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Abstract 

Microbes form the base of food webs and drive both aquatic and terrestrial biogeochemical 

cycling, thereby significantly influencing the global climate. Predicting how microbes will adapt 

to global change and the implications for global elemental cycles remains a significant challenge  

due to the sheer number of interacting environmental and trait combinations. Here we present an 

approach for modeling multivariate trait evolution using orthogonal axes to define a trait-scape. 

We investigate the outcome of thousands of possible adaptive walks within a trait-scape 

parameterized using empirical evolution data. We find that only a limited number of phenotypes 

emerge, with some being more probable than others. Populations with historical bias in the 

direction of selection exhibited accelerated adaptation while highly convergent phenotypes 

emerged irrespective of the type of bias. Reproducible phenotypes further converged into several 

high-fitness regions in the collapsed trait-scape, thereby defining probable low-fitness (exclusion) 

regions. The emergence of nonrandom phenotypic solutions and high-fitness areas in an empirical 

algal trait-scape confirms that a limited set of evolutionary trajectories underlie the vast amount of 

possible trait correlation scenarios. Critically, we demonstrate these dynamics in multidimensional 

trait space and show that trait correlations, in addition to trait values, must evolve to explain the 

trajectories and outcomes of adaptation in multi-trait space. Investigating microbial evolution 

through a reduced set of evolvable biogeochemically-important traits and trait relationships lays 

the groundwork for incorporation into global change-driven ecosystem models where microbial 

trait dispersal can occur through different inheritance mechanisms. Identifying the probabilities of 

high-fitness outcomes based on trait correlations will be critical to directly connect microbial 

evolutionary responses to biogeochemical cycling under dynamic global change scenarios.       
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Author Summary 

Microorganisms drive the base of global food webs and biogeochemical cycling, which 

influences Earth’s climate. Thus, it is critical to understand how their evolutionary responses to 

global change will affect global environmental processes. Microbial populations are highly 

diverse and both shape and are shaped by numerous environmental gradients happening 

simultaneously on different timescales. The sheer number of combinations to experimentally test 

exceeds our ability to do so, and so theoretical approaches that integrate biological and 

environmental variability onto a reduced set of representative axes can aid predictions of 

evolutionary outcomes. Here, we not only show that a finite set of biogeochemically relevant 

evolutionary outcomes underlie thousands of possible trait correlation combinations, but that the 

existence of past trait correlations and their subsequent evolvability bias ecologically relevant 

phenotypic evolution. These phenotypes further converge into high-fitness regions in a collapsed 

trait landscape derived from these representative axes. The emergence of only a handful of 

solutions from thousands of possible scenarios is a powerful tool to help constrain predictions of 

microbial evolutionary trajectories given a vast array of potential trait value and tradeoff 

combinations. This approach lays the groundwork to embed this framework into larger 

ecosystem models to examine the effects of these responses on biogeochemical cycling and 

global climate using trait correlational adaptation vs trait adaptation alone.  
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Introduction 

Microbes play a critical role in regulating biogeochemistry and the global climate. In recent 

years, there has been a significant increase in global change studies examining the roles of 

microbial evolution in shaping future biogeochemical cycles. This work has helped to more 

explicitly integrate the fields of evolution and microbial ecology resulting in both long-term 

experimental evolution studies with ecologically important microbes and, to a limited extent, the 

incorporation of adaptation into more ecological and ocean circulation models [1-13]. These 

studies are just the first step in tackling the immensely complex challenge of microbial evolution 

and its influence on global biogeochemistry. We still have only a limited understanding of how 

microbial communities will respond to multi-stressor and fluctuating environmental change, and 

the sheer number of interacting environmental and trait combinations to study exceeds our 

experimental ability to do so [14,15]. Hence, experimental and theoretical methods to reduce 

dimensionality and extract broad evolutionary patterns across traits and taxa are critical for 

creating a predictive framework that can both help guide experiments and make robust future 

predictions [5]. Here, we aim to understand how historical bias (different evolutionary starting 

points) across biological axes of variation derived from complex traits and their relationships can 

constrain overarching evolutionary trajectories of phenotypes (suites of traits) in populations 

adapting to environmental change. We broadly define bias as the standing trait correlations  (i.e., 

relationships) in a population that are heritable and can impact fitness such that, over time, these 

correlations can generate adaptive constraints that bias the direction of evolution [16]. Since our 

overall goal is to assess how biogeochemically-important, microbial traits and their relationships 

will evolve in response to future environmental change, our approach is designed to facilitate 

future integration into a larger biogeochemical framework that can subsequently utilize global 
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change-driven environmental forcings to drive evolutionary outcomes of microbial populations. 

Specifically, current models assume that existing interspecific trait relationships will govern 

phytoplankton phenotypes. However, growing evidence demonstrates that intraspecific variation 

can be significant in phytoplankton, and that constraints on intraspecific trait relationships will 

bias evolutionary trajectories of biogeochemically important microbial populations in the face of 

environmental change [17-19].  

Seminal research has been conducted over the years focusing on the interaction of complex 

trait relationships, inheritance, epistasis, and metabolic networks in organisms experiencing 

environmental change [16-20]. These studies have broadly found that an evolving population may 

be able to access only a subset of phenotypes depending on both its initial trait values and trait 

correlations. Quantitative genetics uses statistical approaches to study adaptive walks accounting 

for uncertainty inherent in trait variation, genotypic variability, inheritance, and environmental 

variability [20]. These studies have created theoretical frameworks using multivariate and 

eigenvector methods to examine evolutionary trade-offs between biological and environmental 

dimensions over time [21]. Specifically, these frameworks consider how genetic mutations impact 

the fitness landscape of a population. These studies are often entirely theoretical [22,23], or 

significantly empirically limited due to the need to measure the fitness impacts of every possible 

type of mutant. Alternatively, studies in developmental bias and facilitated variation have used 

empirical data to demonstrate that biological systems will produce certain phenotypic variants 

more readily than others in response to a perturbation (mutation or environmental) due to the 

inherent structure, composition, and evolutionary history of a population [24,25].  These findings 

contrast with the long-held assumption of isotropic (i.e. equal) variation [26] and have revealed 

that only a limited part of phenotypic space (i.e. only certain phenotypes) can be accessed 
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contingent upon the aforementioned bias [27]. Critically, this explains why not all trait 

combinations are achievable [26]. In summary, the rich and growing body of literature from these 

two fields has shown that genetic architecture significantly influences the impact of environmental 

shifts and random biological changes (e.g., mutation) on traits and the relationship between traits 

to produce nonrandom distributions of phenotypes [28-30].  

While the phenomenon of restrictions on possible trait combinations is well established, 

there have been little to no attempts to investigate the implications of this phenomenon for the 

evolution of ecologically relevant traits and trait relationships in marine microbes and the 

consequences for biogeochemical cycling. Specifically, the limitation of viable trait combinations 

Fig. 1. Comparison of adaptive walks between two different phenotypes in a trait landscape with four 
high-fitness peaks Two example starting phenotypes are represented as circles (magenta and grey). The 
phenotypes start with low fitness (z-axis) and through plasticity (trait changes) and adaptation (trait-correlation 
changes) move to higher fitness. The initial arrows represent historical bias, or different initial trait architecture, 
that impacts the movement of the population within the landscape.  As the adaptive walk proceeds, the 
population moves to the top of one of the fitness peaks. Each black ‘X’ represents an inaccessible path to that 
phenotype at a specific point in the adaptive walk due to trait correlational constraints. Note that depending on 
historical bias (i.e., phenotypic starting location), some high fitness peaks are either more difficult to access or 
completely inaccessible.  
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in phytoplankton has the potential to impact both rates of carbon cycling and shifts in marine 

ecosystem structure.  

Fig. 1 shows an illustrative example of a trait landscape where peaks represent high-fitness 

phenotypes (trait combinations). In this example landscape, there are 4 equally high-fitness peaks. 

However, the accessibility of each peak differs depending on the starting location and the initial 

trajectory (Fig. 1, magenta and grey circles). Ultimately, to robustly study phytoplankton trait 

evolution, we need a framework that allows us to estimate probable evolutionary trajectories given 

starting trait combinations and trait correlations (historical bias) that set the initial trajectory. 

Below, we introduce such a framework using empirical evolution data from a eukaryotic alga. Our 

model is a first step towards investigating how correlated metabolic traits with clear 

biogeochemical significance may impact chemical cycling under environmental change (e.g., 

ocean acidification). Specifically, we develop TRACE, a framework that models TRAit 

Correlation Evolution under selection to constrain evolutionary outcomes for defined traits of 

interest in microbial adaptation. We validate the model with empirical data from an experimental 

evolution study with the eukaryotic alga Chlamydomonas reinhardtii. We then use the collapsed 

trait-scape in TRACE to investigate constraints on phenotypic variants and adaptive walks as a 

function of historical bias (i.e., trait correlations). We find that a handful of phenotypic variants 

are reproducible even without the introduction of bias. As we increase bias in the model through 

the systematic addition of empirical ancestral and evolved correlations, we find that overall 

adaptive rates increased for evolved correlations but not for ancestral ones, consistent with prior 

studies [26]. These results indicate that populations harboring trait correlations oriented in the 

direction of selection can accelerate adaptation. Model runs seeded with either ancestral or evolved 

bias (i.e. correlations) converged on several of the same phenotypes as those seeded with no bias 
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thereby elucidating emergent, highly reproducible evolutionary solutions. Taken together, we 

show conserved phenotypes that emerge from thousands of possible trait and correlation scenarios 

across varying levels of historical bias. Understanding which trait relationships inform the 

probability of adaptive microbial phenotypes will be critical to help predict the short- and long-

term contribution biogeochemically-important traits to biogeochemical cycling.  

 

Results  

Collapsed multivariate trait space 

The complexity of multi-dimensional trait evolution requires a tractable framework to 

understand how trait adaptation might proceed. Previous work has shown that complex trait 

adaptation and fitness variations can be represented in a reduced dimensional space, specifically 

using Principle Component axes [18,31]. Building on this work, we create a trait landscape or 

‘trait-scape’ for the green alga Chlamydomonas reinhardtii adaptation to high-CO2 using four 

independent and ecologically relevant traits (growth rate, respiration, cell size, and daughter cell 

production). Specifically, using the output from an experimental evolution study [3] with 5 

genotypes of C. reinhardtii, we demonstrate that both the traits and the correlations between traits 

evolved between the low-CO2 environment (ancestral environment) and the high-CO2 

environment (evolved environment) (Fig. 2). Specifically, all four traits changed to varying 

degrees depending on the genotype [3], and correlations between traits changed upon high-CO2 

adaptation (Fig 2c). This results in distinct differences between the PCAs (trait-scapes) for the 

ancestral and evolved populations (Fig 2). As the specific traits themselves are not relevant for this 

study, we will hereafter refer to them as traits 1-4. We refer the reader to [3] for an in-depth 

discussion of the evolution experiment. 
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To understand how C. reinhardtii genotypes adapted to high CO2, we compared the 

ancestral genotypes (projection of the ancestral trait values onto the evolved trait-scape) to the 

evolved genotypes (evolved trait values in evolved trait-scape; Fig. 2b). Fig. 2b shows where 

replicate populations of ancestral genotypes (empty circles) are located in the evolved trait-scape 

relative to their corresponding evolved genotypes (filled circles). This analysis demonstrates that 

PC axes can provide a reduced dimensional space (trait-scape) for understanding how multiple 

traits simultaneously respond to environmental perturbation, similar to what has been shown in 

previous studies [18,26,31]. To understand how trait movement within this collapsed multi-

dimensional trait-scape may be constrained by historical bias (previous correlations between 

traits), we develop a statistical model of multi-trait adaptation and investigate probabilities of 

different emergent evolutionary outcomes.  

 

Impact of bias 

The TRACE framework was adapted from an individual based Fisher model of adaptation 

[1,32,33]. Here we use a population of 1000 individuals that experience an adaptive walk in a trait-

Fig. 2 Principal Component Analysis (PCA) of ancestral and evolved trait values, respectively, and their 
trait correlations. a) Ancestral PCA calculated from the values of 4 ancestral traits across 5 genotypes where 
each point represents an independent biological population (i.e. culture) colored by genotype. Percentages 
along PC1 and PC2 denote the amount of variance explained by each PC axis, respectively. b) Evolved PCA 
plot calculated from the evolved values of the same 4 traits as in a) across 5 genotypes. Filled circles represent 
the evolved genotypes. Open circles represent the ancestral genotypes in a) projected into the evolved PC 
space. The tan and red filled circles denote the start and end coordinate of the model, respectively. c) Table of 
all 6 possible trait combinations and their values in their ancestral and evolved genotypes. 
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scape towards a high-fitness area (e.g., Fig. 2b, from the tan to red circle) across thousands of 

generations. Previous work by us and others have demonstrated that adaptive outcomes using this 

framework are robust across a wide range of population sizes (Supplementary text) [1,32]. The 

trait-scape, the population starting location, and the high fitness area in the trait-scape were defined 

based on empirical data from a long-term evolution study. Each generation, each individual in the 

population experienced either a random change in a trait value but maintained all existing trait-

correlations or experienced a trait-correlation change. These changes were drawn from a Gaussian 

distribution such that small changes were common and large changes were rare. Changes in trait 

values moved these individuals in the trait-scape. Selection was imposed using distance to the high 

fitness area (evolutionary end coordinate) as a proxy for fitness (see Methods for full model 

description). In essence, this selects for individuals with the smallest overall difference across all 

trait values from the empirically observed high fitness phenotype. The weighting of the traits is 

Fig. 3 Representative adaptive walk in evolved PC space of a population of 1000 individuals. a) Density 
plots of an adaptive walk of a single population starting at the tan circle and ending at the red circle. Each plot 
represents a different step (i.e. generation) in PC space with the color representing the density of individuals in a 
given area. Percentage values represent the amount of variance explained of each PC axis. b) Fitness plot of the 
population across the entire adaptive walk with the colored line and grey region representing the mean and 
standard deviation, respectively. Both the y-axis and color indicate fitness. c) Trait-trait plots representing the 
same adaptive walk where lower fitness denotes the start of the walk and high fitness denotes the end. As in b), 
each point represents the mean standardized trait value of all individuals at a specific generation, or step.    
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derived from the observed evolved phenotypes evaluated using PCA, such that traits that were not 

observed to play an important role in high-CO2 fitness had low weight. It is important to note that 

the model does not directly select for trait correlations, rather specific correlations emerge in the 

population if they provide a fitness advantage in terms of trait dynamics. We ran the model in 3 

different modes to examine all possible trajectories that a population could travel given the same 

starting trait values but different starting trait correlations, a proxy for different historical biases. 

Each mode was run for 2000 generations with 100 replicate runs each. All model parameters are 

given in Supplementary Table 1. An example of model dynamics is shown in Fig. 3a where a 

representative population consisting of a thousand individuals moves over time from the ancestral 

start phenotype to the evolved high fitness area (Fig. 3a), which is represented as an overall 

increase in fitness of the population (Fig 3b). The underlying dynamics of the model (changes in 

trait values and trait correlation changes) for 3 representative traits are shown in Fig. 3c.  

 

Mixed mode – No historical bias 

 Our null model assumed no historical bias. Specifically, all individuals in the model started 

with the same trait values and hence a single start point in the PC trait-scape but each with 

randomly selected correlations between the traits. These random assignments both ensured that the 

population retained no shared bias and that we explored a vast, unbiased amount of evolutionary 

choices/orientations (1000 individuals x 100 replicate runs) (Fig. 3a). Consistent with prior studies 

examining evolution under relatively strong selective pressure [1,32], fitness effects produced 

from changes at the beginning of the walk were significantly greater than at the end of the walk 

[34-37]. As the model ran forward in time, individuals within the population explored the collapsed 

trait-scape through changes to both traits and their correlations (Fig. 3). Although some individuals 
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reached a maximum possible fitness of 1 (i.e., the evolutionary end coordinate), the mean 

population fitness consistently remained below 1 (Fig. 3b). This is due to the fact that the model 

is simultaneously optimizing multiple traits and their correlations, which inherently introduces 

small but significant amounts of persistent, phenotypic variation.  

 At the final generation (2000th generation) of all replicate runs (n = 100), we examined the 

distribution of each trait correlation (n = 6) across all individuals in all runs (n = 100,000). Four 

Fig. 4 Four distinct, emergent phenotypes from model runs seeded with no bias Each plot 
displays the distribution of standardized trait values for a given correlation in a certain phenotype. 
Phenotypes were binned according to the correlation conditions denoted above each column. Trait 
values of each population are colored according to their respective correlation conditions.  Since a 
given population may only have to meet 2 correlation conditions (e.g., Pop-MA), colors in other 
correlations in the population column denote where those individuals fall who meet the 2 correlation 
conditions. Each column and color represents a phenotype, respectively, with each row denoting one 
of the six possible correlations. Y-values are 104. 
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distinct phenotypes (i.e. traits + trait correlations for the final population) emerged all with 

statistically analogous end mean fitness (Fig. 4, 1 phenotype per column). As these four 

phenotypes occurred in the same region of the trait-scape but have distinct trait correlations, and 

to some extent, trait values, we term them ‘cryptic phenotypes’. In other words, these cryptic 

phenotypes represent four distinct evolutionary solutions of different trait correlations + trait 

values across all individuals that converged on the single evolutionary end coordinate in the 

evolved trait-scape. For some correlations such as trait 1 vs trait 2 (1v2), little to no overlap was 

observed across each of the 4 phenotypes (Fig. 4, row 5), while for others, several phenotypes 

shared the same trait correlations. For example, individuals in Pop-MA and Pop-MD shared the 

same 1v3 correlation (Fig. 4, row 2, columns 1 and 4). In contrast, Pop-MA and Pop-MD have a 

completely different relationship for 1v4 (Fig. 4, row 3, columns 1 and 4). Pairwise trait-trait plots 

displayed the 4 phenotypes in terms of their trait values (Fig. 5a). In Fig. 5a, the four phenotypes 

distinctly segregate across the Trait 2 vs Trait 4 values but overlap for other trait values such as 

Trait 2 vs Trait 3 (Supplementary Fig. 1). Taken together, unique, cryptic phenotypes share some 

trait correlations but diverge in others. These findings are consistent with other experimental 

evolution studies that observed convergent phenotypes derived from a mix of parallel and 

divergent mutational and transcriptional changes across replicate populations evolving to the same  

environment [7,38-41]. The emergence of multiple high-fitness phenotypes (e.g., Fig. 5a) 

underlying single high fitness area in multivariate space demonstrates that our model captures a 

multi-peak, rugged fitness landscape.  

 The accessibility of the four phenotypes that emerged from the starting, non-biased 

population were considerably different. Here we define accessibility as the fraction of replicates 

that converged on an emergent phenotype. Pop-MA was the most accessible with 55% of replicates 
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converging on this phenotype while Pop-MD was the second most accessible with 33% (Fig. 5b). 

Pop-MA also exhibited the most variance in trait values within the population  (i.e. broadest peak 

in trait space; Fig. 5a), indicating a relatively larger range of trait values conferring high-fitness. 

The most accessible phenotype, Pop-MA, also had the fastest adaptation rate (Fig. 5b, c), 

potentially indicating this phenotype to be the most accessible from this starting location.  

Although Pop-MA and Pop-MB exhibited similar adaptive rates (Fig. 5c, left plot), Pop-MB was 

not nearly as accessible with only 6% of the replicates converging on this phenotype (Fig. 5b). 

Instead, Pop-MD with a slower adaptive rate was the second most accessible phenotype (Fig. 5b, 

c). Pop-MA and Pop-MD  trait correlations were more similar overall than those of Pop-MB (see 

below).  

To examine the impact of ancestral starting point on the emergent phenotypes, we ran the 

model with a second starting location (i.e. trait values) in the trait-scape that was equidistant to the 

high fitness area. These model runs converged on 3 of the 4 phenotypes observed with the 

empirical starting location (Pop-MA, Pop-MB, and Pop-MD). However, shifting the starting 

location resulted in Pop-MB becoming the most accessible phenotype while the former two most 

populous phenotypes, Pop-MA and Pop-MD, were still accessible, but only 24% and 9% of 

replicates ended on these phenotypes, respectively (Supplementary Fig. 2). No new phenotypes 

emerged and no replicate found Pop-MC. These runs indicate that high-fitness areas of the trait-

scape were conserved, and that starting an adaptive walk from another location influenced the 

accessibility of certain phenotypes thereby biasing evolutionary outcomes. The fact that no new 

populations emerged further confirms the ability of this framework to capture the known 

phenomenon that there are a limited number of accessible phenotypes.  
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 We then tested the influence of trait correlational constraints on evolutionary trajectories 

by randomly changing traits independently of trait correlations (i.e. ignoring trait relationships) 

and found that only one phenotypic scenario emerged where individuals were able to explore a 

broad distribution of trait correlation ranges unconstrained while reaching the high fitness area 

faster than all other model runs that were comprised of correlation-dependent phenotypes 

(Supplementary Fig. 3). This demonstrates that trait correlational constraints produce different 

evolutionary strategies (i.e. emergent, cryptic phenotypes), and if not present, individuals have the 

ability to explore the range of phenotypic space unconstrained. This in turn accelerates 

“adaptation” through one “phenotype” (e.g., population) comprised of individuals spanning the 

range of correlational distributions.  

Fig. 5 Representative trait, population, and fitness dynamics for a model run in mixed mode a) Trait-
trait plot denoting the 4 distinct populations (i.e. phenotypes) that emerged from 100 replicate model runs in 
mixed mode (i.e. no bias). Each hollow point represents the final trait values of a given individual in the last 
generation (2000) colored by fitness. Colored lines represent the average trait values at each generation for 
each population with the black point denoting the final generation. b) Population dynamics of the 4 
emergent populations showing the number of replicates (out of 100) that chose specific populations (size of 
circle) along with each population’s rate of adaptation (color of circles). c) The left plot displays the fitness 
of each population over time while the right displays boxplots representing the distribution of the final 
fitness values across all individuals of all replicate runs (n = 100,000). Black lines in the boxplots denote the 
median with the edges denoting the 25th and 75th percentiles, respectively.  
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We also tested the sensitivity of the model dynamics to the underlying model assumptions 

of the frequency of trait and trait correlation changes (default Mode 90/10). Specifically the model 

was run in two other sub-modes: 1) 50% of individuals experienced a trait change and 50% 

experienced both a trait and correlation change (Mode 50/50) and 2) 10% of individuals 

experienced a trait change and 90% of individuals experienced both a trait and correlation change 

(Mode 10/90). Mode 50/50 found the same 4 phenotypes as the default Mode 90/10 while Mode 

10/90 found the two most accessible phenotypes, Pop-MA and Pop-MD (Supplementary Fig. 4). 

No new populations emerged. The fact that some combination of the same phenotypes emerged 

from each of the three independently run modes provides further evidence for a robust, conserved 

trait-scape with limited high-fitness phenotypes derived from a population with no historical bias.   

Adding Bias 

The mixed-mode model runs above represent a null hypothesis where organisms have no 

constraint (e.g., bias) on trait-trait relationships. Next, we assessed the impact of adding trait-

correlation bias through the systematic addition of empirical ancestral correlations. We first 

created four sub-modes (A1, A2, A3, and A4) in which correlations derived from the observed 

ancestral population (Fig. 2) were added sequentially. To test if the sequence of correlational 

changes influenced adaptive outcomes in our model, we ran the model with the reversed order of 

correlation changes (Supplementary Fig. 5). For sub-mode A1, random correlation values were 

generated for 5 of the 6 trait correlations, and the strongest empirical ancestral correlation was 

added back to all individuals. This resulted in a starting population in which each individual 

contained the same 4 trait values, one ancestral trait correlation value shared across all individuals, 

and random correlation values for 5 of the 6 trait correlations. The rest of the model steps 

proceeded as above where all traits and correlations were allowed to change. For A2, all steps were 
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the same except that two 

empirical ancestral correlations 

were shared by all individuals in 

the starting population. The same 

was done for A3 and A4. Finally, 

we conducted the same procedure 

but using the trait correlations 

derived from the evolved 

populations (Fig. 2) to generate 

sub-modes E1 – E4. The results 

from both sets of simulations 

yielded the same phenotypes as 

described above. 

  For both ancestral and 

evolved modes, systematically adding more bias (i.e. going from A1 – A4 and E1 – E4, 

respectively,) changed the accessibility of the high-fitness phenotypes across replicate runs (Fig. 

6). In other words, adding different types of bias influenced adaptive walks across the trait-scape 

by introducing constraints in the form of trait relationships (e.g., different paths depicted in Fig. 

1). However, the type of bias had a different impact on phenotype accessibility. Bias (trait 

correlations) from the ancestral correlations was typically maladaptive and resulted in fewer 

accessible phenotypes and slower adaptive rates (Fig. 6a). However, bias from the evolved trait 

relationships (i.e. consistent with the trait-scape) resulted in faster adaptive rates and greater 

overall accessibility to adaptive phenotypes (Fig. 6b). These results are consistent with previous 

Fig. 6 Population dynamics of emergent populations  across 
different historical bias a) Bubble plot showing emergent 
populations as a function of adding empirical ancestral correlations 
(ancestral bias). Bubble size denotes the number of replicates (out of 
100) within a specific population  while bubble color represents each 
population’s rate of adaptation (color of circles). b) Same plot as in a) 
except with adding empirical evolved correlations (evolved bias).  
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work, which found that bias (e.g., trait correlations) will accelerate adaptive evolution if existing 

biological orientation aligns with the direction of selection but may constrain adaptation if it limits 

variability in the direction of selection [16,17,28]. Hence, depending on a starting population’s 

bias, different phenotypes are more probable than others with some being generally inaccessible 

as found in other studies [26,27].  

 

Meta-analysis of phenotypes across model runs  

 We assess the similarity of the high-fitness phenotypes across all 90/10 model runs (9 runs 

with 100 replicates each) using hierarchical clustering with multiscale bootstrap resampling (1,000 

replicates) on mean trait correlation values (Methods). We also included the empirical ancestral 

and evolved populations in this analysis.  Hierarchical clustering revealed 5 high-fitness clusters 

(I – V) harboring multiple phenotypes with approximately unbiased (AU) p-values > 75 (Fig. 7a). 

Two phenotypes, Pop-MB and Pop-EB-E1, clustered with II and IV, respectively, albeit with less 

confidence relative to the high-fitness clusters. The empirical ancestral phenotype did not fall 

within one of the high-confidence clusters, which is expected as the ancestral phenotype is not 

well-adapted in the evolved trait-scape. In contrast, the empirical evolved population clustered 

with high-confidence in cluster V, a cluster found by 20% of the replicates including phenotypes 

from sub-modes E1, E3, and E4 where evolved bias was added. The clustering observed through 

the hierarchical analysis also emerged through a PC analysis of the population trait correlations. 

Specifically, we observed 3 general areas of high-fitness, as clusters II, III, and IV collapsed into 
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a small region of the lower left quadrant in a PCA including all 90/10 model runs (Fig. 7b). Here 

we show convergent regions of high-fitness derived from thousands of possible trait and 

correlation values across varying degrees of bias. These areas representing integrated phenotypes 

along a reduced set of biological axes offer valuable insight into emergent, constrained 

evolutionary trajectories given a starting set of traits and their relationships.  

Discussion  

Here, we combined empirical evolution trait data of a freshwater alga with a framework that uses 

principal components to model multivariate adaptive walks with evolving traits and trait 

correlations. By leveraging empirical ancestral and evolved trait correlations to high CO2, we were 

able to recreate adaptive walks anchored in real evolutionary outcomes. We found that although 

different individuals across all model runs reached a maximum fitness of ~1 at different times near 

the evolutionary end coordinate, many of them were knocked off the maximum through 

simultaneous random changes to both traits and their correlations (e.g., Fig. 3b, Fig. 5c). These 

Fig. 7 Hierarchical clustering and Principal Component Analysis of mean trait correlation values 
calculated across all phenotypes from independent model runs a) Hierarchical clustering with multiscale 
bootstrap resampling (1,000 replicates) on mean trait correlation values across all individuals from independent 
model runs (mixed mode, A1-A4, and E1-E4) along with empirical ancestral and evolved correlation values.  
Approximately Unbiased (AU) p-values (Methods) > 75 are labeled at the nodes. We identified five overarching 
clusters with AU p-values > 75, which contained even higher confidence sub-clusters. b) Principal component 
analyses with mean trait correlation values as in a) with the 5 clusters projected onto the coordinate plane as 
convex hulls. Percentages on x and y axes denote the percent of explained variance along each axis. Vectors C1-
C6 denote correlations 1-6 as identified in Fig. 2C.   
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persistent changes represent a combination of small selective changes refining fitness as well as 

random mutation-like changes (e.g., drift). These concurrent changes to traits and their correlations 

inherently produce phenotypic variance that natural selection acts on and may be part of a process 

that produces and/or maintains genetic heterogeneity. This variance can aid in producing cryptic 

phenotypes within a high-fitness region in a trait-scape, as we observed above. This could help 

buffer populations against biological phenomena such as antagonistic pleiotropy from changing 

environmental conditions. Moreover, positive selection in certain environments may preferentially 

act on trait relationships relative to individual traits similar to selection on epistatic interactions 

rather than individual genes in heterogeneous environments [42]. Future studies incorporating 

more traits and their correlations may help determine if high-fitness, connective ridges exist 

between these high-fitness areas or if these areas are more akin to high-fitness peaks separated by 

deeper valleys, which are improbable to cross. With a greater understanding of evolutionary 

relationships among biogeochemically relevant traits under global change stressors, we can work 

towards identifying more probable phenotypic outcomes, or at least, those that are improbable due 

to evolutionary and environmental constraints. 

The true utility of TRACE lies in its ability to be applied to specific sets of real-world traits 

of interest by leveraging data from empirical, organismal experiments. Specifically, it provides a 

framework for studying the evolution of multiple traits in response to environmental change. This 

approach generally contrasts the vast majority of past adaptive walk models that only included 

hypothetical traits and fitness to study evolution. Critically, our model captured the same 

evolutionary phenomena as past models but with a trait-scape characterized by easy-to-quantify 

and ecologically important traits from globally important microbes. From here, we can build on 

our understanding of key sets of multivariate trait relationships and their co-evolution in 
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ubiquitously distributed microbial populations as they interact with ecological, biological, and 

physicochemical processes. This will be critical for determining how evolving microbial processes 

will influence global biogeochemistry and carbon cycling in the face of global change. Since it is 

impossible to model all possible combinations of interactions, using our approach for constraining 

probable evolutionary outcomes will be important for generating and testing hypotheses related to 

global change-driven effects on microbial communities. For example, TRACE can provide 

hypotheses as to the degree of evolvability of certain traits and trait correlations under selective 

gradients (e.g., CO2) in a multi-trait landscape and suggest potential multivariate trait tradeoffs. 

These hypotheses can then be tested with targeted laboratory and field experiments. This will 

provide critical new knowledge connecting multi-trait evolutionary outcomes to larger ecological 

and biogeochemical processes across changing environments. This knowledge can ultimately be 

integrated into larger biogeochemical models to constrain microbial phenotypes and thus trait 

distributions under different global change scenarios.  

Applying TRACE to Chlamydomonas evolution to high CO2, we found that a limited set 

of integrated phenotypes underlie thousands of possible trait correlational scenarios. Upon 

systematically adding different types (ancestral or evolved) of bias, only certain phenotypes 

emerged for some trait combinations (e.g., A2 – A4 & E2) while others found all possible 

phenotypes for a specific mode. These results help elucidate evolutionary trajectories based on 

trait correlation constraints for ecological and biogeochemical traits of interest. Importantly, they 

also help to inform future experimental designs aiming to test the probability of adaptive outcomes 

across multivariate environments through the analysis of a select set of traits. The combination of 

both experimental evolution and eigenvector methods like PCA can be a powerful approach to 

help predict both short and long-term biological responses to global change. Particularly, this 
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framework can be used to estimate a rugged trait-scape harboring a limited set of phenotypes to 

identify high-fitness trait-correlation combinations under selective gradients. As random 

biological changes are mapped onto existing phenotypic dimensions with different proportional 

variation, certain phenotypes or adaptive paths are more readily available than others, thereby 

producing nonrandom outcomes. Because predicting evolutionary outcomes is extremely difficult, 

understanding which trait combinations are improbable or impossible helps us to focus on 

investigating more probable combinations. Future studies can begin to build robust knowledge of 

select microbial traits and their evolutionary relationships, which can be linked to their dispersal 

and impact to elemental cycling. Due to the seemingly infinite amount of possible interacting 

biological and environmental variables to test, these evolutionary and mathematical tools that 

allow us to efficiently combine experiments with modeling will be critical to help predict microbial 

population responses to future global change scenarios through the lens of evolutionary 

phenomena.     

 

Materials and Methods 

PCA 

 Ancestral and evolved trait values from low-CO2 and high-CO2 adapted populations across 

5 genotypes of Chlamydomonas reinhardtii were downloaded from Lindberg et al. (2020) [3] and 

can be found in Supplementary File 1. We selected four independent ecologically relevant traits: 

growth rate, respiration, cell size, and daughter cell production. All empirical trait values were 

standardized for both ancestral and evolved data. Principal component analyses (PCA) were 

conducted resulting in 48% and 37% of the variance explained on axes PC1 and PC2, respectively, 

for ancestral correlations and 54% and 32% for evolved correlations. For both ancestral and 
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evolved PCAs, or trait-scapes, there are 6 trait correlations, which can be found in Supplementary 

File 1.  

 To select a start and end point for the adaptive walk, ancestral populations were projected 

into the evolved PC space. We selected a single genotype to use for the start and end point of the 

walk (tan circle in Fig. 2b; row 20 in the ancestral trait value matrix in Supplementary File 1) as 

the start point, and the corresponding evolved population as the evolutionary endpoint (red circle 

in Fig. 2b; row 20 in the evolved trait value matrix in Supplementary File 1).  

TRACE 

The model was initialized with a population of 1000 individuals with the same  trait values 

corresponding to the ancestral trait values. Three different modes were run with varying amounts 

of starting bias using different starting trait correlations: mixed, ancestral, and evolution. The 

mixed mode corresponds to no bias; the ancestral and evolution modes each had 4 sub-modes 

where ancestral and evolutionary bias (i.e. trait correlations) were systematically added (explained 

in detail below). Each model run was conducted for 2000 generations with 100 replicates each. All 

model parameters are given in Supplementary Table 1.  

Mixed mode – No bias 

To first test all possible routes available to travel from the ancestral start point to the evolutionary 

end point in evolved the trait-scape (Fig. 2b), we generated random correlation values from a 

standard uniform distribution within the open interval (-1,1) and randomly assigned them to all 

individuals. Hence, every individual started with the same 4 trait values but completely random 

correlation values (n = 6 correlations). For each generation, 90% of the individuals were randomly 

chosen, and for each individual, 1 trait was randomly selected to change by drawing a random 

value from a normal distribution with mean of 0 and standard deviation of 0.05. This trait change 
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was added to the existing trait value. Following this first trait change, we updated the remaining 3 

traits using the trait correlations for that individual in that time step. For example, if trait 1 was 

initially changed, then we would update traits 2, 3, and 4 using each of their respective correlations 

with trait 1. We conducted additional runs where we reversed the order of updating the traits and/or 

correlations but results remained the same (Supplementary Fig. 5). 

For the remaining 10% of the population, we changed both a trait and a trait correlation. 

For each individual, we randomly sampled a correlation to change. Similar to the trait change, we 

drew a random value from a normal distribution with mean of 0 and standard deviation of 0.05 

and added it to the existing correlation value. Next, we randomly chose one of the two traits 

associated with that correlation and changed it in the same manner as above. Next, we updated the 

second trait tied to the correlation using the new correlation and trait value.  

Following these changes in traits, all individuals in the population were projected back 

onto the evolved trait-scape using the evolved factor loadings. The Euclidian distances (z) were 

calculated for each individual relative to the evolutionary endpoint. Next fitness was calculated 

after as [1,32]. 

w(z) = e(-z^2)/2 Eq. 1 

Different individuals either moved further or closer to the endpoint depending on the nature of the 

trait and/or correlation changes (Fig. 3a). The closer the individual moved, the higher its fitness 

(Fig. 3). Finally, individuals were randomly sampled with replacement weighted by fitness to 

persist to the next generation. This selective approach through probabilistic weighting of fitness 

was adapted from our previous work [1,32] inspired by Fisher’s model of adaptation [33]. Previous 

work by us and others have demonstrated that adaptive outcomes using this framework are robust 

relative to large changes in population sizes (Supplementary text) [1,32]. Several sensitivity 
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studies were conducted. We ran the mixed mode with a different starting point that was equidistant 

to the evolutionary end point, as the original starting point. To test different adaptive rates applied 

to traits and trait correlations, we altered the ratio of changes where instead of changing a trait in 

90% individuals and a correlation + trait in 10% of them (90/10), we changed a trait for 50% and 

a trait + correlation for the other 50% (50/50), and finally changed a trait for 10% and a trait + 

correlation for 90%.  

Ancestral mode 

To test the effects of systematically adding ancestral bias, we ran the ancestral mode in 4 

sub-modes with 100 replicate runs each: A1, A2, A3, and A4. For simplicity, we chose to 

sequentially add back in ancestral correlations from most significant to least significant. For mode 

A1, random correlation values were generated as above for 5 of the 6 trait correlations, and one 

empirical ancestral correlation was added back to all individuals. So, now each individual 

contained random correlation values for 5 of the 6 trait correlations, and one ancestral correlation 

value shared across all of them. The rest of the model steps proceeded as above. For A2, all steps 

were the same except that we added two empirical ancestral correlations. Finally, the same was 

done for A3 and A4.  

Evolved mode 

We conducted the same procedure for the evolved mode but instead systematically added 

empirical evolved correlations for modes E1 – E4.  

Hierarchical Clustering 

Hierarchical clustering with multiscale bootstrap resampling (1,000 replicates) on mean trait 

correlation values was conducted using R package pvclust [43] using Euclidean distance and the 

average (UPGMA) method. Principal component analysis using mean correlation values was 
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conducted with package R package vegan [44], and pvclust clusters with AU p-values > 75 were 

projected onto the PC coordinate plane as convex hulls.  
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