample. Initially designed to support
ratiometric imaging where colour assignments are not absolute, it is a flexible model which can also support
simpler scenarios where channels are well separated or imaged sequentially. Colour assignment is performed by
the ProcessColour pipeline module and three different methods of assigning colour probabilities are available:
Bayesian channel assignment for ratiometric localisation data, temporal assignment for sequentially localised
fluorophores, and pre-assignment using a probe column for imported data where channel assignment has already
been performed. The method of colour assignment will be chosen automatically based on the file metadata and
the presence of columns named either probe (pre-assigned), or gFrac2 (ratiometric). Under the hood, these all
feed into the probabilistic colour model resulting in special p_<channel_name> columns. If multiple color
channels are detected, PYMEVisualize will automatically generate layers (see Interactive display) for each color
channel when the file is loaded, in addition to the standard layer showing all points. See Ratiometric colour
settings and Isolating a single channel for processing for details on ratiometric colour processing and channel
extraction for non-colour aware processing routines.

2 Corresponding to the ratio of short channel to total intensity for a single event.

5

2.4 ROI selection / the “Output Filter”

The “Output Filter”3 is located immediately below the data pipeline. It is similar to the filter within the pipeline,
but operates after all other processing steps and immediately before display. Its primary use is for cropping the
data to a smaller spatial ROI by adding filters on the x and y parameters. Rather than manually creating and
setting these filters, a selection can be made by clicking and dragging with the left mouse button within the view
tab (a yellow selection rectangle should be shown), and then clicking on Clip to Selection in the Output Filter pane
(or pressing F8). The ROI can then be cleared by clicking the same button (or by pressing F8 again).

2.5 Interactive display

The processing pipeline feeds into the interactive display (Fig. 2.2 a). By default the display shows a single
“Points” layer which renders the processed localisations as a point cloud. Points layers (see, e.g. Fig. 2.2 a)
support a number of different display modes, from simple dots, through shaded spheres, to transparent Gaussians
(point sprites), which provide a real-time approximation to the popular Gaussian reconstruction mode. Points can
be coloured by any of the fitted parameters (via the Colour dropdown), with a variety of different look up tables
(LUT) and with adjustable size and transparency. Extra layers can be added to simultaneously visualise different
steps in the processing pipeline, colour channels, or data types. In addition to the Points data type, there are layers
for rendering triangular meshes/surfaces, octrees, single particle tracks and voxel-based image data.

The display can be zoomed in and out using the mouse wheel, and panned by dragging with the right mouse
button. Choosing View→Fit from the menu will reset the display such that the whole data set fits within the
display window. Pressing C recenters the data bounding box on the current view. A scale bar and color lookup
table are on the right of the display window.

3 Data correction and quality control

3.1 Chaining

A fluorophore that is on for multiple frames in the raw data will appear as a series of localizations at sequen-
tial times. To group localizations close in space and time into single events, run Corrections→Chaining→Find
consecutive appearances. A dialog will appear allowing chaining options to be set.

class FindClumps

Clump radius is the maximum spatial distance between chained localizations. The default is
twice the localization’s lateral fit error (a 2𝜎 should correctly link 95% of localisations). ‘

Time window is the maximum temporal distance (in frames) allowed between chained local-
izations.

Pressing OK in the dialog will then identify which localizations are likely members of a chain, but will not
replace the members of the chain with a single grouped/averaged localisation. This is done in a separate step,
Corrections→Chaining→Clump consecutive appearances.

3 This name is historical, and refers to a time when this was the only filter in the workflow. It will probably be renamed to ROI at some
point in the future.

6

3.2 Drift correction

PYMEVisualise supports 3 forms of drift correction out of the box, with additional algorithms available as plugins.
The builtin methods are as follows:

Fiducial based drift correction This uses fiducials localised along with the blinking molecules to
correct drift, and assumes that the fiducial localisations are present in a different dataset to the
single molecule localisations (as optimal detection, background subtraction, and fitting settings
are likely to be different for fiducials and molecules). If the data was analysed using PYME, both
these datasets should be in the same file, and running fiducial based correction should be as sim-
ple as selecting Extras→Fiducials→Correct from the menu (and potentially entering the fiducial
diameter to permit filters to be set accordingly). If fiducial and single molecule datasets are not in
the same file, you will need to load the localisations first and then run Extras→Fiducials→Load
fiducial fits from 2nd file to load the fiducial fits. The algorithm extracts fiducial traces, and
aligns and averages the traces from multiple fiducials (weighted by localisation precision). It
tolerates small gaps in the fiducial traces as long as not all fiducials traces are broken in the
same frame. After correction is complete, Extras→Fiducials→Display Correction Residuals,
will show the residuals (error between each fiducial and the average correction) which gives an
indication of correction quality.

Autocorrelation based drift correction Accessed as Corrections→Autocorrelation based drift cor-
rection, this is essentially an implementation of the algorithm described in the supplement of
[huang2008], dividing the localizations into overlapping time blocks, and performing autocor-
relation between those blocks.

Transmitted light correction This relies on drift measurements made during image acquisition us-
ing a transmitted light channel (see [mcgorty2013] - our implementation does not assume, how-
ever, that correction of x-y drift is necessarily performed in real-time, rather saving the recorded
drift values along with the image data), and requires suitable drift event data in the input files.

3.3 Fourier Ring Correlation

Fourier ring correlation (FRC) is an established technique for estimating the resolution of localization-based im-
ages [nieuwenhuizen2013]. To use FRC to estimate resolution in PYMEVisualize, first select Extras→Split by
time blocks for FRC. The will create 2 fake colour channels, block0 and block1, based on dividing local-
isations in time with a temporal block size set using the dialog in Fig. 3.1 a (for multicolour data it will split
the existing color channels in 2 so you will get double the number of colour channels, e.g. chan0_block0,
chan0_block1, chan1_block0, chan1_block1).

Render images by choosing Generate→Histogram from the menu and selecting the two blocks corresponding to
the color channel of interest (the FRC module currently assumes a single color), as shown in Fig. 3.1 b. Note
that in principle any image generation method (see Image Reconstruction) can be used, but histogram rendering
is probably the best for a pure resolution assessment.

In the rendered image window, choose Processing→FRC and select the renderings of the two time blocks to
compare as in Fig. 3.1 c. An FRC plot like Fig. 3.1 d will appear, quantifying resolution.

3.4 Photophysics

For a given image, it is possible to estimate the photophysics of the dye or fluorescent protein used in acquisition.
To do this, first run through the clump detection part of the chaining procedure described in Chaining. Then select
Analysis→Photophysics→Estimate decay lifetimes. This will display three graphs, shown in Fig. 3.2, indicat-
ing the fluorescence decay rate of the fluorophore, the mean number of fluorophores in an ON state per second
throughout the duration of imaging, and the mean number of photons per frame.

Note that the metadata setting Camera.CycleTime, which is the integration time of the camera used to collect
the raw localization data, must be present in order to analyze photophysics. See Metadata for details on how to
ensure this metadata is present.

7

Fig. 3.1: Dialogs and plots in the Fourier ring correlation pipeline. (a) Dialog for Extras→Split by time blocks for
FRC, used to set FRC time block size. (b) Histogram generation dialog window. Pixel size is set to 5 nm and FRC
block0 and block1 are selected for rendering. (c) Dialog for Processing→FRC, indicating blocks to compare
for FRC. (d) FRC plot for image shown in Fig. 2.2 a.

Fig. 3.2: Plots generated from running Analysis>Photophysics>Estimate decay lifetimes on data shown in Ra-
tiometric colour settings. (a) Estimation of fluorophore decay rate, indicated as 𝜏 in the upper right of the plot.
(b) Estimation of mean number of fluorophores in an ON state per second throughout the duration of imaging,
indicated as 𝜏 in the upper right of the plot. (c) Estimation of the mean mean number of photons per fluorophore
in the ON state, indicated as Ph. mean in the upper right of the plot.

8

4 Image Reconstruction

In many cases it is desirable to reconstruct a density image analogous to a more conventional voxel based dataset
such as would be acquired by confocal microscopy. PYMEVisualise supports a number of different image recon-
struction algorithms, which can be found under the Generate menu. The following methods are supported.

Histogram A histogram of localisation positions with a specified bin size. The simplest possible
reconstruction technique.

Gaussian The popular reconstruction method which creates a density image by summing Gaussians
at each localisation. By default, the estimated localisation error is used to determine the width
of the Gaussians (as introduced in [betzig2006]), but any of the fitted parameters can be used.
Using the fitted event width (sig) instead is a simple way of generating synthetic diffraction
limited images.

Jittered triangulation Described in [baddeley2010], the jittered triangulation method performs a
local density estimate based on a Delaunay-triangulation of the localisation data. When com-
pared to Gaussian rendering it gives less weight to stochastic features resulting from only a few
localisations and generally gives better quality segmentations when thresholded in subsequent
processing. In the limit of high emitter density, it also gives better resolution (although practical
emitter densities are seldom high enough for this to be relevant).

The variable which dictates the jitter magnitude can be selected, and defaults to a measure of
the distance between a point and its neighbours. The number of samples to average defaults to
10.

In addition to jittering, it is also possible to smooth the triangulation by averaging several tri-
angulations performed on Monte-Carlo subsets of the point positions. To try this out, set the
multiplier for the jitter to 0 and set the MC subsampling probability to less than 1 (~ 0.2 is
probably a good start).

Quadtree Also described in [baddeley2010], the quadtree method renders a quadtree where the in-
tensity of each leaf of the tree is proportional to the density of points within that leaf, dividing
bins when the number of localisations contained is greater than the Max leaf size parameter.
This leads to adaptive bin sizing where areas of the image that are localisation poor have large
bins and localisation dense regions have small bins. A convenient way to think of the quadtree

method is that it yields an approximately constant signal to noise (of ∼
√︁

𝑚𝑎𝑥_𝑙𝑒𝑎𝑓_𝑠𝑖𝑧𝑒
2) across

the image regardless of local point density. Like the jittered triangulation method, it helps avoid
some of the visual and segmentation artifacts obtained using the Gaussian method when sam-
pling density is low.

3D versions of the histogram, Gaussian, and Jittered Tirangulation methods are also available. These generate a
volumetric stack rather than a 2D image.

After an image is generated, it will pop up in a new window (Fig. 4.1 b). Colour scaling in the viewer can be
adjusted by expanding the Display Settings tab to the right of the image. When viewing multi-colour images,
individual channels will appear in separate tabs, along with a composite tab in which the channels are overlaid.
Generated images may be saved as raw values (File→Save as) suitable for quantitative analysis in downstream
software, or exported as scaled and colour-mapped snapshots (View→Export Current View) for inclusion in pre-
sentations or publications. The default formats are floating point TIFF for raw data and PNG for snapshots.

Note: Some versions of ImageJ/FIJI do not load floating point TIFF (and therefore our exported images) correctly,
although the Bio-Formats importer does. If an exported .tif looks weird in ImageJ, try opening with the Bio-
Formats importer.

9

Fig. 4.1: 2D Gaussian rendering of a 3-color super-resolution image of cis, medial, and trans-Gogli. (a) A
Generate Image. . . dialog specifying a pixel size of 5 nm, a standard deviation of error_x nm for each rendered
Gaussian, and a request for renderings of all 3 colour channels. (b) An image viewer displaying a composite of
the rendered colour channels. Individual channels are accessible via tabs (chan0, chan1, chan2) in the image
viewer. Clicking on Display Settings will reveal a histogram that can be used to adjust colour channel contrast,
among other display tools.

5 Surface extraction

5.1 Isosurfaces

Isosurfaces are a common tool for visualising volumetric voxel data sets such as those produced by confocal
microscopy. The algorithms and software tools used to generate isosurfaces for confocal can be applied to super-
resolution images after performing a 3D density reconstruction (see Image Reconstruction). This indirect ap-
proach, however, has a number of disadvantages. To capture detail in the data sets generally requires the use of a
small reconstruction voxel size, resulting in exceptionally large datasets. A 10x10x10 µm super-resolved volume
with a 5 nm pixel size would give rise to an 8 gigavoxel (32 GB) reconstructed volume. This represents a major
computational challenge, in practice limiting such reconstructions to small ROIs and often smoothed and down-
sampled data. A second limitation is the need to choose this voxel size in advance. Due to the stochastic nature of
localisation microscopy, choosing an appropriate reconstruction voxel size is not a trivial problem - different parts
of the image could well have a different optimal voxel size.

In PYMEVisualise we have implemented algorithm which permits isosurfaces to be extracted much more effi-
ciently from point datasets without a conventional image intermediate. Our algorithm initially places points into
an octree data structure [meagher1980] (Fig. 5.1 b). We then cut / truncate the octree at a given minimum number
of localisations per octree cell (equivalent to a minimum signal to noise ratio (SNR) - see [baddeley2010]). This
has the effect of dividing the volume into cubic cells with a size which adapts to the local point density. Cells will
be large in areas with few localisations, and small in areas which are localisation dense. The result is a volumetric
data structure that contains the same information as a fully sampled reconstruction but with a lot less elements.
We calculate a local density of localisations in each cell and then run the Dual Marching Cubes ([schaefer2005])
algorithm on this with a given density threshold (Fig. 5.1 c).

The algorithm for isosurface generation is accessible from the menu as Mesh→Generate Isosurface. This will con-
struct the octree over which the isosurface is calculated and then display a dialog (Fig. 5.2 a) allowing parameters
of the isosurface generation to be adjusted. The parameters are as follows:

class DualMarchingCubes

Parameters

• Input – the octree name (do not modify)

• NPointsMin – the leaf size (number of localisations) at which we truncate the octree.

10

Fig. 5.1: Octree generation. (a) The 3D dataset from Fig. 2.2 requires 900 megavoxels to sample at 5 nm intervals.
To reduce memory use, we sample with a sparse octree. (b) Birds-eye view of an octree used to generate an
isosurface, overlaid on a subregion of the dataset shown in Fig. 2.2 a. (c) A birds-eye view of a dual grid used to
generate an isosurface, overlaid on a subregion of the dataset shown in Fig. 2.2 a. Each vertex of the dual grid the
center of an octree leaf.

A higher value increases the SNR at the expense of resolution.

• ThresholdDensity – the threshold on density (in localisations/nm^3) at which to
construct the isosurface.

• Remesh – improves mesh quality by subdividing and merging triangles such that tri-
angles are more regularly sized and the number of connections at each vertex is more
consistent. This improves both appearance and the reliability of numerical calculations
on the mesh (e.g. curvature and vertex normals). Disable when experimenting with
thresholds to improve performance.

• Repair – will patch holes in the mesh (usually not needed).

5.2 Spherical harmonics

Another method of surface extraction from point data sets is to fit spherical harmonics (Analysis→Surface
Fitting→Spherical Harmonic Fitting→Fit Spherical Harmonic Shell). In contrast to the isosurface method (which
simply thresholds on density) spherical harmonic fitting assumes that points lie on a surface. Because it is model
based it is much better constrained and can extract accurate surfaces from significantly sparser datasets. It is ide-
ally suited to the extraction of the cell nuclear envelope based on a lamin or NPC staining, but is also applicable
to other “blobby” structures which are shell-labelled [singh2011]. When multiple objects are present in a field of
view, these will need to be segmented first.

11

Fig. 5.2: Isosurface generation. (a) Dialog box for isosurface generation. (b) Birds-eye view of the octree layer
used to generate isosurface, overlaid on the original dataset shown in Fig. 2.2 a. (c) Birds-eye view of the generated
isosurface. (d) Middle portion of the isosurface in c, colored by mean curvature and rotated for perspective.

12

Fig. 5.3: Data from [barentine2019].

13

5.3 Mesh manipulation

A number of operations are possible on meshes generated using either isosurfaces or spherical harmonics. These
meshes can be colored by variables, such as x, y, z, and curvature, as in Fig. 5.2 d. Meshes can be exported
to STL or PLY format, suitable for importing in other software or 3D-printing. There are also a growing num-
ber of analysis options (e.g. Mesh→Analysis→Distance to mesh which calculates the signed distance between
localisations and the mesh) which operate on the meshes.

6 Quantification

PYMEVisualise includes several quantitative analysis routines, operating both directly on localisation data and on
reconstructed images. An incomplete description of some of the most well used options is given below.

6.1 Pairwise distances

Pairwise distance histograms are a powerful metric calculated directly from the point data set without the need
for reconstruction. They measure the distribution of distances from each point to every other point and can
be used for cluster analysis, either through the raw pairwise distance histogram (Analysis→Clustering→Pairwise
Distance Histogram) or using derived measures such as Ripleys K & L functions (Analysis→Clustering→Ripley’s
K/L) [kiskowski2009], [nicovich2017]. When applied between two colour channels, they provide a co-localisation
(or co-clustering) measure (Analysis→Pointwise colocalisation) [coltharp2014]. It is also possible to infer some
shape features from the pairwise distance histogram [osada2002], [curd2020].

To the best of our knowledge, the algorithms used for calculating pairwise distances histograms in PYMEVisualise
are significantly more efficient than existing published options. This is achieved by calculating the histogram on
the fly and never storing the full pairwise distance matrix. To give a rough idea, we are 20x faster than the
already optimised numpy.histogram(scipy.spatial.pdist(...)) (or equivalent MATLAB calls).
We also use several orders of magnitude less memory (memory demand scales as 𝑂(𝑁) rather than 𝑂(𝑁2) as for
pdist()) meaning that we can feasibly compute pairwise distance histograms from much larger datasets (100k
points requires ~1.6MB as opposed to ~1GB).

For completeness, it is also possible to calculate a histogram of nearest neighbour distances
(Analysis→Clustering→Nearest Neighbor Distance Histogram). Whilst somewhat easier to interpret, these tend
to be much more susceptible to noise than the full pairwise distance histogram so it is preferable to use the latter
where possible.

6.2 Single-molecule tracking

PYMEVisualise offers a couple of particle tracking algorithms. The simplest option, suitable for well separated
particles, is accessed as follows. Open a dataset containing at least the variables x, y, and t (see Importing data).
Navigate in the menu to Analysis→Tracking→Track single molecule trajectories. A dialog box will pop up as
shown in Fig. 6.2 a. The maximum distance between two consecutive points which will still be connected as a
track is given by ClumpRadiusScale*ClumpRadiusVariablewhere ClumpRadiusVariable can be
any of the fitted parameters/columns or a constant. For particle tracking it makes sense to leave this at it’s default
of a constant 1 nm and just alter ClumpRadiusScale. ClumpRadiusScale should be set to a value that is
greater than the maximum distance a particle is expected to move within one frame4, but less than the distance
between separate particles. Min clump size refers to the minimum number of points that need to be in a track.
Time window is the maximum distance in time between any two consecutive points in a track. Once tracked,
the trajectories will display in a tracks layer (see Interactive display) as in Fig. 6.2 b. Tracks can be optionally
colored and/or filtered by variables from the original dataset, by track unique identifier, by track length, and by
instantaneous velocity. A slightly more sophisticated tracking algorithm, suitable for denser tracking scenarios,
which can use the z-position along with additional features such as particle brightness and shape to improve
linkages is available by manually adding the TrackFeatures module to the pipeline (see Editing the pipeline
“recipe”).

4 Or twice the localisation precision if the molecules are super slow moving and their expected motion is less than this.

14

Fig. 6.1: Pairwise distance histograms. (a) Dialog for generating pairwise distance histograms. (b) Example
pairwise distance histogram of sub-ROI of the image in Fig. 2.2 a with a bin size of 10 and 50 bins. Distance in
nanometers is plotted on the x-axis and counts are plotted on the y-axis.

Fig. 6.2: Tracking Rtn4-SNAP in 2D. (a) Dialog window indicating settings for particle tracking. (b) The resulting
trajectories, displayed with constant coloring. The particles giving rise to these trajectories are visible as points in
Layer 0, which is hidden in this example, as indicated by the transparent eye.

15

6.3 Other algorithms

DBSCAN An implementation of DBSCAN clustering ([ester1996], [nicovich2017]) is available by
selecting Analysis→Clustering→DBSCAN Clump from the menu.

QPAINT Algorithms for ploting and fitting off-time distributions for QPAINT ([jungmann2016])

Chromatic shift calibration A couple of algorithms (Corrections→Shiftmaps→XXX) for calibrat-
ing chromatic shifts between colour channels from bead datasets. Mostly used with ratiometric
localisation analysis.

Vibration characterisation Accessed as Extras→Diagnostics→Plot vibration spectra, this looks
for signatures of instrument vibration in a (rapidly acquired) bead localisation series.

7 Animation

Animations, such as point cloud fly-throughs, are generated from keyframes set by the user in the animation panel.
The animation panel is accessed by selecting Extras→Animation from the PYMEVisualize menus.

A populated Animation pane is shown in Fig. 7.1. Each row in the animation table represents a keyframe. A
keyframe marks the end of a transition in the animation. A keyframe is set by rotating, translating, or zooming
the data to have a desired look and then pressing Add in the Animation pane. Double-clicking on a row allows
editing of the keyframe name, which can be used as a unique descriptor, and duration, which edits the length of
the transition from the previous keyframe to this keyframe (note that the duration of the first keyframe is therefore
a dummy variable). Selecting a row and pressing Delete removes the selected keyframe from the animation.
Keyframes can be saved and loaded in a JSON format using Save and Load, respectively. All keyframes can be
removed at once by pressing Clear.

When the play button is pressed, the animation will play in as a seamless transition through the keyframes in order.
If Capture is pressed, a dialog will pop up and the user will choose a folder in which to save this animation as a
series of image files. Expanding Settings. . . reveals a dropdown menu labeled Export file type, which allows the
user to change the file type of the images exported to JPEG, PNG, or TIFF.

8 Synthetic data

For testing purposes, it can be helpful to generate synthetic data. PYMEVisualize lets users generate synthetic
data using a simulated worm-like chain model (with the right settings this can produce reasonable analogues of a
wide range of filamenteous structures from microtubules to tightly folded DNA), from an image, or from a text
file containing a list of coordinates. First select Extras→Synthetic Data→Configure and choose the point gener-
ating source and set properties associated with the source, as shown in Fig. 8.1 a. Then select Extras→Synthetic
Data→Generate fluorophore positions and events, and a simulated set of localization events is generated, as shown
in Fig. 8.1 b. This data can then be analyzed in the same way that real data would be.

To simulate additional localizations from the same set of points, but using different simulation parameters, edit
the properties as in Fig. 8.1 a and then select Extras→Synthetic Data→Generate events.

9 Editing the pipeline “recipe”

As mentioned in The data pipeline, data flows through a configurable pipeline. When constructing a complex
workflow (e.g. processing different colour channels in different ways - see Isolating a single channel for pro-
cessing) it can be useful to edit this pipeline directly using the recipe editor (Fig. 9.1), accessible via the Pipeline
Recipe tab. This also lets you access additional functionality such as feature based tracking, which is not currently
accessible through the menus. The pipeline is specified by a recipe (a .json textual description) which describes
the various processing steps to be applied. The recipe can be modified, either graphically or as text, saved and
reloaded on a new dataset, or applied to multiple input files in a batch using the bakeshop utility.

16

Fig. 7.1: Actively editing an animation keyframe in PYMEVisualize. This shows an animation with two keyframes
added by rotating the data and pressing Add at each desired rotation. The second keyframe has been double-
clicked, revealing an Edit VideoView window, which allows the user to change the name of the keyframe and the
duration of the transition from the previous keyframe to this keyframe.

17

Fig. 8.1: Generation of synthetic data. (a) Dialog box that appears after selecting Extras→Synthetic
Data→Configure. (b) Example synthetic worm-like chain created using parameters from dialog box in a.

Fig. 9.1: The pipeline as seen in the recipe editor. Custom workflows can be created by manually adding process-
ing modules.

18

10 Programmatic usage

10.1 Shell

The Shell tab is a functional Python command line embedded within the program. The pipeline can be accessed
directly from the shell, and behaves like a dictionary keyed by variable names. Pylab is imported in the shell mak-
ing a number of MATLAB-style plotting and basic numeric commands accessible (see the matplotlib webpage for
more docs). One can, for example, plot a histogram of point amplitudes by executing hist(pipeline['A']).
Pipeline data sources can be accessed by entering pipeline.dataSources[datasource_key]. For a list
of datasource keys, type pipeline.dataSources.

10.2 Jupyter notebook

PYMEVisualize can be used directly from a Jupyter notebook. At the top of the notebook, enter from PYME.
LMVis import VisGUI, %gui wx, and then pymevis = VisGUI.ipython_pymevisualize().
This makes it possible to access a PYMEVisualize instance from a notebook through the pymevis variable.
Setting pipeline=pymevis.pipeline gives the user access to the PYMEVisualize pipeline in exactly the
same way as described in Shell section. An example of generating a point cloud, passing it to a tabular data source,
and visualizing the data source is shown in Fig. 10.1.

Fig. 10.1: An example of generating a point cloud, passing it to a tabular data source, and visualizing the data
source in PYMEVisualize from a Jupyter notebook.

Please note that both PYME and the Jupyter kernel must be set up in the Framework build on a Mac
(see https://python-microscopy.org/doc/Installation/InstallationFromSource.html) for this to work. To install
the Jupyter kernel in the Framework build, activate your_pyme_environment and then type PATH/
TO/CONDA/ENVIRONMENT/python.app/Contents/MacOS/python -m ipykernel install
--user --name your_pyme_environment.

19

https://python-microscopy.org/doc/Installation/InstallationFromSource.html#installationfromsource

10.3 Plugins

Details on extending and writing plugins for PYMEVisualize are available at http://python-microscopy.org/doc/
hacking.html. A template for extending PYMEVisualize can be found at https://github.com/python-microscopy/
pyme-plugin.

11 Further reading

Documentation is kept up-to-date at http://python-microscopy.org/doc/.

12 Appendix

12.1 Ratiometric colour settings

When processing ratiometric localisation data (having a gFrac column) the splitting ratios for each dye species
can either be set in the series metadata, or by using the Colour tab (Fig. 12.1). To add a labelling right click
in the Fluorophores list box and select Add. Enter a channel name and splitting ratio in the dialog that opens.
Alternatively click Guess to attempt to automatically detect the channels using the K-means algorithm. Once
added, you can click in the name or ratio columns to edit. The plot above is a scatter plot showing a subset of all
localisations and updates to show the resulting channel assignments.

Thresholds used in the Bayesian assignment process are adjustable in the Channel Assignment panel. A dye is
assigned to a given channel if both it’s probability of belonging to that channel is greater than p_dye and it’s
probability of belonging to any other channel is less than p_other. The defaults assign fluorophores to the
most likely channel and ensure that the chance of a false assignment is less than 10%. We find they seldom
need tweaking. If adjustment is necessary, p_other, which controls the rejection of potentially mis-assigned
localisations, is most useful. It is tempting to think that p_dye should be higher (i.e. we should have a high
certainty that a dye belongs to a given channel), but this would be a mistake - p_dye = 0.1 will include 90%
of the statistical spread of localisations belonging to that channel. p_dye = 0.5 by comparison would only
capture 50% of a dye’s statistical spread and would needlessly discard a large fraction of the localisations.

12.2 Isolating a single channel for processing

To apply processing steps to a single channel (rather than to all channels at once), it needs to be isolated in the
pipeline. To do this, navigate to the Pipeline Recipe tab and select Add Module, as in Fig. 12.2 b. Then select
the ExtractTableChannel recipe from the localisations recipes and press Add. This will result in a dialog
box as shown in Fig. 12.2 c, where here the first color channel, chan0, is selected. Returning to the View tab and
selecting filtered as the output in the upper-left portion of the window shows only the localizations present in
the color channel chan0 (Fig. 12.2 a, bottom). Additional data processing will only operate on this color channel
as long as filtered is selected as the output.

20

http://python-microscopy.org/doc/hacking.html
http://python-microscopy.org/doc/hacking.html
https://github.com/python-microscopy/pyme-plugin
https://github.com/python-microscopy/pyme-plugin
http://python-microscopy.org/doc/index.html

Fig. 12.1: Ratiometric splitting in the Colour tab.

Fig. 12.2: Visualization and color channel selection of 3-color super-resolution image of cis, medial, and
trans-Golgi. (a) Top. All three color channels visualized in a single layer. (b). Selection of the
ExtractTableChannel recipe in the Pipeline Recipe tab and ExtractTableChannel dialog box, set
to extract color channel chan0 from the original data.

21

References

[nieuwenhuizen2013] R. P. J. Nieuwenhuizen et al., “Measuring image resolution in optical nanoscopy,”
Nat. Methods, vol. 10, no. 6, pp. 557–562, 2013.

[baddeley2010] D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization microscopy data,”
Microsc. Microanal., vol. 16, no. 1, pp. 64–72, 2010.

[schaefer2005] S. Schaefer and J. Warren, “Dual marching cubes: Primal contouring of dual grids,” Comput.
Graph. Forum, vol. 24, no. 2, pp. 195–201, 2005.

[ester1996] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters
in large spatial databases with noise,” Proceedings Second Int. Conf. Knowl. Discov. Data Min.,
pp. 226–231, 1996.

[kiskowski2009] M. A. Kiskowski, J. F. Hancock, and A. K. Kenworthy, “On the use of Ripley’s K-function
and its derivatives to analyze domain size,” Biophys. J., vol. 97, no. 4, pp. 1095–1103,
2009.

[osada2002] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distributions,” ACM Trans. Graph.,
vol. 21, no. 4, pp. 807–832, 2002.

[singh2011] S. Singh et al., “Non-parametric Population Analysis of Cellular Phenotypes,” Med Image Com-
put Comput Assist Interv., vol. 14, no. 2, pp. 343–351, 2011.

[meagher1980] D. Meagher, “Octree Encoding: A New Technique for the Representation, Manipulation and
Display of Arbitrary 3-D Objects by Computer,” Rensselaer Polytech. Inst., no. Technical Re-
port IPL-TR-80-111, 1980.

[coltharp2014] C. Coltharp, X. Yang, and J. Xiao, “Quantitative analysis of single-molecule superresolution
images,” Curr. Opin. Struct. Biol., vol. 28, no. 1, pp. 112–121, 2014.

[nicovich2017] P. R. Nicovich, D. M. Owen, and K. Gaus, “Turning single-molecule localization mi-
croscopy into a quantitative bioanalytical tool,” Nat. Protoc., vol. 12, no. 3, pp. 453–461,
2017.

[mcgorty2013] R. McGorty, D. Kamiyama, and B. Huang, “Active microscope stabilization in three dimen-
sions using image correlation,” Opt. Nanoscopy, vol. 2, no. 1, p. 3, 2013.

[curd2020] A. Curd et al., “Nanoscale pattern extraction from relative positions of sparse 3D localisations,”
bioRxiv. 2020.

[huang2008] B. Huang, W. Wang, M. Bates, and X. Zhuang, “3D super-res imaging by STORM,” Science (80-.
)., vol. 319, no. 5864, pp. 810–813, 2008.

[betzig2006] E. Betzig et al., “Imaging intracellular fluorescent proteins at nanometer resolution,” Science (80-
.)., vol. 313, no. 5793, pp. 1642–1645, 2006.

[jungmann2016] R. Jungman et al., “Quantitative super-resolution imaging with qPAINT”, Nat. Methods, vol.
12, no. 5, pp. 439-442, 2016.

[barentine2019] A. E. S. Barentine et al., “3D Multicolor Nanoscopy at 10,000 Cells a Day,” bioRxiv, 2019.

22

	Installation
	System requirements
	Installation on Windows using executable

	Data exploration
	Importing data
	The data pipeline
	Colour channels
	ROI selection / the “Output Filter”
	Interactive display

	Data correction and quality control
	Chaining
	Drift correction
	Fourier Ring Correlation
	Photophysics

	Image Reconstruction
	Surface extraction
	Isosurfaces
	Spherical harmonics
	Mesh manipulation

	Quantification
	Pairwise distances
	Single-molecule tracking
	Other algorithms

	Animation
	Synthetic data
	Editing the pipeline “recipe”
	Programmatic usage
	Shell
	Jupyter notebook
	Plugins

	Further reading
	Appendix
	Ratiometric colour settings
	Isolating a single channel for processing

	References

