






Figure 2. Information unexplained as a measure of quality. a-c Information unexplained HU (g), for each gene in the

Svensson (a), Tian (b) and Tabula Muris (c) data sets, normalised by the theoretical maximum (log number of cells), against

log10 mean expression. Each gene is a point. The red-line is the expected information unexplained from the depth-adjusted null

model. Genes with more than 0.5 bits information unexplained are highlighted in dark blue. d-e Micro-heterogeneity, hs, for

the Tian data with clustering provided by d the genotyped cell annotation and e that expected from randomly permuted

annotations (2,000 permutations). f Total information unexplained, I, against Rand index for k-means clustering (5 centres,

1,000 repeats). Each point is a single realization of k-means clustering. The red-line shows linear regression. g-h Elbow plots

of total information unexplained I, against cluster resolution (g) and cluster number (h) for the Tian data. The red line indicates

the true cluster number (5). i Elbow plot of total information unexplained I against cluster resolution for the Tabula Muris data.

In panels (g-i) the clustering was performed using the Louvain method (see Methods).

homogeneous cell sub-populations encoded in S.

In the Methods we show that HU (g) can be decomposed into two parts: one part related to the extent to which the

proposed clustering is compatible with an assumption of local homogeneity in each sub-population of cells, which we term

the micro-heterogeneity denoted hS(g); and one part related to how variably the gene is expressed, on average, between

sub-populations, which we term the macro-heterogeneity denoted HS(g).
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In particular, we show that

HU (g) = HS(g)+hS(g), (2)

for any proposed clustering S. Thus, the information obtained from an experiment concerning the expression of a gene g can be

explicitly related to both local and global patterns of variation. Full mathematical details of this decomposition are provided in

the Methods. We have also produced an R package for its calculation (see Methods).

Since the micro- and macro-heterogeneity are related by Eq. (1), either can be used as a simple measure of cluster quality.

Since, informally, the micro-heterogeneity hS(g) assesses the amount of information in the expression pattern of g that is

unexplained by the proposed clustering (the better S explains the experimentally observed expression patterns the smaller hS(g)

will be) we will use here as a measure of cluster quality.

To illustrate this idea, we considered the Tian data further. In this data, cell type annotations are known a priori via

genotyping. We compared the information unexplained by this ground truth clustering (Fig. 2d) to that unexplained by random

permutations of the ground truth (Fig. 2e). As expected, the ground truth clustering explained more information than all random

permutations for 99.5% of genes (2,000 permutations, p < 0.05, FDR corrected).

These results indicate that by simple information-theoretic reasoning we are able to quantify the amount of information

explained by a given clustering on the expression of a single gene. However, a key strength of single-cell methods is that

they allow the simultaneous profiling of thousands of genes. Very similar reasoning may be used to calculate the information

explained by an entire single-cell profiling experiment by assuming that each gene is an independent source of information and

making use of the fact that information from independent sources is additive (Shannon 1948). Thus, we can determine the

total information unexplained by a given clustering, by examining the sum I = ∑g hS(g). From a Bayesian perspective this

corresponds to taking the most non-committal multivariate uniform prior. The total information unexplained I is a simple,

easily computed, measure for cluster quality that favours grouping of cells into homogeneous sub-populations and is minimized

(at zero) if and only if the proposed clustering accounts for all the heterogeneity contained in the sc-Seq data set.

To demonstrate this concept, we again made use of the ground truth annotation provided in the Tian data set. Normalising I

by total information obtained (∑g HU (g)), the ground truth annotation left 85.1% information unexplained compared to 99.78%

(±0.01%) left unexplained by random permutations. To investigate further we conducted k-means clustering (5 centres, 1,000

repeats) and calculated the total information unexplained for each realization. We found a strong negative correlation between

similarity to the ground truth annotation (determined by Rand index) and information unexplained (−0.97, Pearson’s correlation

coefficient) (Fig. 2f) (Hastie et al. 2009, Rand 1971). Collectively, these results indicate that information unexplained is

simple way to assess annotation quality for individual genes. Moreover, they indicate that a substantial amount of information

unexplained is due to associations between genes, which are not included in the multivariate homogeneous null model. The

extent of these associations may also be quantified using the information unexplained.

In general, the total information unexplained decreases with increasing cluster number (Shannon 1948) and will tend to

zero as the number of clusters tends to N, the number of cells profiled. There is, therefore, a trade-off between the number of

clusters included in a proposed clustering and the total amount of information unexplained. Similar issues arise with other

measures of cluster quality, and a variety of different methods exist for identifying the appropriate number of clusters in a data

set (Tibshirani et al. 2001, Rousseeuw 1987).

To illustrate, we used the elbow heuristic with total information unexplained I as the quality metric, to determine the

optimum number of clusters in the Tian data, using the Seurat clustering pipeline (Hafemeister & Satija 2019). We observed an

evident elbow in the Seurat resolution hyperparameter (which indirectly determines cluster number; Fig. 2g), corresponding to

five cellular identities (Fig. 2h). The resulting clustering is a strong association (0.99 Rand index) to the ground truth genotype

annotation, indicating that total information unexplained can be used to successfully optimize clustering. A similar analysis

for the Tabula Muris data also indicated a strong elbow, suggesting that information unexplained can also be used to identify
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clusters in complex data sets (Fig. 2i).
In conclusion, we have presented a simple framework, based on an information-theoretic interpretation of cell type, that

can be used throughout the sc-Seq analysis pipeline. For large cell atlas data-sets, such as the human cell landscape, multiple

levels of clustering are often required to identify subtle differences between cell types (Han et al. 2020). In our framework, the

information unexplained is a simple measure of the extent to which the expression pattern of a given gene is explained by a

proposed clustering. Substantial information unexplained can, therefore, be used to identify clusters of cells and/or genes that

would benefit from further investigation. If an observed gene expression pattern in a population of cells remains unexplained

by more refined clustering, then it may be that it cannot be well described by a uniform mixture model. This implies that the

observed expression patterns are not consistent with the presence of a mixture of homogeneous cell sub-populations. Such

patterns are particularly interesting since they indicate that more complex expression dynamics, such as those associated with

temporal oscillations, may be present and worth further investigation.

Methods

Data Collection
Count matrices for each data set were downloaded from their respective repositories (see Availability of Data and Materials).

For the Tabula Muris data set, the count matrices of the various tissues were concatenated using the Matrix package in R.

Data Pre-processing
For each data set those genes with less than 100 total transcripts in total (i.e. across all cells) were excluded from further

analysis.

Mathematical Details
Suppose we conduct an experiment and measure the expression of a gene g in a population of N cells. Let mi be the number of

transcripts associated with cell i in the population and let ∑i mi = M. Let pg(i) = mi/M be the fraction of transcripts of gene g

expressed by cell i, for each 1≤ i≤ N. Thus, ∑
N
i=1 pg(i) = 1. In the argument that follows we will focus on expression patterns

of g in generality and so we will drop the g subscript from our notation from now on.

Let X = Xg be the discrete random variable on the set {1,2, . . .N} with probabilities xi = pg(i). The Shannon entropy of X

is, by definition,

H(X) =−
N

∑
i=1

xi logxi. (3)

By convention, we assume that 0 · log0 = 0 and take logarithms to the base 2, so the entropy is measured in bits.

The Shannon entropy is a measure of the information, or uncertainty, in the outcomes of X . It has a minimum value of

zero, when xi = 1 for some i, that is g is expressed in only one cell in the population (i.e. mi = M for some i and m j = 0 for

all j 6= i) and its maximum value is log(N), when xi = 1/N for all i, that is, when the gene is uniformly expressed in the cell

population. The entropy may therefore be considered as a measure of the homogeneity of expression of the gene g in the cell

population profiled. By contrast, the quantity log(N)−H(X) also ranges between zero and log(N), yet is minimized when the

gene is homogeneously expressed and so is a simple measure of expression heterogeneity, which we will denote HU (g). We

can rewrite this as

log(N)−H(X) =
N

∑
i=1

xi log(N)+
N

∑
i=1

xi log(xi) =
N

∑
i=1

xi log(Nxi) . (4)

The Kullback-Leibler divergence of a discrete probability distribution p1, . . . , pN from a discrete probability distribution
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q1, . . . ,qN is, by definition,

DKL(P||Q) =
N

∑
i=1

pi log
(

pi

qi

)
, (5)

with the provision that qi = 0 implies pi = 0, and the convention that 0 · log( 0
0 ) = 0. From this definition it is clear that our

measure of heterogeneity is simply the Kullback-Leibler divergence of the observed expression distribution from the uniform

null distribution. Thus,

HU (g) = log(N)−H(X) = DKL(X ||U), (6)

where U denotes to the uniform distribution on the set {1,2, . . .N}. Since the Kullback-Leibler divergence is the amount of

information that is lost when Q is used to approximate P, our measure of heterogeneity is, therefore, the amount of information

left unexplained by assuming the expression distribution of g is homogeneous.

A crucial property of the Kullback-Leibler divergence is that it is additively decomposable with respect to arbitrary

groupings (Shorrocks 1980). Informally, this means that if we have a clustering of the cells into disjoint groups then HU (g),

can be reconstructed from within- and between-group heterogeneities.

Let S be a clustering that unambiguously assigns each cell in the sample into one of C non-intersecting sub-populations

S1, . . . ,SC of sizes N1, . . . ,NC. Note that ∑
C
k=1 Nk = N, the total number of cells. Let yk be the fraction of transcripts associated

with cells in sub-population Sk, that is,

yk = ∑
i∈Sk

xi. (7)

This gives another discrete random variable Y with probability distribution y1, . . . ,yC, on the set {1,2, . . .C}. For each

k = 1, . . . ,C, we can also assess the heterogeneity of the sub-population Sk by considering the random variable Zk with

probability distribution zi = xi/yk on the set i ∈ Sk.

We may rewrite HU (g) in terms of Y and Zk, as follows:

HU (g) = log(N)−
N

∑
i=1

xi log
(

1
xi

)
, (8)

= log(N)−
C

∑
k=1

∑
i∈Sk

xi log
(

1
xi

)
, (9)

= log(N)−
C

∑
k=1

yk ∑
i∈Sk

xi

yk

(
log
(

1
xi/yk

)
+ log

(
1
yk

))
, (10)

= log(N)−
C

∑
k=1

yk ∑
i∈Sk

xi

yk
log
(

1
xi/yk

)
︸ ︷︷ ︸

H(Zk)

−
C

∑
k=1

yk ∑
i∈Sk

xi

yk
log
(

1
yk

)
, (11)

= log(N)−
C

∑
k=1

yk H(Zk)−
C

∑
k=1

log
(

1
yk

) yk︷ ︸︸ ︷
∑
i∈Sk

xi︸ ︷︷ ︸
H(Y )

, (12)

= log(N)−
C

∑
k=1

yk H(Zk)−H(Y ), (13)

= log(N)−H(Y )−
C

∑
k=1

yk log(Nk)︸ ︷︷ ︸
A

+
C

∑
k=1

yk log(Nk)−
M

∑
k=1

yk H(Zk)︸ ︷︷ ︸
B

. (14)
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Expression A may be rewritten as:

A = log(N)−H(Y )−
C

∑
k=1

yk log(Nk) , (15)

=
C

∑
k=1

yk log(N)−
C

∑
k=1

yk log
(

1
yk

)
−

C

∑
k=1

yk log(Nk) , (16)

=
C

∑
k=1

yk log
(

yk

Nk/N

)
, (17)

= DKL(Y ||Ugroup). (18)

This is the Kullback-Leibler divergence of Y from the uniform distribution Ugroup in which pk = Nk/N for k = 1, . . . ,C. Since

yk is the proportion of transcripts assigned to cluster Sk, this is the information unexplained by the assumption that the clusters

are homogeneous in their expression of g (i.e. they all express g at the same level). Since it is a measure of the extent to which

the population deviates from a homogeneous macroscopic mixture we will term this contribution the macro-heterogeneity of g

with respect to S, denoted HS.

Expression B may be rewritten as:

B =
C

∑
k=1

yk log(Nk)−
C

∑
k=1

yk H(Zk), (19)

=
C

∑
k=1

yk (log(Nk)−H(Zk)) , (20)

=
C

∑
k=1

yk ∑
i∈Sk

xi

yk
log
(

Nk
xi

yk

)
, (21)

=
C

∑
k=1

yk ∑
i∈Sk

xi

yk
log
(

xi/yk

1/Nk

)
, (22)

=
C

∑
k=1

yk DKL(Zk||Uk). (23)

This is the weighted sum of the Kullback-Leibler divergences of the empirical distributions of Zk (i.e. the observed gene

expression distribution in group Sk) from the uniform distribution Uk on Sk (in which pi = 1/Nk for each i ∈ Sk). It is the

expected information unexplained by the assumption that the population consists of a mixture of homogeneous sub-populations

according to the clustering S (where the expectation is taken with respect to the probability measure provided by Y ). Since it

is a measure of the expected extent to which the proposed sub-populations deviate from the homogeneous microscopic null

model, we will term this contribution the micro-heterogeneity of g with respect to S, denoted hS(g).

Taken together these results show that HU (g) can be decomposed into two well-defined parts that encode properties of the

global and local structure of the expression distribution of g respectively, as:

HU (g) = HS(g)+hS(g). (24)

The Kullback-Leibler divergence is always non-negative and hence so are HS(g) and hS(g) for any S. Thus, both quantities

range from zero to HU (g). If S places one cell in each group (i.e. C = N) then Zk =Uk for all k and thus HS(g) = 0. Conversely,

if S places all cells in one group (i.e. C = 1) then Y =US and thus hS(g) = 0. In this case, the information unexplained by the

assumption of homogeneity is equivalent to the information unexplained by the trivial clustering.

Although phrased for a single gene g these notions may be easily extended to the multivariate setting. In this case, the

homogeneous null model is obtained by assuming that each gene is expressed homogeneously and independently. Again, this
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corresponds to the least informative Bayesian prior. Because the information from independent sources is additive (Cover &

Thomas 2012), the total information unexplained in sc-Seq data set by a given clustering is therefore given by the sum:

I = ∑
g

hS(g). (25)

Computational Implementation
All the information-theoretic measures described above were calculated using the R package infohet, which we have

developed and made freely available (see Availability of Data and Materials).

Null Model
Typically in sc-Seq data there is substantial variation in cellular count-depths, i.e. the total number of transcripts expressed

in each cell. This variation is thought to be largely technical, not biological (Hafemeister & Satija 2019). We accounted

for this variation as follows. Let li be the total number of transcripts associated with cell i (i.e. across all genes) and denote

∑i li = L. Now let ρi = li/L be the proportion of transcripts observed in total that are expressed in cell i, for each 1≤ i≤ N.

This determines a discrete random variable Γ with probability distribution ρ1,ρ2...,ρN on the set {1,2, . . .N}, which determines

the likelihood that a given transcript will be assigned to a given cell, taking into account sequencing depth.

To realize the null homogeneous model computationally we repeatedly assigned (300 times) the M transcripts experimentally

associated with each gene g to the N cells profiled independently using the probability measure Γ.

Genotype Annotation
Genotyped cell annotations for the Tian data are available in the repository metadata. Random clustering was generated by

randomly permuting the genotyped annotation 2,000 times. Comparison of true and shuffled annotations was performed

correcting for multiple testing by false discovery rate using the R function p.adjust.

Clustering
Each data set was normalised with feature selection using the Seurat pipeline, as described in (Hafemeister & Satija 2019)

using default parameters. All clustering was carried out on the normalised data. The inbuilt R function kmeans was used

with default parameters. Seurat clustering (Louvain community detection) was carried out with default parameters, with

the exception of the resolution, as described in (Stuart et al. 2019). The Rand index was calculated using the rand.index

function in the R package fossil. Pearson’s correlation coefficient was found using the inbuilt R function cor.
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