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Abstract 
Cancers can vary greatly in their transcriptomes. In contrast to alterations in specific genes or pathways, 

the significance of differences in tumor cell total mRNA content is poorly understood. Studies using single-

cell sequencing or model systems have suggested a role for total mRNA content in regulating cellular 

phenotypes. However, analytical challenges related to technical artifacts and cellular admixture have 

impeded examination of total mRNA expression at scale across cancers. To address this, we evaluated 

total mRNA expression using single cell sequencing, and developed a computational method for 

quantifying tumor-specific total mRNA expression (TmS) from bulk sequencing data. We systematically 

estimated TmS in 5,181 patients across 15 cancer types and observed close correlations with 

clinicopathologic characteristics and molecular features, where high TmS generally accompanies high-

risk disease. At a pan-cancer level, high TmS is associated with increased risk of disease progression 

and death. Moreover, TmS captures tumor type-specific effects of somatic mutations, chromosomal 

instability, and hypoxia, as well as aspects of intratumor heterogeneity. Taken together, our results 

suggest that measuring total mRNA expression offers a broader perspective of tracking cancer 

transcriptomes, which has important clinical and biological implications.   
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Introduction 

Cells of different origins and states can present large differences in quantities of multiple RNA species1–

8. Variation in total mRNA amount, i.e., the sum of detectable mRNA transcripts across all genes per cell, 

has been linked indirectly to cancer progression as a result of MYC activation9,10 and aneuploidy11,12. 

More broadly, reprogramming of the transcriptional landscape is a critical hallmark of cancer13. Over the 

last two decades, we have come to understand how changes in the expression of specific genes or 

pathways affect tumor progression14–16 and prognosis17,18. Recently, single-cell RNA sequencing 

(scRNAseq) has revealed that the total number of expressed genes per cell, and total mRNA content, 

were more predictive of cellular phenotype, such as developmental stages in normal cells and 

differentiation states in cancer cells, than alterations in specific genes and pathways19,20. Total mRNA 

expression per cell may therefore represent an important feature of cancer transcriptomes that has been 

largely overlooked.  

Single-cell sequencing allows quantification of total mRNA expression in individual tumor cells21–23. 

However, high cost and sample quality requirements have prohibited its application to large cohorts of 

human tumors. Bulk tumor RNA sequencing data on the other hand can be readily obtained in a clinical 

setting, but total mRNA expression information is masked during standard data analysis. Specifically, 

methods for differential expression analysis typically assume that total mRNA content is constant across 

samples. As such, variation in total mRNA transcript levels is removed by normalization, together with 

technical biases such as read depth and library preparation4,24–26. A further obstacle in cancer studies is 

the inability to directly measure tumor-specific mRNA, as the data often contains reads from both tumor 

and admixed normal cells.  

The intrinsic mixing of distinct cell types during bulk RNA sequencing presents an opportunity for 

analyzing cellular populations using a common technical baseline within each sample, while maintaining 

the cell-type specific total mRNA levels. Building upon prior work in bulk transcriptome deconvolution27–

29 and in modelling tumor ploidy30,31, we here created a measure of tumor-specific total mRNA expression 

(TmS), which captures the ratio of total mRNA expression per haploid genome in tumor cells versus 

surrounding non-tumor cells. We scrutinized total mRNA expression using single-cell sequencing data 

across four cancer types32,33, as well as in matched bulk RNA and DNA data from 5,292 patient samples 

across 15 cancer types from the TCGA, ICGC34 and TRACERx studies35,36. Our analyses revealed that 

variation in total mRNA expression is a phenotypic feature of tumor cells that captures tumor behavior in 

a cancer type-specific fashion and predicts prognosis.  
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Results 

Diversity in total mRNA expression is a hallmark of tumor cells 

Total mRNA expression can be estimated directly by single-cell RNA sequencing (scRNAseq) via 

examination of two features, total unique molecular identifier (UMI) counts, which quantifies the total 

number of observed mRNA transcripts per cell, and the number of expressed genes per cell (gene 

counts). We quantified total UMI and gene counts in scRNAseq data generated from human colorectal, 

liver, lung32 and pancreatic tumors33 (Methods and Supplementary Information (SI)). We observe 

larger variability in total UMI and gene counts in tumor cells compared to non-tumor cells (epithelial, 

stromal and immune cells), which generally present a smaller dynamic range (Fig. 1A, Fig. S1A, Table 
S1). Consistent with previous reports32,37,38, we find multiple clusters of tumor and non-tumor cells with 

distinct total UMI and gene counts, indicative of diversity in total mRNA content (Fig. 1B, Methods and 
SI). Across all clusters, UMI counts are highly correlated with gene counts, as expected (median 

Spearman r = 0.96, Fig. S1B). While this may be technical at least in part, it also suggests overlap in the 

underlying biology of the two features. Every patient sample contains one tumor cell cluster with total 

UMI and gene counts similar to those of stromal or immune cells. Tumor samples from seven patients 

across four cancer types present additional tumor cell clusters with higher total UMI and gene counts 

(i.e., high-UMI clusters). In four patients with shorter time to disease progression (colon, liver and 

pancreas cancers), or with advanced stage disease (lung cancer), a high-UMI tumor cell cluster is where 

UMI counts are significantly higher than any other cell clusters. As a result, an increased average total 

UMI count is observed across tumor cells in these samples (Fig. 1B, SI). The observed fold change in 

total UMI counts between tumor cell clusters range from 4.7 to 25, which are higher than what would be 

expected from a whole-genome duplication event39,40 (adjusted P value < 0.001, Methods and SI). These 

findings suggest that high diversity in total mRNA expression is a distinctive feature of tumor cells and 

may relate to clinical characteristics. Given that the observed differences in total mRNA expression 

between tumor cell clusters are large and consistent, we hypothesize that variation in an average total 

mRNA expression among tumor cells may be detected across tumor samples using bulk sequencing. 

This hypothesis is corroborated by the scRNAseq generated pseudo-bulk data, where ratios of total 

mRNA expression for tumor versus non-tumor component are great than one in eight out of nine patient 

samples (Fig. S1C, Methods and SI), demonstrating detectable differences between tumor and non-

tumor cells. We therefore set out to quantify tumor-specific total mRNA expression as a metric to track 

tumor phenotype. 

Estimating tumor-specific total mRNA expression from bulk sequencing data 

Cell type-specific total mRNA expression is not directly measurable using bulk sequencing data because 

tumor samples typically contain mixtures of tumor and non-tumor cells4. However, assuming technical 
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effects are similar for tumor and non-tumor cells within a sample, we can estimate the ratio of total mRNA 

expression between these two cellular populations. We formulate a normalized total mRNA expression 

score (TmS), estimated from the ratio of total tumor-specific mRNA levels over total non-tumor-specific 

mRNA levels, and incorporating tumour purity and ploidy (Fig. 2A, Methods and SI). Deconvolution 

methods (e.g., DeMixT29) are needed to derive tumor-specific total mRNA proportions from bulk RNA 

sequencing data, while purity and ploidy can be estimated from DNA sequencing data (e.g. ASCAT30 and 

ABSOLUTE31) (Fig. 2A and Fig. S2A-F, SI). We developed a profile likelihood-based approach to select 

top ranking genes that maximized the DeMixT model identifiability of tumor-specific total mRNA 

proportions (Methods and SI). The selected genes form global transcription signature gene sets. 

Included genes are cancer specific and distributed across the genome (Fig. S3A). Across cancer types, 

54-68% (mean = 62%) of signature genes are housekeeping or essential genes41,42 (Fig. S3B). 

Furthermore, signature genes are enriched for genes that can play a role in transcriptional regulation43 

(Fig. S3C,D, Methods and SI). Compared to non-selected genes, signature genes are enriched for 

ATAC-seq peaks within their promoter regions in 279 (90%) of 310 samples across 13 cancer types, in 

keeping with the known contribution of chromatin accessibility to transcriptional dynamics44 (Fig. S3E, 
Methods and SI). The cancer-type matched scRNAseq data provides additional evidence in the utility of 

signature genes to estimate total mRNA expression (Spearman r of total signature gene expression vs. 

total UMI counts is between 0.92 and 0.98 across nine patients, Fig. S3F-H, Methods and SI).  

TmS is associated with prognostic clinicopathologic characteristics 

Across all 15 TCGA cancer types where input data for DeMixT were available, we obtained TmS values 

and found considerable variation (Fig. 2B, methods, SI), with most cancer types demonstrating a wide 

TmS range (Table S2). TmS values are above 1 in 2,628 out of 5,031 (52%) patient samples (Fig. 2B). 

TmS is dependent upon the background normal reference tissue and cannot be used to make quantitative 

comparisons across cancer types. Nevertheless, for tumors derived from the same tissue, comparisons 

can be made between known histopathologic and/or molecular subtypes. Consistent trends are observed 

between subtypes of head and neck squamous cell carcinoma, breast carcinoma, renal papillary 

carcinoma, and prostate adenocarcinoma, where prognostically favorable subtypes are enriched in 

tumors with lower TmS and vice versa (Fig. 3A-D). In head and neck squamous cell carcinoma, the 

prognostically favorable human papillomavirus (HPV)-positive subtype has lower median TmS than the 

HPV-negative subtype (P value = 0.006, Fig. 3A). Similarly, triple negative receptor status is associated 

with higher TmS in breast carcinoma (adjusted P value = 4 x 10-36, Fig. 3B), in keeping with this subtype’s 

known propensity for aggressive behavior. Additional associations with molecular features and subtypes 

in breast cancer are shown in Fig. 3B. Subtypes of renal papillary carcinoma also show significant 

differences in TmS, where the more aggressive Type II tumors have higher TmS compared to Type I (P 
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value = 1 x 10-5, Fig. 3C)45. In prostate adenocarcinoma, TmS is associated with tumor grade as assessed 

by the Gleason score, where high TmS tumors are enriched for Gleason scores of 8 and above (P value 

= 0.002, Fig. 3D). TmS also correlates with Tumor-Node-Metastasis (TNM) stage in some cancer types, 

although this relationship is not consistently observed in head and neck, thyroid, breast, colorectal, lung, 

and liver cancers (Fig. 4A). Weak to moderate correlations (up to 0.4) are observed between TmS and 

proliferation markers, MKI67 and PCNA, across cancers (Fig. 3E). There are no correlations between 

TmS and other clinical characteristics, including age and sex (Fig. S4B). 

TmS refines prognostication across cancer types 

We examined the association of TmS with overall survival (OS) and progression-free interval (PFI) across 

TCGA (Methods and SI). In this pan-cancer analysis, high TmS was associated with reduced OS and 

PFI compared to low TmS (Fig. 4A). We next examined each cancer type in the context of overall TNM 

stage classification, which is used across cancers for predicting prognosis and treatment decision-making. 

Analysis stratified by early (I/II) vs. advanced (III/IV) stages revealed three different patterns for the 

differing effects of TmS by stage (Fig. 4A-E, Fig. S4C-E). The first group of tumors show consistent 

effects across stages (Fig. 4A, Fig. S4c). This includes thyroid, lung adeno, colorectal, hepatocellular, 

stomach adeno, and renal clear cell carcinomas, where high TmS is associated with higher risk of death 

and/or disease progression within both early and late stage tumors. In head and neck squamous cell, 

lung squamous cell, and bladder urothelial carcinomas, high TmS is associated with reduced survival in 

early stage tumors only, while for late stage tumors, high TmS is associated with improved survival (Fig. 
4B, Fig. S4D). An opposite pattern is observed in breast and renal papillary carcinomas, where high TmS 

is associated with poor prognosis in late stage tumors, but improved survival in early stage tumors (Fig. 
4C, Fig. S4E). TmS remains significantly associated with survival outcomes in Cox regression models, 

after adjusting for known prognostic characteristics including subtype, stage and age, except in 

hepatocellular carcinomas, where only a trend was observed (Fig. 4D, Table S3, SI).  

TmS as a prognostic feature in prostate adenocarcinoma 

For prostate adenocarcinoma, the Gleason score is a commonly used prognostic marker. Gleason 6 

tumors are typically indolent, while more variable outcomes are observed for intermediate (Gleason 7) 

and high-grade (Gleason 8+) tumors. Survival analyses showed that TmS can further stratify patients 

within subgroups defined by the Gleason score. At 5 years, 4.3% of Gleason 7 and 34% of Gleason 8+ 

patients with low TmS progressed, while 13% and 57% of high TmS tumors progressed for Gleason 7 

and 8+ patients, respectively (Fig. 4E, Table S4A, Methods and SI).  

To validate our findings, we examined an independent cohort of 79 patients with early-onset prostate 

adenocarcinoma (ICGC-EOPC)34 (Methods and SI). As this cohort contains predominantly Gleason 7 
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tumors, we are not powered to detect a relationship between TmS and Gleason score. However, similar 

to TCGA, high TmS is associated with reduced progression-free survival in Gleason 7 and Gleason 8+ 

tumors (Fig. 4F, Table S4B). Although the rate of disease progression is generally higher within this 

cohort for Gleason 7 tumors compared to those in TCGA (Fig. 4E-F, SI), low TmS tumors demonstrate 

a reduction of over 50% in progression rate compared to high TmS tumors (13% versus 36%, Table 
S4A). TmS shows similar independent effect sizes in multivariable Cox regression analyses across 

Gleason categories (Table S4B). Using TCGA as a training set, we built a risk prediction model for 

disease progression in prostate cancer. Applied to the ICGC-EOPC data, the model demonstrates high 

discrimination (integrated AUC 0.81; 95%CI: [0.67, 0.91]) and calibration (5-year Integrated Brier Score: 

0.19) (Table S4B, Fig. S4F). Overall, our findings demonstrate that TmS provides additional prognostic 

value beyond Gleason score and may be used to refine risk stratification in patients with prostate cancer. 

TmS captures cancer-specific genomic dysregulation and hypoxia 

We hypothesize that tumor-specific total mRNA expression may be regulated through a plethora of 

genomic, epigenetic and transcriptomic alterations (Fig. 5A). We therefore examined driver mutations 

(Fig. 5B, Methods and SI), which are expected to alter tumor cell phenotypes46. Driver mutations 

(nonsense, missense and splice-site SNVs and indels) in TP53 are significantly associated with higher 

TmS in breast, lung, prostate and stomach cancers. Cancer-specific negative correlations with TmS are 

also identified, including MAP3K1 and PIK3CA driver mutations in breast carcinoma and RAS driver 

mutations in papillary thyroid carcinoma. Expanding the somatic mutation analysis to include all non-

synonymous mutations (SNVs and indels) across all genes (33,909 cancer-gene pairs) and using logistic 

regression models to adjust for covariates such as tumor mutation burden (Fig. 5C, Methods and SI), 
we re-captured the same significant cancer-gene pairs plus one additional pair, negative correlation with 

FGFR3 in bladder urothelial carcinoma.   

Next, we examined broad-scale genomic alterations, including tumor mutation burden (TMB), 

chromosomal instability (CIN), whole genome duplication (WGD) and the degree of hypoxia as defined 

by a previously described gene expression signature47. TMB and CIN showed low to moderate 

correlations with TmS (Pearson r = -0.01 to 0.46, SI), suggesting that they may contribute to tumor-

specific total mRNA expression in certain cancer types but are not universal determinants. In contrast, a 

dichotomized hypoxia score is significantly associated with TmS across all 13 cancer types with available 

data (Fig. S5D). Specifically, high TmS is correlated with low hypoxia in head and neck cancers, and with 

high hypoxia in the remaining 12 cancer types.  

To study further contributions to TmS-mediated patient prognosis (Fig. 5A), We compared the 

distributions of each feature, i.e., TMB, CIN, hypoxia score, as well as TP53 mutation rate 

(nonsynonymous SNVs and indels) across four patient groups, where prognostic differences were 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.306795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.306795


 9 

identified: early stage and low TmS, early stage and high TmS, advanced stage and low TmS, advanced 

stage and high TmS (Fig. 5D, Methods and SI). In three cancer types (bladder, ER positive breast 

cancer, lung adenocarcinoma), all four features differ significantly across patient groups. In contrast, no 

differences are observed in any feature within triple negative breast cancer. In the remaining cancer types, 

at least one feature differs across patient groups. Overall, these findings show that the prognostic effect 

of TmS cannot be explained solely by shared genomic alterations across cancer types, supporting the 

notion that total tumor mRNA expression levels track a cellular phenotype resulting from a combination 

of genomic and microenvironmental factors.  

Intra- and inter-tumor heterogeneity measured by total mRNA expression  
TmS may contribute to intratumor heterogeneity, which serves as a reservoir for tumor evolution, 

treatment resistance and progression. In the scRNAseq data we identified tumor cell subclusters with 

different total mRNA expression levels in seven out of nine patients (Fig. 1B). TRACERx, a multi-region 

study of early-stage lung cancer35, provides an opportunity to further evaluate this phenomenon across 

spatial regions (Fig. 6A). Across 94 regions from 30 patients (2-6 regions per sample), a wide range of 

TmS values is seen (Fig. 6B). Regions with higher percentage of subclonal copy number alterations (top 

50%) present higher TmS (adjusted P = 0.004, Fig. 6C). Overall TmS shows a significantly higher 

correlation with ongoing chromosomal instability48 (Spearman r = 0.44) than static chromosomal 

instability (difference in r = 0.20, 95% CI: 0.04, 0.37, Fig. 6D, Methods and SI). Summarized across 

regions from the same tumor sample, the percentage of subclonal copy number alterations is highly 

correlated with maximum TmS (TmSmax, Spearman r = 0.69), and moderately correlated with the range 

of TmS, Spearman r = 0.49, Fig. S6A). A smaller range of TmS is predictive of linear evolutionary 

relationship between regions sampled (AUC = 0.83, Methods and SI). Variable selection of all measures 

(Fig. 6A) shows that subclonal copy number alterations, range of TmS and the number of regions 

sampled together can predict values of TmSmax (Fig. 6E, Methods and SI). Moreover, TmSmax, but not 

TmSmed, is associated with the risk of recurrence of death (Fig. 6F-G). A high percentage of subclonal 

copy-number alterations is known to associate with a higher risk of recurrence or death in the TRACERx 

study (Fig. S6B), while adding TmSmax allows further discrimination of outcomes (Fig. 6H, Fig. S6C). 

High TmSmax remains associated with higher risk of recurrence or death when 22 additional patients with 

a single sample per tumor are included (Fig. S6D-E). In summary, the spatial and evolutionary diversity 

within tumor samples, as well as patient prognostication, can be captured by intra- and inter-patient TmS 

heterogeneity, respectively.  

Discussion 
Here we describe a key RNA feature, the total mRNA expression of tumor cells per haploid genome copy, 

that depicts clinically relevant phenotypes in cancer. Using a DNAseq and RNAseq joint deconvolution 
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metric TmS, we demonstrated that distinctive signals in total mRNA expression from tumor cell 

populations are detectable in bulk sequencing data from single- and multi-region tumor samples. 

Association of TmS with genomic features and hypoxia in TCGA suggests a complex relationship that is 

cancer specific and highly dependent upon additional contexts such as tumor subtype and stage. This is 

in keeping with our hypothesis that total mRNA expression level is a key characteristic of the dynamically 

changing tumor cellular phenotype, influenced by various molecular events that drive tumor development.    

Regulation of total mRNA expression in tumor cells is currently not well understood. MYC dysregulation 

and aneuploidy can perturb cancer transcriptomes at scale though likely other mechanisms play a role 

as well9,49. We found that TmS correlates with different genetic alterations, including driver mutation, 

mutation burden and chromosomal instability, as a function of tumor type, suggesting that total mRNA 

expression is not governed by a single mechanism. This is in keeping with the unique complement of 

genetic alterations required for oncogenic gene expression dysregulation in distinct tissues50. Across 

cancers, high TmS was most frequently associated with hypoxia. Interestingly, Choudhry et al. showed 

that hypoxia leads to upregulated mRNA levels in breast cancer cells by releasing promoter-paused 

RNApol251. Our observations illustrate the potential joint influence of genetic and microenvironmental 

factors in shaping tumor cell total mRNA content. Through TmS, tumor-specific total mRNA expression 

can now be quantified at scale, allowing for the discovery of additional mechanisms upstream as well as 

downstream. 

While high TmS is generally associated with aggressive disease, clinical context remains important to 

evaluate its prognostic implications, as the direction of the prognostic effect inverted by stage in five out 

of thirteen cancer types. Given that early and advanced stage tumors are often treated using distinct 

modalities, this effect may in part be underpinned by a differential response of tumors with low vs. high 

total mRNA expression to treatment conditions. Indeed, transcriptional amplification in the context of MYC 

dysregulation has been linked to increased sensitivity to chemotherapeutic agents52–55. Additional studies 

incorporating data from clinical trials will be needed to elucidate how stage-specific and treatment-related 

factors interact with TmS to determine patient outcome.  

Total mRNA expression variability has implications for routine differential expression analysis, where both 

total and relative abundance4 of gene expression should be assessed56. Conceptually, analogous to DNA 

ploidy measuring the total DNA content per chromosomal copy, the total mRNA content per chromosomal 

copy can be considered the “ploidy of the transcriptome”, which is a key parameter hitherto hidden in 

most RNA-based assays. While our current work focuses on mRNA, the concepts developed here can 

readily be applied to the quantification of other RNA species (i.e. rRNA, miRNA, piRNA etc), further 

illuminating the cancer transcriptome. Enhanced attention to “transcriptome ploidy” will likely enable 
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better phenotypic characterization and a deeper biological understanding of transcriptional dysregulation 

in cancer and other diseases.  

 

Methods 

A detailed description of the methods used in this paper and additional results are described in 

Supplementary Information. Here, we provide a summary of the methods and analysis. 

Total mRNA expression in single-cell RNA sequencing data 
The single-cell RNA sequencing datasets generated from nine patients (Table S1) were preprocessed 

in a uniform fashion, including quality control, cell clustering, cell type annotation, and tumor cell 

identification. Cell type was annotated using known marker genes32,33,57–59. Tumor cells were identified 

based on the inferred presence of somatic copy number alterations by inferCNV60. Within each cell type, 

we further merged Seurat61 identified clusters that are not significantly different in gene counts (Wilcoxon 

rank-sum test, α=0.001). 

To enable comparison between different scRNAseq datasets in each cancer type, we performed scale 

normalization of the raw UMI counts, ensuring total UMI counts per cell across all cells are the same for 

different samples from the same study. Specifically, let UMIi = {UMIigc}GxCi be a matrix of raw UMI counts 

for the scRNAseq data for sample i being investigated, with genes g on the rows and cells c on the 

columns. G denotes the total number of genes; Ci is the number of cells in sample i. Then, the normalized 

UMI matrix UMIi, denoted as UMIi
norm , is calculated as UMIi

norm=UMIi/ri , where, 	ri	=	
UMIi

sum/Ci
baseline

, baseline	=	median"UMI1
sum/C1,UMI2

sum/C2,…, UMIn
sum/Cn#, UMIi

sum=∑ ∑ UMIigc
G
g=1

Ci
c=1 .  

Given a cell cluster, we let ugc denote the amount of mRNA of gene g in cell c. The average total mRNA 

amount per cell is	∑ (∑ ugc
G
g=1

C
c=1 )/C. For scRNAseq data, we assume the UMIgc from gene g, cell c is 

proportional to the total mRNA ugc of gene g in that cell, with a constant kg that represents technical 

effects: UMIgc=kg*	ugc . The constant kg is introduced because every single-cell sequencing platform 

presents a <100% capture efficiency for mRNA, and such efficiency varies across different platforms62. 

Under the assumption that the technical effect kg remains constant across cells and is often evaluated as 

an average effect across genes within the same platform, we can evaluate total mRNA expression in the 

scRNAseq data using the average total UMI counts, which is ∑ (∑ UMIgc
G
g=1

C
c=1 )/C. Average total UMI 

counts serve as a reasonable surrogate to compare total mRNA expression across cells that are 

generated from the same experiment. 
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We compared the distributions of total UMI counts between tumor cell clusters from the same patient 

sample using Wilcoxon rank-sum tests and corrected for multiple testing using Benjamini-Hochberg63 

(BH) method. We further examined cell cycle state of each tumor cell cluster using Seurat.  

A full description is provided in Section 1 in Supplementary Information. 

A mathematical model for tumor-specific total mRNA expression estimation 

Model. We have developed a tumor-specific total mRNA expression score (TmS) to estimate the ratio of 

total tumor mRNA expression per haploid genome to that of the surrounding non-tumor cells from bulk 

sequencing data (Fig. 2A). Let Tg=∑ ugc
CT
c=1  and Ng=∑ ugc

CN
c=1  denote the total number of transcripts of 

gene 𝑔 across all tumor cells and non-tumor cells, CT and CN denote the number of tumor and non-tumor 

cells, and yT and yN denote the average ploidy of tumor and non-tumor cells, respectively. Under the 

assumption that the tumor cells have a similar ploidy, we can derive TmS without using single-cell-specific 

parameters as 

We further introduce the proportion of total bulk mRNA expression derived from tumor cells (hereinafter 

‘tumor-specific mRNA expression proportion’) π  = (∑ Tg
G
g=1 )/(∑ Tg

G
g=1 +∑ Ng

G
g=1 )  and the tumor cell 

proportion (hereinafter ‘tumor purity’) r = CT /(CT + CN). We thus have 

The tumor-specific mRNA expression proportion π  derived from the tumor can be estimated using 

DeMixT29 as π& ; the tumor purity r and ploidy yT can be estimated using ASCAT30, ABSOLUTE31 or 

Sequenza64 based on the matched DNA sequencing data as ρ& and yT' , respectively; the ploidy of non-

tumor cells yN was assumed to be 230,31. Hence, we have 

In what follows, we use TmS to represent TmS(	for simplicity. A full description is in Section 2.1 in 

Supplementary Information. 

Improved estimation using DeMixT. Many computational deconvolution methods have been developed 

to estimate the cell type proportions through transcriptome data; however, most of them focus on the 

cellular proportion and not the global gene expression level of each cell type, due to lack of appropriate 

normalization approaches. The DeMixT29 model is unique in aiming to estimate the global tumor-specific 

                                                              TmS =
∑ Tg

G
g=1 /(CTyT)

∑ Ng
G
g=1 /(CNyN)

                                            Eq. 1 

                 TmS	= yNπ(1-ρ)
yTρ(1-π)                                                 Eq. 2 

                                                                          TmS(	= 2π&(1-ρ&)
yT'ρ&(1-π&)                                                Eq. 3 
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gene expression level relative to the normal reference in the context of admixed tumor samples. 

ISOpure28 is the other model that presents similar objectives as the DeMixT model. 

The identifiability analysis of model parameters is a major issue for high dimensional models. With the 

DeMixT model, there is hierarchy in model identifiability in which the cell-type specific global gene 

expression proportions π are the most identifiable parameters, requiring only a subset of genes with 

identifiable expression distributions. Therefore, our goal is to select an appropriate set of genes as input 

to DeMixT that optimizes the estimation of the tumor-specific mRNA expression proportions. In general, 

genes are expressed at different levels, which, due to different numerical ranges, can affect tumor-

specific global gene expression proportion estimation. We found that including genes that are not 

differentially expressed between the tumor and non-tumor components within the bulk sample, or genes 

with large variance in expression within the non-tumor component, can introduce large biases into the 

estimated tumor-specific mRNA expression proportions. By applying a profile likelihood approach to 

detect the identifiability of model parameters65, we systematically evaluated the identifiability for all 

available genes based on the data, and selected the most identifiable genes for the estimation of 

proportions. As a result, the accuracy of the estimated proportions has been improved. As a general 

method, the profile likelihood-based gene selection strategy can be extended to any method that uses 

maximum likelihood estimation. 

Briefly, in the DeMixT model, for sample i and across any gene g, we have 

where Yig represents the scale normalized expression matrix from mixed tumor samples, T’ig and N’ig 

represent the normalized relative expression of gene g within tumor and surrounding non-tumor cells, 

respectively. The estimated tumor-specific total mRNA expression proportions π& is the desirable quantity 

for Eq.3. We assume each hidden component follows the log2-normal distribution, i.e., T'ig	~	LN ,μTg,	

σTg
2 - and N'ig	~	LN ,μNg,	σNg

2 -. We will use notation T and N and drop ‘ from now on. The identifiability of 

a gene k in the DeMixT model is measured by the confidence interval [μTk
- ,	μTk

+ ] of its mean expression 

μTk. The definition of the profile likelihood function of μTk is 

where f ,Yig|πi,μTg,σTg-= 1
2πσNgσTg

∫ 1
t(Yig-t)

exp(-
(log2(t)-μNg-log2(1-πi))

2

2σNg
2 -

(log21Yig-t2-μTg-log2(πi))
2

2σTg
2 )dtYig

0  is the 

likelihood function of the DeMixT model. 

𝑙μTk
1μTk=x|π,μT,σT2 = max{∑ [∑ log 5f ,πi,μTg,σTg-6  +log ,f1πi,μTk=x,σTk2-G

g≠k  ]S
i=1 }    Eq. 5 

 

Yig=πiTig
' +(1-πi)Nig

'                                                     Eq. 4 
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The confidence interval of a profile likelihood function can be constructed through inverting a likelihood-

ratio test66. However, in real data analysis, the actual profile likelihood function of μTk is intractable and 

prone to noise; calculating the actual profile likelihood function of all genes (~20,000) is generally 

infeasible due to computational limits. An asymptotic approximation was adopted to quickly evaluate the 

profile likelihood function. If the measurement noise is small and the sample size is large enough, 

asymptotic confidence intervals are good approximations of the actual confidence intervals65. The 

asymptotic profile likelihood function can be derived from the observed Fisher information of the log 

likelihood, denoted as H(π& ,μ&T,σ&T). Then the asymptotic α level confidence interval of μTk can be written 

as65 

We hereby introduce a metric, the gene selection score, to represent the length of an asymptotic profile 

likelihood-based 95% confidence interval of μTk for gene 𝑘. 

Genes with a lower score have a smaller confidence interval, hence higher identifiability for their 

corresponding parameters in the DeMixT. Genes are ranked based on the gene selection scores from 

the smallest to the largest and a subset of genes top-ranked are used to improve the estimation of tumor-

specific mRNA expression proportions.  

We further use virtual spike-ins to improve the estimation of tumor-specific mRNA expression proportions. 

We observed an imbalance of true proportions, e.g., median proportion > 0.5, can result in biases in 

proportion estimation that cannot remedied by gene selection. The virtual spike-ins are generated based 

on expression profiles from normal reference samples and added to the tumor samples such that there 

are roughly the same number of samples with tumor proportions below and above 50%. 

A full description is provided in Section 2.2 in Supplementary Information. 

Datasets of bulk sequencing data from patient samples 
TCGA. Raw read counts of high throughput RNA sequencing data, clinical data, and somatic mutations 

from 7,054 tumor samples across 15 TCGA cancer types (breast carcinoma, bladder urothelial carcinoma, 

colorectal cancer(colon adenocarcinoma + rectum adenocarcinoma), head and neck squamous cell 

carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, 

liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, pancreatic 

adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma, uterine 

corpus endometrial carcinoma) were downloaded from the Genomic Data Commons Data Portal 

                                               μTk
±	=	μTk	' ±92χ1-α

2 (1) H1π&,μ:T,σ&T2k,k

-1
                                            Eq. 6  

                               	gene selection scorek=292χ1-α
2 (1) H1π&,μ:T,σ:T2k,k

-1
                             Eq. 7          
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(https://portal.gdc.cancer.gov/). ATAC-seq data44, tumor purity and ploidy data67,68, and annotations of 

driver mutation and indels46 were downloaded for these samples. A CONSORT diagram is provided for 

the dataset (Fig. S7A,B). 

ICGC-EOPC. In this cohort, matched RNA sequencing data and whole genome sequencing data, as well 

as clinical data including biochemical recurrence, Gleason score and pathologic stage, from 121 tumor 

regions and 9 adjacent normal samples from 96 patients (age at treatment < 55), were downloaded from 

Gerhauser et al.34 A CONSORT diagram is provided for the dataset (Fig. S7C).  

TRACERx. A total of 159 tumor samples from 64 patients with matched RNA sequencing data and whole 

exome sequencing data were obtained from the TRACERx cohort35,36. Tumor purity and ploidy estimates 

for these samples were determined by Sequenza64. Clinical information of progression free survival and 

per region segmented copy number data were downloaded from Jamal-Hanjani  et al35. A CONSORT 

diagram is provided for this dataset to demonstrate the filtering steps (Fig. S7D). 

GTEx. RNA sequencing data from 42 normal prostate samples, 67 normal thyroid samples and 20 normal 

lung samples without significant pathology in the corresponding tissue types were downloaded from the 

GTEx Data Portal (https://www.gtexportal.org/home)69.  

A detailed description of above datasets is available in SI, Section 2.3.1. 

Tumor-specific total mRNA expression in TCGA 
Estimation of tumor-specific mRNA expression proportions. For each cancer type, we filtered out poor 

quality tumor and normal samples using a hierarchical clustering model based on the top 1,000 

differentially expressed genes selected from the two types of samples. We then selected available 

adjacent normal samples as reference for the tumor deconvolution using DeMixT (SI, Section 2.3.2). 

Based on a simulation study and observed distributions of gene selection scores in real data (SI, Section 
2.2.2), we chose the top 1,500 or 2,500 genes (varies across cancer types) to estimate tumor-specific 

mRNA expression proportions.  

Consensus of TmS estimation. It is possible for DNA based deconvolution methods ASCAT and 

ABSOLUTE to provide different tumor purity ρ and ploidy y pairs for the same sample. These typically 

differ by a whole-genome duplication event. To calculate one final set of TmS values for a maximum 

number of samples, we took a consensus strategy. We first calculated TmS values for TCGA samples 

with tumor purity and ploidy estimates derived from both ABSOLUTE and ASCAT, and then fitted a linear 

regression model on the log2-transformed TmS values calculated with ASCAT by using the log2-

transformed TmS values calculated with ABSOLUTE as a predictor variable. We removed 264 samples 

with a Cook’s distance ≥ 4/n (n is the number of total samples) and calculated the final 
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TmS=2(log2(TmSASCAT)+log2(TmSABSOLUTE))/2 (Figs. S2F and 7A). See a full description in Section 2.3.2.1 in 

Supplementary Information. 

Global transcription signature genes. For each of the 15 cancer types from TCGA, we conducted gene 

set enrichment analyses on Hallmark and KEGG pathways43 for all the available genes ordered by their 

gene selection scores calculated by DeMixT using GSEA43 and g:Profiler70. We combined the outputs of 

GSEA and g:Profiler and only the pathways with adjusted P value < 0.05 from both GSEA and g:Profiler 

were considered as significantly enriched. We also used GeneMANIA71 to identify functional pathways 

enriched in the overlap between individual signature gene sets across cancer types. 

The 75th percentile of normalized peak scores across all peaks within the promoter region was selected 

for each gene as its peak score, and genes with normalized peak scores less than 1 were excluded. For 

each sample, we calculated the mean of the peak scores of all signature genes. A null distribution of 

mean peak scores was generated by calculating means from 1,000 random subsets of genes with the 

matching number of the signature genes from all genes. P values assessing the significance of the 

deviation of the observed mean score for signature genes from the null distribution were calculated as 

the percentile of the permuted means being greater than or equal to the observed mean. Within cancer 

types, P values were adjusted using the BH method.  

A full description is provided in Section 2.3.2.2 in Supplementary Information. 

Validation using scRNAseq data. Using scRNAseq data from four matching cancer types, we compared 

the expression levels of signature genes in tumor versus non-tumor cells within each patient and those 

in tumor cells across patient samples. We also made pseudo-bulk data to compare with gene expression 

in bulk data (Section 2.3.2.3 in Supplementary Information). 

Statistical analysis. Kruskal-Wallis tests were used to compare the distribution of TmS between 

subgroups defined by each clinical variable. The P values from Kruskal-Wallis tests were adjusted using 

BH correction across all available clinical variables within the corresponding cancer type. 

We evaluated the association between TmS and survival outcome (overall survival and progression free 

interval) across 15 cancer types in TCGA. To ensure sufficient sample size in each group, we 

summarized pathologic stages into two categories: early (I/II) and advanced (III/IV). For prostate cancer, 

we used Gleason score (Gleason Score = 7 versus 8+) instead of early and advanced stages. We used 

a recursive partitioning survival tree model, rpart72, to find the optimal TmS cutoff separating different 

survival outcomes within each of the two stages defined above in each cancer type. Splits were assessed 

using the Gini index, and the maximum tree depth was set to 2. Log-rank tests between high and low 

TmS groups within early or advanced pathological stages were performed. We then fitted multivariate 
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Cox Proportional Hazard models with age, TmS, stage, and an interaction term of TmS and Stage (TmS 

x stage) as predictors of overall survival and progression free interval for each TCGA cancer type.  

We compared associations with survival outcomes of the three metrics that follow: TmS x ploidy = ploidy-

unadjusted TmS, in four cancer types: head and neck squamous cell carcinoma, lung squamous cell 

carcinoma, renal clear cell carcinoma, and ER-positive breast carcinoma.  

For each cancer type within TCGA, we considered genes which had driver mutations (including nonsense, 

missense and splice-site SNVs and indels) in at least 10 samples. For each of these genes, samples 

were labelled as “driver mutant” if they carried at least one driver mutation in that gene or “wild type” 

otherwise46. We also implemented an agnostic search over all genes for the 15 cancer types to identify 

among non-silent mutations (including SNVs and indels), those that were significantly associated with 

TmS. We applied two statistical tests to evaluate the difference between the “mutant” and “wild type” 

samples. We fitted a linear regression model using log2-transformed TmS as the dependent variable and 

mutation status as a predictor: log2(TmS)=b0+b1 log2(TMB)+b2MUT , where TMB represents tumor 

mutation burden. MUT=1 if the sample has at least one mutation in the candidate gene, and MUT=0 

otherwise. The P values were calculated by a t-test of the regression coefficient b2. The P values of each 

gene based on Wilcoxon rank-sum test and t-test were adjusted by BH correction based on the number 

of candidate genes within the corresponding cancer type. 

A full description is provided in Section 2.3.2.4 in Supplementary Information. 

Tumor-specific total mRNA expression in ICGC-EOPC 
We applied rpart72 to iteratively partition samples by TmS and the Gleason score (Gleason Score = 7 

versus 8+). We fitted multivariate Cox Proportional Hazard models with age, TmS, stage, and the 

interaction term of TmS and Gleason score (TmS x Gleason score) as predictors for progression free 

interval analysis of TCGA prostate adenocarcinoma samples. 

As an external validation for risk prediction with TmS, we evaluated risk prediction models trained on 

TCGA prostate adenocarcinoma samples and predicted disease progression risk for patients from the 

EOPC study. We compared the prediction performance between a baseline model, containing only age 

and Gleason score as covariates, and the “age and TmS x Gleason score model” (termed “TmS” model), 

consisting of age, TmS, Gleason score and TmS x Gleason score as covariates. We evaluated the 

discriminatory ability of the TmS model using Uno’s estimator of cumulative AUC (iAUC)73 and 

constructed 95% confidence intervals by bootstrap resampling with 1,000 times. To measure the 

calibration ability of the TmS model, we also calculated the 5-year IBS (Integrated Brier Score)74. 

A full description is provided in Section 2.3.3 in Supplementary Information. 

Tumor-specific total mRNA expression in TRACERx  
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Association of regional TmS with measures of chromosomal instability. We first calculated the TmS of 

each region for patients in TRACERx. We then calculated the percentage of copy number alteration (CNA) 

burden (percentage of genome affected by CNAs) per region, the percentage of subclonal CNA per 

region, and the percentage of subclonal CNA per patient as measures of chromosomal instability. Here, 

a subclonal CNA is defined as a CNA only existing in a subset of regions. A full description is provided 

in Section 2.3.4. in Supplementary Information.  

We defined the evolutionary relationship in two regions from the same patient as either linear or branching, 

and for each evolutionary relationship per patient, we defined the range of TmS to be log2(TmSmax) - 

log2(TmSmin) across regions. We fitted linear regression models by taking log2(TmSmax) as the 

response variable. The predictor variables including percentage of subclonal CNA, number of regions, 

range of TmS, evolutionary relationship and their interactions as predictors. The best model was selected 

by stepwise adding or dropping one predictor that achieves the best AIC (Akaike's Information Criteria) 

(Fig. 6E).  

We applied rpart72 to partition 30 patients with multiple-region samples into two groups using TmSmax as 

the variable (Fig. 6F). As a negative control, we ranked the patients by TmSmed (median TmS across 

regions for each patient), and assigned the same number of patients as TmSmax into two groups (Fig. 
6G). As the percentage of subclonal CNA was shown to be highly associated with survival outcomes in 

TRACERx35, we used both TmSmax and percentage of subclonal CNA as variables in rpart, and separate 

the 30 patients into groups (Fig. 6H). As a negative control, we separated the patients into groups by 

sorting TmSmed and percentage of subclonal CNA successively into groups with the same number of 

patients as TmSmax (Fig. S6C). Log-rank tests comparing survival outcomes between groups were 

performed.  

A full description is provided in Section 2.3.4 in Supplementary Information. 

 

Data availability 

Count matrices of the hepatocellular carcinoma single cell RNA sequencing data were downloaded 

from the Gene Expression Omnibus (GEO) with the accession code GSE125449. The raw read counts 

and cell type annotations of the lung adenocarcinoma single cell RNA sequencing data were downloaded 

from the ArrayExpress under accessions E-MTAB-6149. Raw read counts of high throughput RNA 

sequencing data, clinical data, and somatic mutations from 7,054 tumor samples across 15 TCGA cancer 

types are available for download from the Genomic Data Commons Data Portal 

(https://portal.gdc.cancer.gov/). ATACseq data for TCGA samples were downloaded from 

 https://science.sciencemag.org/content/362/6413/eaav1898/tab-figures-data.  
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Clinical information of ICGC-EOPC was downloaded from 

 https://www.sciencedirect.com/science/article/pii/S1535610818304823?via%3Dihub#gs1.  

Clinical information of TRACERx was downloaded from 

 https://www.nejm.org/doi/full/10.1056/NEJMoa1616288#article_supplementary_material.  

Raw read counts of RNAseq data in GTEx were downloaded from https://www.gtexportal.org/home.    

All other relevant data are available from the corresponding author upon reasonable request. 

Code availability 

All code used for analyses was written in R version 3.6.1 and will be made available. The core 

computational pipelines developed for estimating tumor-specific mRNA expression proportion are 

available in R package DeMixT1.4.0, which can be downloaded from 

https://www.bioconductor.org/packages/release/bioc/html/DeMixT.html.   
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Figure legends: 

Fig. 1. High diversity of total mRNA expression in tumor cells. (A) Total gene expression in tumor 

cells compared to non-tumor cells (epithelial, stromal, immune cells). 100 cells of each cell type were 

randomly selected from a patient with Stage IIIB lung adenocarcinoma. In each heatmap, expressed 

genes (UMI count > 0) are shown in black, and non-expressed genes (UMI count = 0) in gray. Cells (rows) 

and genes (columns) are ordered from high to low total number of expressed genes and number of 

expressing cells, respectively. Bar plots show the total number of expressed genes, i.e., gene counts, 

and total UMI counts in the corresponding cells. (B) Distributions of gene counts and total UMI counts by 

cell type in scRNAseq data from nine patients with colorectal, hepatocellular, lung and pancreatic cancers. 

Patients are ordered by pathological stage or survival outcome. The top x-axis annotates total UMI counts 

(means and 95% Confidence Intervals, CIs). The bottom x-axis annotates gene count distribution 

(density). Density curves are colored for tumor cells and shown in gray-scale for non-tumor cells. Clusters 

with higher gene counts are shown in darker shades. The numbers in the parentheses indicate the 

number of cells analyzed.  

Fig. 2. Estimation of tumor-specific total mRNA expression in bulk sequencing data. (A) The 

definition of TmS and its analysis pipeline using matched DNAseq and RNAseq data. (B) Distributions of 

TmS in 5,031 tumor samples across 15 cancer types in TCGA. The number of patient samples for each 

cancer type is indicated on the top of each violin plot. 
 
Fig. 3. TmS is associated with known prognostic characteristics. (A-D) Clinicopathologic 

annotations are shown for (A) head & neck squamous cell carcinoma, (B) breast carcinoma, (C) renal 

papillary carcinoma, and (D) prostate adenocarcinoma samples. Tumor samples are ordered by TmS 

from low to high. The Benjamini–Hochberg adjusted P values for Kruskal-Wallis tests comparing TmS 

between clinicopathologic subgroups are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). For 

breast carcinoma, triple-negative breast cancers (TNBC) are shown on the second row. MYC/PVT1 copy 

number alterations are shown on the sixth row, where “Gain” indicates that either MYC or PVT1 was 

amplified and “Neutral” indicates that no copy number alternations were detected. (E) Spearman 

correlation coefficients between TmS and the expression levels of MKI67 and PCNA across 15 cancer 

types. 
 

Fig. 4. TmS refines prognostication on pathological stages. (A) Kaplan-Meier (KM) curves of overall 

survival (OS) and progression-free interval (PFI) for TCGA samples. Gray lines denote summary KM 

curves of patients with high versus low TmS across all cancer types. KM curves are further grouped by 
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TmS and pathological stage into four groups. P values of log-rank tests between high versus low TmS 

groups are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). Three patterns of associations were 

identified (summarized in D). Pattern I is the most prevalent and shown in A. (B-C) KM curves for 

representative cancers (top and bottom panels) in Pattern II (B) and Pattern III (C). (D) Forest plot of 

hazard ratios and 95% of CIs of multivariate Cox proportional hazard models with Age, TmS (High vs. 

Low), Stage (Advanced vs. Early) and TmS x Stage as predictors, and with OS or PFI as response 

variable (See detail in table S3). (E) KM survival curves of PFI for the TCGA prostate adenocarcinoma 

study cohort. (F) KM survival curves of PFI for the ICGC-EOPC study cohort. In E & F, patients are 

grouped by Gleason score and TmS. 

 

Fig. 5. TmS captures cancer-specific dysregulations of genomic features and hypoxia. (A) 
Illustration of a potential role for total mRNA expression as a mediator in the pathway between genomic 

alterations, epigenetic events and prognosis. Pathologic stage may be combined with TmS to define a 

clinically informative phenotype of tumor samples. The solid circles indicate that the corresponding data 

are evaluated. (B) Distributions of TmS for TCGA samples with or without driver mutations across the 

most frequently mutated genes across cancer types. (C) Volcano plot showing log2-fold change in TmS 

for samples with non-silent mutations in a given gene vs those without. Cancer-gene pairs with 

adjusted P values < 0.05 are highlighted in red points. (D) Heatmaps of median 5-year survival, tumor 

mutation burden, chromosomal instability, hypoxia, and TP53 non-silent somatic mutation rate across 

patient groups and cancer types. Patient groups are defined as in Fig. 4D-E, with cancer types following 

three distinct patterns in survival outcome. Adjusted P values are indicated by asterisks (* P < 0.05, ** < 

0.01, *** < 0.001).  

 

Fig. 6. Regional TmS identifies spatial heterogeneity and refines prognostication in early-stage 
lung cancer. (A) Illustration of the TRACERx multi-region study and a multi-level analysis pipeline. (B) 

Distribution of TmS for 94 tumor regions from 30 TRACERx patients with at least 2 regions sampled. 

Blue triangles denote the maximum TmS for a patient. Blue “-“ denote the median TmS for a patient. (C) 

Pairwise scatter plots and histograms of % CNA, % subclonal CNA, and TmS per region. Spearman 

correlation coefficient r’s are shown. Different colors annotate three randomly assigned patient groups. 

The gray lines represent a loess fit. (D) Distributions of TmS per each region with high or low % CNA 

burden per region (left), % subclonal CNA per region (right), with regions grouped at the median values. 

Adjusted P values of Wilcoxon rank-sum tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 

0.001). (E) Scatter plot showing TmSmax versus the percent subclonal CNA. A regression fit and 95%CI 

is shown. (F-G) KM survival curves of disease-free probability stratified by TmSmax or TmSmed. (H) KM 

survival curves of disease-free probability stratified by both TmSmax and % subclonal CNA.  
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Fig. S1. Using gene counts and total UMI counts to measure the global gene expression 
heterogeneity in tumor cells. (A) Illustration of expressed genes in tumor cells compared to non-tumor 

cells (epithelial, stromal, and immune cells), randomly selected from each patient sample. In each 

heatmap, expressed genes (UMI count > 0) are shown in black, and non-expressed genes (UMI count = 

0) are shown in gray. Cells in the rows and genes in the columns are ordered from high to low by the 

total numbers of expressed genes and the number of cells with detected expressions of each gene, 

respectively. The barplots provide the distributions of total number of expressed genes, i.e., gene counts, 

and total UMI counts in the corresponding cells. (B) Smoothed scatter plots show the correlations 

between gene counts and total UMI counts in cell clusters from each patient sample. Patient samples are 

arranged in the same order of cell clusters as (A). In each smoothed scatter plot, the Spearman 

correlation coefficient is labeled on the top (r). (C) Ratios of mean total UMI counts of tumor cells to non-

tumor cells and 95% confidence intervals in pseudo-bulk data, which are made by pooling scRNAseq 

data. 

 

Fig. S2. Consensus estimation of TmS from matched RNA- and DNAseq data in TCGA. (A) 

Distributions of tumor-specific mRNA expression proportions estimated by DeMixT across cancer types. 

(B-C), Distributions of tumor cell proportions estimated by (B) ASCAT or (C) ABSOLUTE across cancer 

types. (D) Smoothed scatter plot of tumor ploidy estimates from ABSOLUTE versus ASCAT across all 

samples. Gray points correspond to 997 samples that presented inconsistent tumor ploidy (and purity) 

estimates between the two methods. (E) TmS estimates using either ABSOLUTE or ASCAT-derived 

purity and ploidy estimates with or without ploidy adjustment for the 977 discordant samples from (D). 

Blue and gray points correspond to, respectively, TmS prior to and after ploidy adjustment. Ploidy 

adjustment improved consistency between the ABSOLUTE and ASCAT results. (F) Scatter plot of TmS 

calculated using the two methods. A linear regression model was fitted using log2(TmS estimated by 

ABSOLUTE) as the predicted variable and log2(TmS estimated by ASCAT) as the predictor variable. Red 

points are outliers with a Cook’s distance ≥ 4/n, where n = 5,295 for the total number of TCGA samples. 

Cyan points are the remaining samples (95%) that showed a good fit for the model and hence their TmS 

estimates are deemed consistent and robust across two DNAseq deconvolution methods. 

 

Fig. S3. Global transcription signature genes across cancer types. (A) Karyotype plots showing the 

genomic locations of signature genes for each cancer type. Signature genes are presented as dots 

colored by cancer type. An overall gene density track is shown in gray shades underneath the dots. The 

density of signature genes is consistent with the overall gene density. (B) Proportions of global 

transcription signature genes in five gene categories across 15 cancer types. (C) Heatmap of normalized 
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enrichment scores of enriched Hallmark pathways across 15 cancer types. (D) Heatmap of normalized 

enrichment scores of enriched KEGG pathways across 15 cancer types. For C & D, significantly enriched 

pathways are those with an adjusted P values <0.05 from both GSEA and g:Profiler. Pathways are 

ordered by the average normalized enrichment score across 15 cancer types from top to bottom. (E) M-

A plot comparing ATAC-seq peak scores of signature genes (signature) versus other genes (non-

signature) from matched tumor samples in each cancer type. Samples with adjusted P values < 0.05 

from permutation tests are shown as dots. Samples above the horizontal dashed line have significantly 

higher ATAC-seq peaks score in signature genes compared to those in non-signature genes. For A-E, 

all 15 TCGA cancer types are listed in the same order and annotated using colored squares as shown in 

the legend. (F) Distributions of mean signature gene UMI count per cell for tumor and non-tumor cells in 

scRNAseq data across four cancer types. For each cancer type, patient samples were ordered by disease 

stage from advanced to early or by progression outcome from poor to good. (G) Distributions of mean 

signature and non-sginature gene UMI count per tumor cell from scRNAseq data across four cancer 

types. For F & G, adjusted P values from Wilcoxon rank-sum tests are indicated by asterisks. (H) 

Distributions of the ratio of mean UMI counts for signature genes per cell for tumor cells versus non-

tumor cells from scRNAseq data across four cancer types. The adjusted P values from Kruskal-Wallis 

tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). For F-H, patients are in the same 

order. 
 

Fig. S4. TmS refines prognostication on pathological stages. (A) Distributions of TmS for TCGA 

samples within early (stage I and II) and advanced (stage III and IV) pathological stages across 15 cancer 

types. Adjusted P values of Wilcoxon rank-sum tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** 

< 0.001). (B) Distributions of TmS for female and male patient samples in TCGA across 15 cancer types. 

None of the adjusted P values of Wilcoxon rank-sum tests comparing TmS between the two groups 

reached significance at a confidence level of 0.05. Brown circles (read out on the right y-axis) represent 

Spearman correlation coefficients between TmS and age within the same sex and cancer type. The red 

dotted horizontal line represents TmS equal to 1 (left y axis) and correlation equal to 0 (right y axis). None 

of the adjusted P values for correlation tests reached significance at a confidence level of 0.05. (C) KM 

survival curves for individual cancer types with pattern I. (D) KM survival curves for bladder urothelial 

carcinoma with pattern II. (E) KM survival curves for renal papillary carcinoma with pattern III. (F) 

Predicted integrated AUC (iAUC) curves with 95% confidence intervals for patients with Gleason score 

≥ 7 in the early-onset prostate adenocarcinoma validation cohort. The “Age and Gleason score model” 

was trained on the TCGA prostate adenocarcinoma data with Gleason score and age as predictors. The 

“Age and TmS x Gleason score model” was trained on the TCGA prostate adenocarcinoma data with 
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age and subgroups defined by TmS and Gleason score as predictors. The d-iAUC represents the 

difference in iAUC in the validation dataset using the two models. 

Fig. S5. Association of TmS with cancer-specific genomic dysregulations and hypoxia in TCGA. 
A-D, Distributions of TmS for patient samples with (A) high or low tumor mutation burden (TMB); (B) high 

or low chromosomal instability score; (C) with or without a whole genome duplication event; (D) high or 

low hypoxia score. Cutoffs in (a,b,d) are set at the median. Adjusted P values of Wilcoxon rank-sum tests 

are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001).  

Fig. S6. Regional TmS identifies spatial heterogeneity and refines prognostication in patients with 
early-stage lung cancer. (A) Pairwise scatter plots and histograms of number of regions per patient, 

range of TmS, % subclonal CNA per patient, TmSmax, and TmSmed. Spearman correlation coefficient 

r’s are shown. The gray lines represent a loess fit. (B) KM survival curves of disease-free probability for 

the 30 patients stratified by % subclonal CNA: high versus low. (C) KM survival curves of disease-free 

probability for 30 TRACERx patients with multi-region sequencing stratified by both TmSmed and percent 

subclonal CNA: (1) high TmSmed, (2) low TmSmed and high percent subclonal CNA and (3) low 

TmSmed and low percent subclonal CNA. (D) Distribution of TmS values for 116 tumor regions from 52 

patients of the TRACERx study. Blue triangles denote the maximum TmS for a patient. Blue “-“ denote 

the median TmS for a patient. (E) KM survival curves of disease-free probability for 52 patients stratified 

into two groups by TmSmax: high versus low TmSmax.  

Fig. S7. CONSORT diagrams for data exclusions in TmS calculation and downstream analysis. (A) 

CONSORT diagram for TmS calculation in TCGA datasets. (B) CONSORT diagram for survival analysis 

in TCGA datasets. (C) CONSORT diagram for TmS calculation in ICGC-EOPC dataset. (D) CONSORT 

diagram for TmS calculation in TRACERx dataset. 
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Fig. 1. High diversity of total mRNA expression in tumor cells. (A) Total gene expression in tumor cells compared to 

non-tumor cells (epithelial, stromal, immune cells). 100 cells of each cell type were randomly selected from a patient with 

Stage IIIB lung adenocarcinoma. In each heatmap, expressed genes (UMI count > 0) are shown in black, and non-

expressed genes (UMI count = 0) in gray. Cells (rows) and genes (columns) are ordered from high to low total number of 

expressed genes and number of expressing cells, respectively. Bar plots show the total number of expressed genes, i.e., 

gene counts, and total UMI counts in the corresponding cells. (B) Distributions of gene counts and total UMI counts by cell 

type in scRNAseq data from nine patients with colorectal, hepatocellular, lung and pancreatic cancers. Patients are ordered 

by pathological stage or survival outcome. The top x-axis annotates total UMI counts (means and 95% Confidence 

Intervals, CIs). The bottom x-axis annotates gene count distribution (density). Density curves are colored for tumor cells 

and shown in gray-scale for non-tumor cells. Clusters with higher gene counts are shown in darker shades. The numbers 

in the parentheses indicate the number of cells analyzed.  
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Fig. 2. Estimation of tumor-specific total mRNA expression in bulk sequencing data. (A) The definition of TmS and 

its analysis pipeline using matched DNAseq and RNAseq data. (B) Distributions of TmS in 5,031 tumor samples across 15 

cancer types in TCGA. The number of patient samples for each cancer type is indicated on the top of each violin plot. 
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Fig. 3. TmS is associated with known prognostic characteristics. (A-D) Clinicopathologic annotations are shown for 

(A) head & neck squamous cell carcinoma, (B) breast carcinoma, (C) renal papillary carcinoma, and (D) prostate 

adenocarcinoma samples. Tumor samples are ordered by TmS from low to high. The Benjamini–Hochberg adjusted P 

values for Kruskal-Wallis tests comparing TmS between clinicopathologic subgroups are indicated by asterisks (* P < 0.05, 

** < 0.01, *** < 0.001). For breast carcinoma, triple-negative breast cancers (TNBC) are shown on the second row. 

MYC/PVT1 copy number alterations are shown on the sixth row, where “Gain” indicates that either MYC or PVT1 was 

amplified and “Neutral” indicates that no copy number alternations were detected. (E) Spearman correlation coefficients 

between TmS and the expression levels of MKI67 and PCNA across 15 cancer types. 
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Fig. 4. TmS refines prognostication on pathological stages.  
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Fig. 4. (cont’d): (A) Kaplan-Meier (KM) curves of overall survival (OS) and progression-free interval (PFI) for TCGA 

samples. Gray lines denote summary KM curves of patients with high versus low TmS across all cancer types. KM curves 

are further grouped by TmS and pathological stage into four groups. P values of log-rank tests between high versus low 

TmS groups are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). Three patterns of associations were identified 

(summarized in D). Pattern I is the most prevalent and shown in A. (B-C) KM curves for representative cancers (top and 

bottom panels) in Pattern II (B) and Pattern III (C). (D) Forest plot of hazard ratios and 95% of CIs of multivariate Cox 

proportional hazard models with Age, TmS (High vs. Low), Stage (Advanced vs. Early) and TmS x Stage as predictors, 

and with OS or PFI as response variable (See detail in table S3). (E) KM survival curves of PFI for the TCGA prostate 

adenocarcinoma study cohort. (F) KM survival curves of PFI for the ICGC-EOPC study cohort. In E & F, patients are 

grouped by Gleason score and TmS.
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Fig. 5. TmS captures cancer-specific dysregulations of genomic features and hypoxia.  
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Fig. 5. (cont’d): (A) Illustration of a potential role for total mRNA expression as a mediator in the pathway between genomic 

alterations, epigenetic events and prognosis. Pathologic stage may be combined with TmS to define a clinically informative 

phenotype of tumor samples. The solid circles indicate that the corresponding data are evaluated. (B) Distributions of TmS 

for TCGA samples with or without driver mutations across the most frequently mutated genes across cancer types. (C) 

Volcano plot showing log2-fold change in TmS for samples with non-silent mutations in a given gene vs those without. 

Cancer-gene pairs with adjusted P values < 0.05 are highlighted in red points. (D) Heatmaps of median 5-year survival, 

tumor mutation burden, chromosomal instability, hypoxia, and TP53 non-silent somatic mutation rate across patient groups 

and cancer types. Patient groups are defined as in Fig. 4D-E, with cancer types following three distinct patterns in survival 

outcome. Adjusted P values are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001).  
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Fig. 6. Regional TmS identifies spatial heterogeneity and refines prognostication in early-stage lung cancer. (A) 

Illustration of the TRACERx multi-region study and a multi-level analysis pipeline. (B) Distribution of TmS for 94 tumor 

regions from 30 TRACERx patients with at least 2 regions sampled. Blue triangles denote the maximum TmS for a patient. 

Blue “-“ denote the median TmS for a patient. (C) Pairwise scatter plots and histograms of % CNA, % subclonal CNA, and 

TmS per region. Spearman correlation coefficient r’s are shown. Different colors annotate three randomly assigned patient 

groups. The gray lines represent a loess fit. (D) Distributions of TmS per each region with high or low % CNA burden per 

region (left), % subclonal CNA per region (right), with regions grouped at the median values. Adjusted P values of Wilcoxon 

rank-sum tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). (E) Scatter plot showing TmSmax versus the 

percent subclonal CNA. A regression fit and 95%CI is shown. (F-G) KM survival curves of disease-free probability stratified 

by TmSmax or TmSmed. (H) KM survival curves of disease-free probability stratified by both TmSmax and % subclonal 

CNA.  
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Fig. S1. Using gene counts and total UMI counts to measure the global gene expression heterogeneity in tumor 
cells. 
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Fig. S1. (cont’d): (A) Illustration of expressed genes in tumor cells compared to non-tumor cells (epithelial, stromal, and 

immune cells), randomly selected from each patient sample. In each heatmap, expressed genes (UMI count > 0) are shown 

in black, and non-expressed genes (UMI count = 0) are shown in gray. Cells in the rows and genes in the columns are 

ordered from high to low by the total numbers of expressed genes and the number of cells with detected expressions of 

each gene, respectively. The barplots provide the distributions of total number of expressed genes, i.e., gene counts, and 

total UMI counts in the corresponding cells. (B) Smoothed scatter plots show the correlations between gene counts and 

total UMI counts in cell clusters from each patient sample. Patient samples are arranged in the same order of cell clusters 

as (A). In each smoothed scatter plot, the Spearman correlation coefficient is labeled on the top (r). (C) Ratios of mean 

total UMI counts of tumor cells to non-tumor cells and 95% confidence intervals in pseudo-bulk data, which are made by 

pooling scRNAseq data. 
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Fig. S2. Consensus estimation of TmS from matched RNA- and DNAseq data in TCGA. (A), Distributions of tumor-

specific mRNA expression proportions estimated by DeMixT across cancer types. (B-C) Distributions of tumor cell 

proportions estimated by (B) ASCAT or (C) ABSOLUTE across cancer types. (D) Smoothed scatter plot of tumor ploidy 

estimates from ABSOLUTE versus ASCAT across all samples. Gray points correspond to 997 samples that presented 

inconsistent tumor ploidy (and purity) estimates between the two methods. (E) TmS estimates using either ABSOLUTE or 

ASCAT-derived purity and ploidy estimates with or without ploidy adjustment for the 977 discordant samples from (D). Blue 

and gray points correspond to, respectively, TmS prior to and after ploidy adjustment. Ploidy adjustment improved 

consistency between the ABSOLUTE and ASCAT results. (F) Scatter plot of TmS calculated using the two methods. A 

linear regression model was fitted using log2(TmS estimated by ABSOLUTE) as the predicted variable and log2(TmS 

estimated by ASCAT) as the predictor variable. Red points are outliers with a Cook’s distance ≥ 4/n, where n = 5,295 for 
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the total number of TCGA samples. Cyan points are the remaining samples (95%) that showed a good fit for the model 

and hence their TmS estimates are deemed consistent and robust across two DNAseq deconvolution methods. 
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Fig. S3. Global transcription signature genes across cancer types.  
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Fig. S3. (cont’d): (A) Karyotype plots showing the genomic locations of signature genes for each cancer type. Signature 

genes are presented as dots colored by cancer type. An overall gene density track is shown in gray shades underneath 

the dots. The density of signature genes is consistent with the overall gene density. (B) Proportions of global transcription 

signature genes in five gene categories across 15 cancer types. (C) Heatmap of normalized enrichment scores of enriched 

Hallmark pathways across 15 cancer types. (D) Heatmap of normalized enrichment scores of enriched KEGG pathways 

across 15 cancer types. For (C & D), significantly enriched pathways are those with an adjusted P values <0.05 from both 

GSEA and g:Profiler. Pathways are ordered by the average normalized enrichment score across 15 cancer types from top 

to bottom. (E) M-A plot comparing ATAC-seq peak scores of signature genes (signature) versus other genes (non-

signature) from matched tumor samples in each cancer type. Samples with adjusted P values < 0.05 from permutation 

tests are shown as dots. Samples above the horizontal dashed line have significantly higher ATAC-seq peaks score in 

signature genes compared to those in non-signature genes. For (A-E), all 15 TCGA cancer types are listed in the same 

order and annotated using colored squares as shown in the legend. (F) Distributions of mean signature gene UMI count 

per cell for tumor and non-tumor cells in scRNAseq data across four cancer types. For each cancer type, patient samples 

were ordered by disease stage from advanced to early or by progression outcome from poor to good. (G) Distributions of 

mean signature and non-sginature gene UMI count per tumor cell from scRNAseq data across four cancer types. For (F & 

G), adjusted P values from Wilcoxon rank-sum tests are indicated by asterisks. (H) Distributions of the ratio of mean UMI 

counts for signature genes per cell for tumor cells versus non-tumor cells from scRNAseq data across four cancer types. 

The adjusted P values from Kruskal-Wallis tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). For (F-H) 

patients are in the same order. 
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Fig. S4. TmS refines prognostication on pathological stages. (A) Distributions of TmS for TCGA samples within early 

(stage I and II) and advanced (stage III and IV) pathological stages across 15 cancer types. Adjusted P values of Wilcoxon 

rank-sum tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). (B) Distributions of TmS for female and male 

patient samples in TCGA across 15 cancer types. None of the adjusted P values of Wilcoxon rank-sum tests comparing 

TmS between the two groups reached significance at a confidence level of 0.05. Brown circles (read out on the right y-

axis) represent Spearman correlation coefficients between TmS and age within the same sex and cancer type. The red 
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dotted horizontal line represents TmS equal to 1 (left y axis) and correlation equal to 0 (right y axis). None of the adjusted 

P values for correlation tests reached significance at a confidence level of 0.05. (C) KM survival curves for individual cancer 

types with pattern I. (D) KM survival curves for bladder urothelial carcinoma with pattern II. (E) KM survival curves for renal 

papillary carcinoma with pattern III. (F) Predicted integrated AUC (iAUC) curves with 95% confidence intervals for patients 

with Gleason score ≥ 7 in the early-onset prostate adenocarcinoma validation cohort. The “Age and Gleason score model” 

was trained on the TCGA prostate adenocarcinoma data with Gleason score and age as predictors. The “Age and TmS x 

Gleason score model” was trained on the TCGA prostate adenocarcinoma data with age and subgroups defined by TmS 

and Gleason score as predictors. The d-iAUC represents the difference in iAUC in the validation dataset using the two 

models. 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.306795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.306795


 

 
Fig. S5. Association of TmS with cancer-specific genomic dysregulations and hypoxia in TCGA.  
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Fig. S5. (cont’d): (A-D) Distributions of TmS for patient samples with (A) high or low tumor mutation burden (TMB); (B) 

high or low chromosomal instability score; (C) with or without a whole genome duplication event; (D) high or low hypoxia 

score. Cutoffs in (A, B, D) are set at the median. Adjusted P values of Wilcoxon rank-sum tests are indicated by asterisks 

(* P < 0.05, ** < 0.01, *** < 0.001).  
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Fig. S6. Regional TmS identifies spatial heterogeneity and refines prognostication in patients with early-stage lung 
cancer.  
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Fig. S6. (cont’d): (A) Pairwise scatter plots and histograms of number of regions per patient, range of TmS, % subclonal 

CNA per patient, TmSmax, and TmSmed. Spearman correlation coefficient r’s are shown. The gray lines represent a loess 

fit. (B) KM survival curves of disease-free probability for the 30 patients stratified by % subclonal CNA: high versus low. (C) 

KM survival curves of disease-free probability for 30 TRACERx patients with multi-region sequencing stratified by both 

TmSmed and percent subclonal CNA: (1) high TmSmed, (2) low TmSmed and high percent subclonal CNA and (3) low 

TmSmed and low percent subclonal CNA. (D) Distribution of TmS values for 116 tumor regions from 52 patients of the 

TRACERx study. Blue triangles denote the maximum TmS for a patient. Blue “-“ denote the median TmS for a patient. (E) 

KM survival curves of disease-free probability for 52 patients stratified into two groups by TmSmax: high versus low 

TmSmax.  
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Fig. S7. CONSORT diagrams for data exclusions in TmS calculation and downstream analysis.  
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Fig. S7. (cont’d): (A) CONSORT diagram for TmS calculation in TCGA datasets. (B) CONSORT diagram for survival 

analysis in TCGA datasets. (C) CONSORT diagram for TmS calculation in ICGC-EOPC dataset. (D) CONSORT diagram 

for TmS calculation in TRACERx dataset. 
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 Table S1 | Clinical information of the nine patients in the single cell RNA sequencing data analysis. 
Cancer type Patient id Age Sex Treatment Stage Progression 

free survival 
(months) 

Outcome Tumor tissue 
collection 

Details 

Colorectal 
adenocarcinoma 

Patient 1 45 M FOLFOX/ 
panitumumab 

IVA 4 Relapsed with multiple 
tumors in the liver 

Surgical 
resection 

Received 10 cycles of 
chemotherapy prior to surgery; 

regression grade 3 and 70% viable 
tumor; tumor is moderately 

differentiated; KRAS wild type 

Patient 2 63 F FOLFOX/bev IVA ≥ 8 No tumor on last scan Surgical 
resection 

Received 4 cycles of chemotherapy 
prior to surgery; regression grade 3 

and 90% viable tumor; tumor is 
moderately differentiated; KRAS 

mutation 

Hepatocellular 
carcinoma 

Patient 1 65 M Durvalumab/ 
tremelimumab 

IV < 5 Alive but with 
decreased progression 

Surgical 
resection 

Etiology is Hepatitis C virus 

Patient 2 63 M Durvalumab/ 
tremelimumab 

IV ≥ 18 Progression free Surgical 
resection 

Etiology is Hepatitis C virus 

Patient 3 74 M Treatment-
naïve 

I ≥ 18 Progression free Core needle 
biopsy  

NA 

Lung 
adenocarcinoma 

Patient 1 68 M Treatment-
naïve 

IIIB NA NA Surgical 
resection 

TNM stage: pT4N2M0 

Patient 2 64 F Treatment-
naïve 

IIB NA NA Surgical 
resection 

TNM stage: pT2aN1M0 

Pancreatic 
adenocarcinoma 

Patient 1 62 F Treatment-
naïve 

IV 16 Developed liver 
metastses  

Fine needle 
aspiration  

Alive; date of diagnosis is 
12/18/2018; date of last follow up 
time is 5/6/2020; date of biopsy is 

1/10/2019; developed liver 
metastases on 12/5/2019 

Patient 2 70 M Treatment-
naïve 

IIB ≥ 26 Progression free Fine needle 
aspiration  

Alive; date of diagnosis is 1/7/2018; 
date of last follow up time is 
3/23/2020; date of biopsy is 
1/9/2019; date of surgery is 

5/31/2019 
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Table S2 | Summary of the distributions of TmS across 15 cancer types in TCGA. 1 
Cancer Median TmS MAD TmS Sample size 

Head & neck squamous cell carcinoma 0.53 0.54 443 

Thyroid papillary carcinoma 0.55 0.33 202 

Stomach adenocarcinoma 0.58 0.55 265 

Bladder urothelial carcinoma 0.61 0.54 328 

Prostate adenocarcinoma 0.62 0.40 259 

Renal clear cell carcinoma 1.0 0.72 295 

Breast carcinoma 1.0 0.92 916 

Endometrial carcinoma 1.1 0.84 361 

Colorectal carcinoma 1.1 0.67 490 

Renal chromophobe 1.1 0.60 59 

Renal papillary carcinoma 1.2 1.2 169 

Lung adenocarcinoma 1.6 1.2 395 

Pancreatic adenocarcinoma 1.7 1.2 101 

Hepatocellular carcinoma 2.0 2.2 317 

Lung squamous cell carcinoma 2.3 1.4 431 

Overall 1.1 0.96 5,031 

MAD: Median absolute deviation    
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Table S3 | Multivariate Cox proportional hazard models with Age, TmS, Stage and TmS x Stage as predictors 
for overall survival and progression-free interval analysis across cancer types in TCGA.  

Cancer Sample size Clinical Outcome 
Endpoint Variable Hazard ratio 95% CI P value  

(Wald test) 

TmS 
prognostication 

type 

Colorectal carcinoma n = 452 

OS 

Age 1.04 (1.02, 1.06) 5x10-5 

Pattern I 

TmS (High vs. Low) 2.7 (1.3, 5.8) 0.01 

Stage (Advanced vs. Early) 4.7 (2.7, 8.0) 2x10-8 
TmS x Stage 0.92 (0.25, 3.3) 0.9 

PFI 

Age 1.0 (0.98, 1.02) 1 
TmS (High vs. Low in 

Advanced Stage) 2.4 (0.97, 6.0) 0.06 

Stage/(TmS x Stage) - - - 

Hepatocellular carcinoma n = 292 

OS 

Age 1.0 (1.00, 1.03) 0.08 
TmS (High vs. Low) 3.7 (0.51, 26) 0.2 

Stage (Advanced vs. Early) 5.1 (0.67, 39) 0.1 
TmS x Stage 0.62 (0.078, 5.1) 0.7 

PFI 

Age 1.0 (0.98, 1.0) 0.7 
TmS (High vs. Low in 

Advanced Stage) 1.8 (0.83, 3.7) 0.1 

Stage/(TmS x Stage) - - - 

Lung adenocarcinoma n = 380 

OS 

Age 1.0 (0.99, 1.03) 0.2 
TmS (High vs. Low) 2.1 (1.2, 4.0) 0.02 

Stage (Advanced vs. Early) 2.3 (0.86, 6.3) 0.1 
TmS x Stage 0.99 (0.34, 2.9) 1.0 

PFI 

Age 1.0 (0.98, 1.01) 0.8 
TmS (High vs. Low) 2.9 (0.93, 9.2) 0.1 

Stage (Advanced vs. Early) 3.6 (1.1, 11.7) 0.04 

TmS x Stage 1.2 (0.23, 6.4) 0.8 

Pancreatic adenocarcinoma n = 98 

OS 

Age 1.0 (0.99, 1.0) 0.3 
TmS (High vs. Low in Early 

Stage) 2.0 (1.2, 3.4) 0.01 

Stage/(TmS x Stage) - - - 

PFI 

Age 1.0 (0.98, 1.0) 0.8 
TmS (High vs. Low in Early 

Stage) 6.0 (1.7, 20) 0.004 

Stage/(TmS x Stage) - - - 

Renal clear cell carcinoma n = 291 

OS 

Age 1.0 (1.02, 1.06) 0.0002 
TmS (High vs. Low) 2.3 (1.4, 4.0) 0.002 

Stage (Advanced vs. Early) 4.5 (2.6, 7.7) 5x10-8 
TmS x Stage - - - 

PFI 

Age 1.01 (0.99, 1.0) 0.3 

TmS (High vs. Low) 2.6 (1.5, 4.3) 0.0004 

Stage (Advanced vs. Early) 9.7 (5.5, 17) 1x10-15 

TmS x Stage - - - 

Stomach adenocarcinoma n = 238 

OS 

Age 1.0 (1.00, 1.05) 0.03 
TmS (High vs. Low) 2.0 (0.85, 4.6) 0.1 

Stage (Advanced vs. Early) 1.1 (0.23, 5.1) 0.9 
TmS x Stage 2.0 (0.38, 10) 0.4 

PFI 

Age 0.99 (0.97, 1.01) 0.5 
TmS (High vs. Low) 8.3 (1.1, 62) 0.04 

Stage (Advanced vs. Early) 5.0 (0.59, 43) 0.1 

TmS x Stage 0.41 (0.045, 3.7) 0.4 

Thyroid papillary carcinoma n = 201 PFI 

Age 1.0 (0.96, 1.06) 0.8 

TmS (High vs. Low) 7.3 (0.88, 61) 0.07 
Stage (Advanced vs. Early) 3.6 (0.32, 40) 0.3 

TmS x Stage 1.2 (0.083, 16) 0.9 

Bladder urothelial carcinoma n = 325 OS 
Age 1.0 (1.0, 1.1) 0.04 

Pattern II 
TmS (High vs. Low) - - - 
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Stage/(TmS x Stage) - - - 

PFI 

Age 1.0 (0.99, 1.02) 0.4 
TmS (High vs. Low) 3.3 (0.79, 14) 0.1 

Stage (Advanced vs. Early) 9.1 (2.2, 37) 0.002 

TmS x Stage 0.18 (0.04, 0.79) 0.02 

Head & neck squamous cell 
carcinoma (HPV-) n = 193 

OS 

Age 1.0 (1.0, 1.1) 0.001 
TmS (High vs. Low) 4.4 (1.6, 12) 0.003 

Stage (Advanced vs. Early) 5.4 (2.3, 12) 9x10-5 

TmS x Stage 0.14 (0.047, 0.40) 0.0003 

PFI 

Age 1.0 (0.99, 1.0) 0.4 
TmS (High vs. Low) 0.55 (0.34, 0.91) 0.02 

Stage (Advanced vs. Early) 1.4 (0.75, 2.7) 0.3 

TmS x Stage - - - 

Lung squamous cell 
carcinoma n = 420 

OS 

Age 1.0 (1.0, 1.03) 0.06 
TmS (High vs. Low) 2.8 (1.4, 5.8) 0.005 

Stage (Advanced vs. Early) 2.6 (1.7, 4.0) 7x10-6 
TmS x Stage 0.16 (0.064, 0.42) 0.0002 

PFI 

Age 1.0 (0.98, 1.0) 0.7 
TmS (High vs. Low) 2.2 (1.0, 4.5) 0.04 

Stage (Advanced vs. Early) 2.2 (1.5, 3.4) 0.0001 
TmS x Stage - - - 

ER-positive breast carcinoma n = 624 

OS 

Age 1.1 (1.03, 1.07) 6x10-8 

Pattern III 

TmS (High vs. Low) 0.40 (0.14, 1.1) 0.09 
Stage (Advanced vs. Early) 2.7 (1.7, 4.4) 6x10-5 

TmS x Stage - - - 

PFI 

Age 1.0 (0.99, 1.03) 0.2 
TmS (High vs. Low) 3.5 (1.4, 8.7) 0.007 

Stage (Advanced vs. Early) 2.4 (1.5, 4.0) 0.0007 

TmS x Stage - - - 

Triple-negative breast 
carcinoma† n = 134 

OS Age 1.0 (0.97, 1.0) 0.9 
TmS + Stage 6.3 (2.6, 15) 6x10-5 

PFI 
Age 1.0 (0.96, 1.03) 0.5 

TmS + Stage 6.4 (2.7, 15) 2x10-5 

Renal papillary carcinoma† n = 150 PFI 
Age 0.97 (0.94, 1.0) 0.02 

TmS + Stage 7.6 (3.0, 19) 1x10-5 

OS: Overall survival; PFI: Progression-free interval. 1 
“-” stands for missing coefficients due to lack of events (death or progression) in the corresponding patient group. 2 
For the cancer types with “†”, hazard ratios of TmS and Stage cannot be estimated separately due to lack of events. Instead, a simplified model comparing "Early 
stage, Low TmS" and "Advanced stage, High TmS" was used and denoted as "TmS + Stage".  
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Table S4A | Summary of risk categories defined by TmS x Gleason score for TCGA prostate adenocarcinoma 
and ICGC-EOPC. 

Risk category 

TCGA prostate adenocarcinoma (n=259) ICGC-EOPC (n=79) 

No. of samples Age at treatment 
(mean/sd) 

Percentage of 
disease progression 
at 5 years (95% CI) 

No. of samples Age at treatment 
(mean/sd) 

Percentage of disease 
progression at 5 years 

(95% CI) 

Gleason score=6 22 59 (6.9) 0 10 46 (5.1) 0 

Gleason score=7, Low TmS 59 60 (6.4) 4.3 (0-10) 32 47 (2.4) 13 (0-26) 

Gleason score=7, High TmS 75 60 (7.5) 13 (1.6-23) 27 47 (3.2) 36 (14-52) 

Gleason score>=8, Low TmS 77 62 (6.6) 34 (3.4-55) 5 48 (3.8) 40 (0-71) 

Gleason score>=8, High TmS 26 62 (6.2) 57 (37-70) 5 48 (2.2) 80 (0-97) 
       

Table S4B | Multivariate Cox proportional hazard models with Age, TmS, Gleason score and TmS x Gleason 
score as predictors for progression free-interval analysis of TCGA prostate adenocarcinoma and ICGC-
EOPC. 
TCGA prostate adenocarcinoma Hazard ratio 95% CI P value (Wald test) Age and Gleason score 

model 
Age and TmS x 

Gleason score model Difference 

Age 1.0 (0.97, 1.1) 0.5 median iAUC d-iAUC (95% CI) 

 TmS (High vs. Low) 2.9 (0.58, 14) 0.2 0.74 0.78 (-0.0018, 0.077) 

Gleason score (>=8 vs. 7) 7.5 (4.0, 70) 0.01 median IBS d-IBS (95% CI) 

TmS x Gleason score 0.78 (0.13, 4.7) 0.8 0.11 0.11 (-0.0080, 0.0033) 

ICGC-EOPC Hazard ratio 95% CI P value (Wald test) Age and Gleason score 
model 

Age and TmS x 
Gleason score model Difference 

Age 0.94 (0.80, 1.1) 0.5 median iAUC d-iAUC (95% CI) 

 TmS (High vs. Low) 3.9 (1.0, 14) 0.04 0.68 0.81 (0.029, 0.26) 

Gleason score (>=8 vs. 7) 6.6 (1.1, 40) 0.04 median IBS d-IBS (95% CI) 

TmS x Gleason score 1.2 (0.13, 10.7) 0.9 0.19 0.18 (-0.013, 0.0054) 

The “Age and Gleason score model” was trained on the TCGA prostate adenocarcinoma data with Gleason score and age as predictors. 1 
The “Age and TmS x Gleason score model” was trained on the TCGA prostate adenocarcinoma data with age and subgroups defined by TmS and Gleason score as 
predictors. 
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