
A quick tour of PYMEVisualize
In this tutorial, we’ll touch on several aspects of the PYMEVisualize workflow, including opening
a single-molecule localization microscopy (SMLM) data set, viewing it as points, filtering, and
reconstructing density images, as well as extracting a 3D surface from the data set. The tutorial
does not cover all (or even most) functionality, but rather aims to give a taste of what is
possible. We assume PYMEVisualize is installed on your computer (see supplement or
https://python-microscopy.org/doc/Installation/Installation.html), and that you have downloaded
test_er_data.hdf , a supplementary SMLM data set of the endoplasmic reticulum provided
with this paper.

Launch PYMEVisualize
For the purposes of this tutorial, we’ll launch PYMEVisualize from a command line. On windows,
open Anaconda Prompt. On Mac, open Terminal. Once the command line is open, type 1

PYMEVis and then press enter to launch the application . 2

Once launched, navigate to File > Open.

1 If PYME is installed outside of the Anaconda base environment, type conda activate
<pyme_envronment>. If you are unsure of where PYME is installed, assume you do not need to type this
command.
2 On Windows you should also be able to select PYMEVisualise from the start menu

https://python-microscopy.org/doc/Installation/Installation.html

You will be prompted with a file dialog asking you to Choose a file to open. Select
test_er_data.hdf , which is provided with this publication. Your screen will appear as below.

Filtering
We want to restrict our data to well localized events. Click the FilterTable box in the data
pipeline view to expand, as shown below.

Double click on the entry for error_x to bring up the dialog as shown below. Drag the right
hand red bar in the histogram towards the left to restrict the localisation error to the range from
0 to 10 nm. Press OK.

Adjust visualization parameters
By default, data opens with localisations coloured by time as this gives a quick visual indication
if there is a problem with drift. The example dataset has negligible drift, so lets try some other
options. Under Layer 0 - output Change the “Colour” to z , which is the axial position of the
localisation, and pull the red bars on the histogram display under “Colour” in to adjust the colour
scaling to exclude the outliers and make the depth changes in the structure more visible, as
shown below. Alternatively, click in the histogram box and press p to ask PYMEVisualize to
automatically set the histogram lower and upper bounds to 1st and 99th percentile of values,
respectively .

The simple points mode is very busy and tends to get swamped in areas of high point density.
Switch “Method” to pointsprites, “Point size” to 10.0 , and “Alpha” to 0.2 to get a
real-time approximation of the popular Gaussian reconstruction method. Switch “LUT” to hsp to
get constant-intensity coloring.

Generate a reconstruction
Let’s create a 2D histogram reconstruction of our data set that we could use for pixel-based
analysis. Navigate to Generate > Histogram. A dialog box will pop up as shown below.

Notice that in the lower left corner of the window, it says “Generate > Histogram … in progress”.
This area of the program lets the user know what is currently running and if it is completed.

Leave the “Generate Image …” dialog options as default and press OK. A 2D histogram image
will appear, as shown below.

To adjust the contrast of the histogram displayed in the “GLComp” tab, click Display Settings on
the right of the histogram window. Pull the red bars on the histogram display under “chan0” to
adjust contrast.

Navigate to File > Save As and name your file “histogram_rendering.tif”. This is a voxel-based
image which can be opened and analysed using the same tools (e.g. ImageJ) that you might
use for conventional microscopy images. The Generate menu also has options for a bunch of
other 2D and 3D density reconstruction methods (see User Guide for details). Open in the
image editor of your choice . 3

Explore data in 3D
Return to the main PYMEVisualize window, optionally closing the Gaussian rendering window.
Select the “3D” radio button under the “View” tab near the top of the screen. Click on the data
and drag with your mouse to rotate the data view. Right-click on the data and drag to translate

3 Some versions of ImageJ/FIJI do not load floating point TIFF (and therefore our exported images)
correctly, although the Bio-Formats importer does. If an exported .tif looks weird in ImageJ, try opening
with the Bio-Formats importer.

the data view. Rotate the scroll wheel to zoom in and out of parts of the data. Choose a rotation,
translation, and zoom that you think looks nice. Ours is below.

Since we’ve zoomed in, the 1 micrometer scale bar is looking rather big. Change the scale bar
size to “200nm”, as shown below.

Generate an isosurface from point cloud data
This is a data set of membrane-bound proteins on the endoplasmic reticulum. As such, it is a
good approximation of the membrane surface. We can generate an approximation of the ER’s
surface from this data by navigating to Mesh > Generate Isosurface. A dialog box will appear.
Change the properties to what is shown in the image below, then press OK.

Give this 30 seconds to run. Once you see “Mesh>Generate Isosurface … [COMPLETE]” in the
lower left corner, you are ready to proceed to the next step. The window should appear as
below.

Notice that we now have two “Layers”. The first is Layer 0 - output. We played with this layer’s
parameters in the “Adjust visualization parameters” section earlier. Layer 0 - output is called a
points layer, as indicated by its three colorful points. The second layer is called Layer 1 - surf0,
and it is for displaying surfaces, as indicated by its red triangles. Layers stack on top of one
another in the viewing area. As with the point layer, you can change how the surface layers
appear - try changing “Alpha” in Layer 1 - surf0 to 0.5 . You should see something similar to the
image below.

The visibility of individual layers can be toggled using the eye button associated with it. Press on
the eye associated with Layer 0 - output, circled in black above.

Color the isosurface by mean curvature
Like points, surfaces can be coloured by a number of different parameters. Let’s color this
isosurface by its mean curvature. Surfaces start off using solid colour lookup tables (one of ‘C’,
‘Y’, ‘M, ‘R, ‘G’, ‘B’) which display the same colour regardless of what the colour variable is, so
the first thing we need to do is change the “LUT” to something which will show differences in our
colour value. “RdBu” is a good choice in this case. Now, change “Colour” to “curvature_mean”,
as shown below.

We don’t see a lot of colour in the result, as we have a few outliers in our curvature estimates
which broaden the distribution of values so that all the interesting curvature values map to one
LUT point. We can change this using the histogram below “Colour”. Right click in the middle of it
to get a dialog box, and change the dialog box parameters to read -0.02 for “Min” and 0.02
for “Max”. Our mean curvature is expressed in units of 1/nanometer, making this range
correspond to realistic physiological curvatures ≤ 1/50nm.

The surface is now colored by mean curvatures between -0.02 nm-1 and 0.02 nm-1. As expected,
flat regions of the surface are white (close to 0 nm), curved surfaces are red (closer to 1/50 nm),
and dips in the surface are blue (closer to -1/50 nm).

As before, we can rotate and zoom the view. Also try toggling the LUT using the toolbar button.
Once you have a view you are happy with, export a snapshot using the View >Save snapshot
menu item. This should give you a .png which can be viewed with standard image viewers or
embedded in Word, PowerPoint, Illustrator, and other publication and presentation tools.

Conclusion
You can now open, visualize, and export 2D and 3D data, but this barely scratches the surface
of PYMEVisualize’s capabilities. To discover (or develop) additional features, see the User
Guide or visit python-microscopy.org.

https://python-microscopy.org/

