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Spatially resolved transcriptome profiles of mammalian kidneys illustrate the molecular 

complexity of functional nephron segments, cell-to-cell interactions and genetic 

variants. 
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Abstract 

Understanding the molecular mechanisms underlying mammalian kidney function requires 

transcriptome profiling of the interplay between cells comprising nephron segments. 

Traditional transcriptomics requires cell dissociation, resulting in loss of the spatial context of 

gene expression within native tissue. To address this problem, we performed spatial 

transcriptomics (ST) to retain the spatial context of the transcriptome in human and mouse 

kidneys. The generated ST data allowed spatially resolved differential gene expression 

analysis, spatial identification of functional nephron segments, cell-to-cell interaction analysis, 

and chronic kidney disease-associated genetic variant calling. Novel ST thus provides an 

opportunity to enhance kidney diagnostics and knowledge, by retaining the spatial context of 

gene expression within intact tissue. 

 

Keywords: Spatial transcriptomics, kidney, human, mouse, gene expression, cell-to-cell 

interactions and genetic variants. 
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Background 

The mammalian kidney is composed of functional nephron segments, including glomeruli, 

tubules, collecting ducts and microvasculature, spanning the cortical and medullary regions 

[1,2]. The nephrons maintain homeostasis of body fluids, electrolyte and acid-base balance, 

and the excretion of metabolic waste products [1,3–5]. The spatial organisation of nephrons 

facilitates the homeostatic function of the mammalian kidney. However, to date transcriptome 

studies of nephrons have utilised single-cell and/or single-nucleus RNA-sequencing (scRNA-

seq/snRNA-seq), which require manipulation of tissue, including cell dissociation, resulting in 

the loss of crucial spatial information [6–13].  

 

Unlike scRNA-seq and snRNA-seq, ST-seq resolves transcriptome signatures within the 

spatial context of intact tissue by integrating histology with RNA-seq [14,15]. Both histology 

and RNA-seq are completed in a sequential manner on the same tissue section placed on a 

micro-arrayed glass slide [14,16–18]. ST-seq begins with the histology component, involving 

fixation, H&E staining and imaging. The subsequent RNA-seq component begins with the 

release of RNA from the intact tissue section for capture by arrayed oligo-dT spots, termed 

ST-spots, which also contain a spatial barcode. Each ST-spot captures transcriptome 

information from one to nine adjacent cells, depending on the slide technology and the tissue 

type. The captured polyadenylated RNA is reverse transcribed to cDNA with the spatial 

barcode, then denatured and processed for library preparation and sequencing. The 

sequenced spatial barcode is then used to map the captured RNA to an ST-spot. Then the 

ST-spots are aligned with the H&E image to visualise the transcriptome-wide gene expression 

within the spatial context of the intact tissue. Currently ST-seq has been used in embryonic, 

inflammatory and cancer tissue, but has yet to be extended to the mammalian kidney [14,18–

29].  
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In this study, we used a commercially available ST platform to investigate spatially resolved 

transcriptome expression in healthy human and mouse kidney tissue. We generated an ST 

profile of the mammalian kidney, allowing spatially resolved differential gene expression 

(DGE) analysis, spatial identification of functional nephron segments, cell-to-cell interaction 

(CCI) analysis in glomeruli, and chronic kidney disease associated genetic variant calling. All 

newly-generated ST-seq data from the human and mice kidneys has been deposited in a 

public repository (address). 

 

Results and Discussion  

Frozen 10 µm sections from four human cortical kidney tissues (Patients A-D) and six whole 

mouse kidneys were processed for ST-seq. Fig. 1.a demonstrates the generation and 

analytical workflow of the ST-seq data from the mammalian kidneys.  

 

Human kidneys were from one consenting male (Patient A) and three female (Patients B to 

D) patients that were matched for comorbidities and aged 51 to 56 years old (Fig. 1.b). ST-

seq of the cortical region of the human kidney collectively detected over 23,000 genes 

(GRCh38-3.0.0) (Fig. S1.a). Mouse kidneys were collected from 6-8 week old (C57BL/6J, wild 

type) mice. Collectively the ST-seq within the mouse kidney detected over 22,000 genes 

(GRCm38 - mm10) (Fig. S1.b).  

 

In the human ST-seq data, we identified high levels of mitochondrial RNA (mtRNA) expression 

(Fig. S2). This observation is most likely due to the high metabolic requirements of mammalian 

kidneys to perform primary homeostatic functions, compounded by an enriched capture of 

mtRNA due to their polyadenylation [30–34]. The top 10 most highly expressed genes in all 
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four human ST-seq data, were enriched for ATP synthesis coupled electron transport 

(GO:0042775) and respiratory electron transport chain (GO:0022904) networks, consistent 

with high energy requirements. Therefore, for human ST-seq data, we used a high threshold 

to filter only those ST-spots where mtRNA represented at least 50% of total reads (Fig. S2).  

 

Next, we performed DGE analysis of human and mouse (cortical) ST-seq data to explore 

quantitative changes in spatially resolved transcriptomes between sexes and species. We first 

completed batch correction and integration of all mouse ST-seq data to remove non-biological 

variability from our ST-seq data [35] (Fig. S3.a-d). We performed DGE analysis between 

sexes with the mouse ST-seq data, demonstrating that the top 40 differentially expressed (DE) 

genes between sexes separated the female and male mice. Further enrichment analysis of 

these DE transcripts identified genes associated with fatty acid metabolism in male mice and 

genes associated with ovarian infertility in the female mice (Fig. 1c). We subsequently 

performed DGE analysis in the human ST-seq data between sexes, but found no DE genes. 

We attributed this to the fact we were limited to one male sample, which restricted DGE 

analysis between sexes in the human ST-seq data. 

 

We next conducted DGE analysis between species in our ST-seq data. Gene expression 

studies of human and mouse kidneys have been extensively performed via bulk RNA 

sequencing [13,36,37]. However, the data do not extend to understanding the differences in 

spatial patterns between the kidneys of these two species. We first identified human 

orthologues of the mouse genes and used these orthologues for downstream analysis. We 

completed batch correction and integration with the human and mice (cortical) ST-seq data. 

We found no technical variation between the sexes in either mice and humans, however there 

was a marked separation between the species in the UMAP plot (Fig. 1d). We found 30 

significantly DE genes between species, including an enrichment for the protein export 
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pathway with nine genes more highly expressed in human kidney samples (KEGG 2019; 

SRP14, FAM98B, RASGRP1, EIF2AK4, SPRED1, FSIP1, C15orf41, THBS1, GPR176) (Fig. 

1e). We also found seven genes involved in amino acid metabolism with higher expression in 

the mouse data (MIOS, SEC22A, MRPS2, NUS1, LARP1,ARG2, CHERP). However, the 

overall low number of detected DE genes indicates that mammalian kidneys, including both 

human and mouse cortical tissue, have highly similar transcriptome profiles.  

 

From here we focused on the human ST-seq data to investigate cell types, their transcriptional 

signatures, and spatial locations, using two complementary analytical strategies - Seurat [38] 

and stLearn [39]. We initially defined the spatial organisation of the human kidney using Seurat 

and stLearn clustering to identify ST-spots with distinct transcriptome profiles and mapped 

these cluster identities to the H&E tissue images. We then tested this approach by identifying 

ST-spot clusters enriched for glomerular and vascular markers, mapping these to the H&E 

image. The presence of glomerular and vascular structures at the corresponding tissue 

location was validated and annotated by an expert pathologist, then correlated with 

multiplexed immunofluorescence (mIF) for protein markers of these cell types on consecutive 

tissue sections (Fig. 2a). Clusters annotated in the H&E and mIF images correlated with both 

Seurat and stLearn clusters, specifically for glomeruli and large blood vessels. We performed 

Wilcoxon statistical tests to confirm the identity of the putative glomerular clusters, identifying 

established marker genes for the glomerulus within the top 20 DE genes, including NPHS2, 

PODXL and PLA2R [40]. Further gene enrichment analysis of the DE genes within the 

glomerular cluster identified functionally-relevant structures like ‘slit diaphragm’, a specialised 

intercellular junction between the foot processes of epithelial cell (termed podocytes) in the 

glomerulus [41,42] (clusters marked as red in Fig. 2a). 
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In the human ST-seq data, we assigned ST-spots to key functional structures by applying 

Seurat’s label transfer functionality to identify proximal tubules, distal convoluted tubules, 

collecting ducts, Loop of Henle, interstitium and immune cells (Fig. S2, two right-most 

columns). However, we noted that structures within the kidney, such as glomeruli, are 

composed of multiple different cell types, which may be captured within a single ST-spot. 

Additionally, we also had to account for the possibility that each human kidney ST-spot 

contained cell types from multiple functional structures. This concept was confirmed by 

assessment of the H&E images, which showed abutting discrete functional structures 

overlaying individual ST-spots. To account for this, we performed deconvolution, whereby the 

expression profile from thousands of genes detected in each ST-spot is compared to the 

expression profiles of cell type specific marker genes from a reference dataset, to predict the 

proportion of different cell types present in each ST-spot. Using SPOTlight [43], we performed 

deconvolution and identified the proportion of specific cell types (including dispersed immune 

cells) within each ST-spot (Fig. S3c), providing higher resolution of the spatial localisation of 

kidney structures.  

 

We extended our human kidney ST-seq data analysis to explore cellular communication 

between glomerular cells using a CCI algorithm [39]. Structurally, a glomerulus is a tuft of 

capillaries composed of mesangial, endothelial and podocyte cells, surrounded by the 

Bowman’s capsule lined with parietal epithelial cells [3,44]. Cell communication between 

podocytes and mesangial cells was explored as ligand-receptor (L-R) gene co-expression 

within ST-spots using stLearn (Fig. 2b). First we tested 20 published L-R pairs, including the 

nephronectin (NPNT)-integrin α8β1 (ITGA8) axis which governs mesangial cell behaviour [45]. 

Genes encoding both proteins were co-expressed in several ST-spots which included a 

broader region than identified by the glomerular clusters earlier. Next, we tested >1000 L-R 

pairs curated in the CellphoneDB database [46,47]. By applying stLearn [39], we mapped L-

R gene spatial co-expression within and between ST-spots of glomeruli regions, identifying 
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hundreds of putative interactions. We believe this CCI approach within the spatial context of 

functional structures and their cell types is crucial in understanding the molecular mechanisms 

of kidney physiology and pathology [48–50]. 

 

To explore the utility of the ST approach in human disease, we identified single nucleotide 

polymorphisms (SNPs) present in our human ST-seq data that are associated with chronic 

kidney disease in existing GWAS databases [51]. Across the four human kidney tissue 

sections, we identified >130,000 high confidence SNPs (p-value <0.01 or Phred quality scores 

>20). Among these SNPs, we found 36 SNPs overlapping reported CKD associated SNPs, 

21 of which were high quality (probability of true SNP calling positive >0.99). These 21 SNPs 

were from intronic, missense, non-coding, downstream and splice acceptor sequences (Fig. 

2c). Of those 21 SNPs, 17 were from intronic regions of protein coding genes. Although RNA-

seq strategies generally target processed RNA without introns, both scRNA-seq and ST-seq 

protocols utilise oligo-dT primers to capture polyadenylated sequences. These poly(A) tracts 

can lie within tails of mRNA, mtRNA, lncRNA or within intronic regions, resulting in some 

capture of intronic sequences [12]. We further visualised the spatial expression of the 

SLC17A1 gene, which was associated with four detected SNPs in our ST-seq data (rs765285, 

rs1165151, rs1165213, and rs12212049) (Fig. S3g). SLC17A1 expression overlapped with 

proximal tubules in all our human kidney tissue sections, consistent with findings in previous 

studies [52].  

 

Conclusion 

In this study, we have generated and analysed spatially resolved transcriptomes for human 

and mouse kidneys. The molecular expression profiles of these tissues were consistent with 

morphological annotations and molecular markers of key cell types, highlighting that ST-seq 

captures rich, anatomically meaningful biological information. This is demonstrated by our in-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.317917doi: bioRxiv preprint 

https://paperpile.com/c/j1MLLj/pkYfE+RZ9Ue+2MSkl
https://paperpile.com/c/j1MLLj/2DMZo
https://paperpile.com/c/j1MLLj/lTGKw
https://doi.org/10.1101/2020.09.29.317917
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

depth analysis of glomeruli, where stLearn clustering was used to identify ST-spots containing 

a glomerular gene expression signature. These ST-spots contained glomeruli as identified by 

histological and molecular markers. We demonstrated the utility of our analysis pipeline and 

the potential of these data resources to be used as a reference for a range of analyses, such 

as detection of GWAS-identified disease or trait associated genes and SNPs, comparison 

across sexes and species, and the analysis of complex CCI. This study lays a solid foundation 

for future studies using spatial transcriptomic data to investigate the mechanisms underlying 

mammalian kidney function under physiological and pathological conditions.  
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Method 

Kidney tissue samples 

In this study, we utilised healthy human cortical kidney tissues taken a minimum of 3 cm away 

from the tumour margins of four patients (3 females, 51 to 56 years old and 1 male, 54 years 

old). Tissue was collected for research purposes following informed patient consent and 

approval by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee 

(2002/011 and 2006/072). During the collection of healthy human cortical kidney tissue, each 

patient was de-identified and their tissue snap frozen in standard biopsy cryomolds (Tissue-

Tek, Sakura Finetek U.S.A) with optimal cutting temperature (OCT) compound (Tissue-Tek, 

Sakura Finetek U.S.A). We randomly allocated each patient a letter from A to D. This letter 

and corresponding non-identifying patient clinical information is provided in Fig. 1b.  

 

The mouse kidneys utilised in this ST study were from three male (8 week old) and three 

female (6 week old) C57BL/6J wild type mice (Animal Ethics Committee approval 

UQDI/452/16 and IMB123/18). The mouse kidneys were collected during tissue harvesting 

and snap frozen in standard biopsy cryomolds (Tissue-Tek) with OCT compound (Tissue-

Tek). These fresh frozen adult mouse kidneys were then stored at -80°C on site. 

 

RNA quality 

Two 10 µm scrolls of tissue were collected in pre-chilled 1.5mL Eppendorf tubes from each 

frozen OCT block of healthy human cortical kidney (n = 4) and mouse kidney (n = 6) tissue. 

For each sample, RNA was extracted from the cryosectioned scrolls according to the QIAGEN 

RNeasy micro kit (Cat no: 74004), quantified according to the Qubit RNA HS assay kit (Cat 

no: Q32852) and the RNA integrity number (RIN) value assessed according to the Agilent 
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2100 Bioanalyzer RNA 6000 Pico assay (Cat no: 5067-1513). The measured RINs for all 

kidney tissues were greater than 7.  

 

Tissue optimisation 

Tissue optimisation was performed according to the 10x Genomics ST Tissue Optimisation 

Manual (version 190219, 10x Genomics, USA) to determine the ideal permeabilization time. 

Frozen 10µm cryosectioned tissue from a healthy human cortical kidney and mouse kidney 

were utilised for this optimisation. The kidney tissue sections were dried at 37°C for 1 minute, 

fixed in pre-chilled 100% Methanol at -20°C for 30 minutes, stained in Mayer’s Haematoxylin 

(Dako) for 5minutes and Eosin (Sigma) for 2minutes. Imaging was performed on an Aperio 

XT brightfield slide scanner (Leica). 

After H&E imaging the kidney tissue sections were placed in a permeabilization mix over a 

range of time points to allow the mRNA to drop down from the tissue sections and bind to the 

oligo-dT printed on the slide. The captured mRNA on the slide surface were then reversed 

transcribed to fluorescently labelled cDNA. This fluorescent cDNA signal was imaged on a 

Leica confocal microscope (SP8 STED 3X). The ideal permeabilization time was determined 

by correlating both the H&E and fluorescent images from the tissue optimisation slide. In this 

tissue optimisation slide the permeabilization time of 12 minutes generated the sharpest 

fluorescent signal that corresponded to morphological features noted in the H&E image. 

Hence a permeabilization time of 12 minutes was utilised for generating ST libraries for 

sequencing from human and mouse kidney tissue sections. 

 

Library preparation 

ST library preparation of the healthy human cortical kidney tissues (n = 4) was performed 

according to the Visium Spatial Gene Expression Reagent Kits User Guide (CG000239 Rev 
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C, 10x Genomics, USA). ST library preparation of the mouse kidney tissues (n = 6) was 

performed according to the ST Library Preparation Manual (version 190219, 10x Genomics, 

USA). In brief, 10µm cryosectioned human and mouse kidney tissues were placed onto 

respective pre-chilled library preparation slides. Sections were dried to the slides at 37°C for 

1 minute, fixed in pre-chilled 100% Methanol at -20°C for 30 minutes, stained in Mayer’s 

Haematoxylin for 5 minutes and Eosin for 2 minutes. Brightfield imaging was performed on an 

Axio Z1 slide scanner (Zeiss). Based on the shorter (539 to 683bp) cDNA libraries generated 

from the healthy human cortical kidney tissue sections, we reduced the fragmentation reaction 

to 1 minute and the SPRI bead ratio was reduced to select for larger fragments. Then to further 

remove smaller library insert sizes (potentially consisting solely of TSO+poly(A)), we gel 

extracted the library preparations for patients A, B and C, followed by DNA clean-up according 

to Monarch PCR and DNA clean-up kit (Cat no: T1030S). All libraries were loaded at 1.8pM 

however, patients A, B and C, and mouse kidneys were sequenced using a High output 

reagent kit (Illumina), while patient D was sequenced using a Mid output reagent kit (Illumina), 

on a NextSeq500 (Illumina) instrument in-house at the Institute for Molecular Bioscience 

Sequencing Facility. Sequencing was performed using the following protocol: Read1 - 28bp, 

Index1 - 10bp, Index2 - 10bp, Read2 - 120bp. 

 

ST-seq library clean-up and mapping 

Illumina generated ST-seq libraries, were first converted from raw base call (BCL) files to 

FASTQ files using bcl2fastq/2.17. Complex ST-seq libraries were retained and the FASTQ 

files were trimmed of poly-A sequences on the 3’ end and template switch oligo (TSO) 

sequences on the 5’ end using cutadapt/1.8.3 [53]. The cleaned FASTQ files were then 

mapped within Space Ranger V1.0 (10x Genomics) to the human reference genome and gene 

annotations (GRCh38-3.0.0) or mouse reference genome and gene annotation (GRCm38 - 
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mm10). Finally, the genes were aligned to a resized H&E image from the library preparation 

based on the detection of the stained tissue and the fiducial markings.  

 

Multiplex immunofluorescence staining 

Consecutive deeper 10 µm cryosections from the human cortical kidney tissues (n = 4) used 

for ST-seq, were placed onto room temperature SuperFrost® Ultra Plus slides (Thermo 

Scientific, U.S.A.). The tissue sections were then adhered to the slides by drying for 1 minute 

at 37°C and fixed with pre-chilled 100% methanol at -20°C for 30 minutes. Non-specific binding 

was blocked with 10% donkey serum (Merck-Millipore, Burlington,MA) for 15 minutes. 

Sections were incubated in a primary antibody mix comprising of anti-endothelial cell 

(monoclonal mouse anti-human CD31; Clone JC70A; Dako Omnis) and anti-Aquaporin-1 

(polyclonal rabbit anti-human AQP1 (H-55); SC-20810; Santa Cruz Biotechnology) for 20 

minutes. Fluorescent labelling was obtained with AlexaFluor conjugated secondary antibodies 

(donkey anti-mouse AlexaFluor PLUS 555 and donkey anti-rabbit AlexaFluor PLUS 488 

(Invitrogen)) and DAPI (Sigma) mix incubated for 15 minutes. Slides were coverslipped with 

fluorescence mounting medium (Agilent Technologies, Santa Clara, CA). Imaging was 

performed on an Axio Z1 slide scanner (Zeiss) at 20x objective with Cyanine 3 (567nm), FITC 

(475nm) and DAPI (385nm) fluorescent channels. Image acquisition and analysis were 

performed within ZEN software (ZEN 2.6 lite; Carl Zeiss). Annotation of specific functional 

structures seen in the H&E image from the library preparation slide was correlated against the 

deeper consecutive multiplexed immunofluorescence image of the healthy human cortical 

kidney tissue sections. 

 

Seurat analytical pipeline  

Human ST-seq data were demultiplexed using Loupe Browser (v4.0, 10x Genomics, USA) 

and were analysed using a modified version of the Seurat Spatial workflow 
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(https://satijalab.org/seurat/v3.2/spatial_vignette.html). Preliminary quality control steps 

involved the filtration of spots containing more than 50% mitochondrial genes or 50% 

ribosomal genes; however, no samples reached this ribosomal threshold. 2000 variable 

features were detected by Seurat, and data were normalised using Scran [54] prior to running 

PCA analysis in Seurat. UMAP dimensionality reduction and clustering were performed using 

the first 50 principal components. Clustering was tested using a range of resolution values 

from 0.1 to 1.6 and the highest average stable resolution value was selected for each sample 

using the SC3 measure from Clustree [55]. The generated clustering results were visualized 

in both two dimensional UMAP space and in spatial context mapped over the H&E images. 

 

We performed label transfer in two sequential steps using publicly available human kidney  

snRNA-seq [6] and scRNA-seq [12] datasets. This label transfer method projects known 

reference datasets and unknown datasets into a shared low-dimensional space, where 

equivalent cell types are arranged in the same neighbourhood in the two dimensional UMAP 

space, allowing for inference of cell types in the query dataset from the reference dataset. 

First, label transfer annotation from the snRNA-seq dataset was used to determine high-

confidence ST-spot annotations. In the second round, the scRNA-seq data was used to label 

the remaining unlabelled ST-spots. In both rounds, transfer of cell type annotations from the 

reference to a query ST-spot was made if the confidence score for the top match was greater 

than 0.6; remaining ST-spots were left unannotated. 

 

stLearn analytical pipeline 

The generated human and mouse ST-seq data was also analysed using stLearn, a novel 

Python-based toolkit [39]. stLearn uses the morphological similarity between neighbouring ST-

spots to normalise gene expression and reduce “dropout” noise, an inherent technical 

limitation of RNA-seq technologies [39,56,57]. With the mouse kidney ST-seq data, we first 
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filtered out genes that were expressed in less than 3 ST-spots. The filtered gene count matrix 

was then normalised by counts per million method, followed by log transformation and scaling. 

Finally, tissue morphological information was used to normalise the gene count matrix by 

running the stSME function. Downstream clustering analysis identified three clusters in the 

female mice that defined the spatially functional regions of the cortex and both outer and inner 

medulla. In the male mice, stLearn identified two clusters that defined the spatially functional 

regions of the cortex and medulla. The presence of the inner medulla cluster was attributed to 

the depth of the tissue sections which was greater in the female than the male mice kidneys. 

Hence for DGE analysis, between sexes and species, we selected the cortical region in both 

male and female mice. 

 

With the human kidney ST-seq data, we first filtered the mitochondrial genes based on the 

quality of the data. In higher quality ST-seq data, we retained mitochondrial genes, whilst in 

lower quality ST-seq data, we removed all the mitochondrial genes. Additionally, we filtered 

ST-spots containing more than 50% mitochondrial genes. ST-spots with high total read counts 

relative to the total number of detected genes per spot were also filtered. The top genes based 

on expression levels were selected by using Scanpy [58], and the data were scaled to perform 

PCA analysis. Normalization (spatial smoothing step) which integrates gene expression 

profiles with tissue morphology using deep learning, was performed using the first 25 principal 

components. Leiden clustering was used to perform clustering analysis with flexible 

parameters. We used SPOTlight [43] to deconvolute the mixture of cell types in each spot. 

The same scRNA-seq [12] and snRNA-seq [6] datasets used for Seurat label transfer were 

also used for SPOTlight deconvolution. 

 

Analysis of GWAS single nucleotide polymorphisms (SNPs)  
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SNP variant calling was performed within the short sequence reads of ST-seq data generated 

from the healthy human cortical kidney tissues (n = 4) using FreeBayes [51], a Bayesian 

genetic variant detection program. From each of the mapped BAM files for human kidneys, 

we detected 140,241, 138,227, 150,935, and 205,471 high confidence SNPs respectively. We 

collected all reported SNPs associated with kidney diseases in the GWAS catalog database. 

SNPs called from ST-seq data were then compared to the known disease-associated SNPs. 

Expression values of those genes were visualised on the tissue sections.  

 

Figures 

Fig. 1: Spatially resolved transcriptome profiling in mammalian kidney. a A schematic of 

the workflow for generation and analysis of ST-seq data from mammalian kidneys. b Patient 

cohort characteristics table. c Heat map illustrating the top 40 DE genes, between the sexes 

in mice cortical kidney tissue regions. d Integration of human and mouse cortical kidney tissue 

data; (top panel) UMAP showing the batch corrected human and mouse ST-seq data clustered 

separately for the two species, (bottom panel) Sample labelling of the batch corrected UMAP 

shows an integrated heterogeneous human and mouse kidney samples, in their respective 

species cluster showing no batch effect. e Violin plot illustrating the top 30 DE genes, identified 

by DGE, between the human and mouse cortical kidney tissues.  

Fig.2: Integrative analysis of morphology, spatial expression, cellular interactions and 

genotypic effects in the generated human kidney ST-seq data. a Analysis of the human 

kidney ST-seq data with stLearn. From left to right; stLearn UMAP clusters, clustered ST spots 

mapped to the H&E image, glomerular clusters (as red) within the UMAP, glomerular clusters 

mapped to the H&E image, glomeruli annotated in the H&E images, and multiplexed 

immunofluorescence (mIF) staining; (top left) red demonstrates anti-CD31 staining for 

endothelial cells in the glomeruli and blood vessels, (top right) green demonstrates anti-AQP1 

staining for identifying proximal tubular cells within the tubular compartment, (bottom left) blue 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.317917doi: bioRxiv preprint 

https://paperpile.com/c/j1MLLj/2DMZo
https://doi.org/10.1101/2020.09.29.317917
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

demonstrates DAPI nuclear staining and (bottom right) multiplexed channel demonstrates 

glomeruli, vessels and proximal tubules. b Cellular communication via cell to cell interactions 

in the glomeruli are demonstrated in Patient B; (top panel) A schematic of a glomerulus, 

(bottom left) spatial expression of NPNT-ITGA8 (red is presence) in the glomeruli are mapped 

to the H&E image and (bottom right) the tissue interaction landscape of 1000 ligand-

receptor(L-R) pairs (colour gradient shows interaction scores from randomness as 0 to 

significance as larger than 2). c A table of the 21 single nucleotide polymorphisms (SNPs) 

associated with chronic kidney disease identified in our human kidney ST-seq data. 

 

Supplementary figures 

Fig. S1: ST-seq data summary. a Scatter plots showing the number of genes (y-axis) against 

reads per spot (x-axis) detected in our ST-seq data for human kidneys. b Scatter plots showing 

the number of genes (y-axis) against reads per spot (x-axis) detected in our ST-seq data for 

mouse kidneys. 

 

Fig. S2: Analysis of human kidney ST-seq data with Seurat. a Violin plots showing the 

percentage of reads mapping to mitochondrial genes for each spot per sample. The red 

dashed line indicates the 50% threshold for filtering spots with high mitochondrial counts. b-c 

Spatial visualisation of mitochondrial read percentage values before (b) and after (c) filtering 

spots with >50% mitochondrial reads. d Annotation of spots by stepwise label transfer from 

snRNA-seq [6] and scRNA-seq [12] healthy human kidney reference datasets. Spots are 

coloured based on the highest-confidence functional annotation. e The number of spots 

assigned to each functional annotation. Bars are coloured by the annotation as in d. 
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Fig. S3: Analysis of the mouse kidney ST-seq with Seurat. a Mapping of the stLearn 

identified clusters to the female mice H&E images (left panel represents pre-batch and right 

panel represents post-batch corrected). b Mapping of the stLearn identified clusters to the 

male mice H&E images (left panel represents pre-batch and right panel represents post-batch 

corrected) c UMAP illustrating the pre-batch corrected (left) and post-batch corrected 

functional regions (right). d UMAP illustrating the pre-batch corrected (left) and post-batch 

corrected (right) functional regions labelled by each sample identity. e Heat map illustrating 

the top 40 differentially expressed genes between female and male human cortical kidney 

tissue sections. f SPOTlight analysis illustrating the deconvolution of key functional structures 

in Patient D. The pie chart demonstrates the proportion of these key functional structures in 

the cortical kidney tissue section of Patient D. g. Visualisation of gene expression for 

SLC17A1, identified as a target gene with the highest number of disease-associated SNPs 

detected in the ST-seq dataset across all four patients. These chronic kidney disease 

associated genetic variants include rs765285, rs1165151, rs1165213, and rs12212049, 

respectively. Multiplexed IF image for APQ1, reveals the region of the tissue expressing 

SLC17A1 gene variants is predominantly proximal tubules. 
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