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1. TOTAL MRNA EXPRESSION IN SINGLE-CELL RNA SEQUENCING DATA 

1.1. Datasets 

Colorectal cancer single-cell RNA sequencing data 

Two fresh colorectal adenocarcinoma samples of primary tumor were collected from patients who were 

receiving chemotherapies by surgical resection at the University of Texas MD Anderson Cancer Center 

(Table S1). Single-cell data preparation was achieved by using the Chromium Single Cell 3’ Library, Gel 

Bead & Multiplex Kit, and Chip Kit (v3, 10x Genomics). Libraries were sequenced on an Illumina 

NovaSeq6000. The analysis of alignment, tagging, and gene and transcript counting were conducted by 

using the 10x Genomic Cell Ranger pipeline (version 3.0). 

Liver cancer single-cell RNA sequencing data1 

Three fresh hepatocellular carcinoma samples of primary tumor were collected at NIH Clinical Center for 

immune checkpoint inhibition studies (NCT01313442) (Table S1). Two of them (patient 1 and patient 2) 

were from patients who were receiving immunotherapies by needle biopsy, and the other one was from 

an untreated patient by surgical resection. Single-cell data preparation was conducted by using the 

Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit, and Chip Kit (v2, 10x Genomics). Libraries 

were sequenced on an Illumina NextSeq500. The analysis of alignment, tagging, and gene and transcript 

counting were conducted by using the 10x Genomic Cell Ranger pipeline (version 2.0.2). 

Lung cancer single-cell RNA sequencing data2 

Two fresh lung adenocarcinoma samples of primary, non-metastatic lung tumor were collected from 

untreated patients by surgical resection at University Hospital Leuven (Table S1). Single-cell data 

preparation was conducted by using the Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit, and 

Chip Kit (v1, 10x Genomics). Libraries were sequenced on Illumina HiSeq4000. The analysis of alignment, 

tagging, and gene and transcript counting were conducted by using the 10x Genomic Cell Ranger pipeline 

(version 2.0.0).  

Pancreatic cancer single-cell sequencing data3 

Two untreated patients with primary pancreatic cancer were recruited at the University of Texas MD 

Anderson Cancer Center and informed written consents following institutional review board approval 

were obtained (Lab00-396 and PA15-0014). Fresh biopsies were collected from the tumors by fine needle 

aspiration (Table S1). Single-cell data preparation was achieved by using the Chromium Single Cell 3’ 

Library, Gel Bead & Multiplex Kit, and Chip Kit (v1, 10x Genomics). Libraries were sequenced on an 

Illumina NextSeq500. The analysis of alignment, tagging, and gene and transcript counting were 

conducted by using the 10x Genomic Cell Ranger pipeline (version 3.1). 

1.2. Single-cell RNA sequencing data processing 
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In this section, we first introduce the preprocessing for the single-cell RNA sequencing (scRNAseq) 

datasets described above, including quality control, cell clustering, cell type annotation. It is followed by 

a method to group cell clusters within a cell type based on gene counts, i.e., the total number of expressed 

genes, to simplify the characterization of heterogeneity within the cell type, and a scale normalization 

method to correct for sequencing or experimental biases on total UMI counts. The cell cycle state for 

each cell in tumor cell clusters is scored based on canonical marker genes. 

Quality control, clustering and cell type annotation. 

For each of the two colorectal adenocarcinoma scRNAseq samples generated at MD Anderson, genes 

expressed in less than three cells were removed. Cells were filtered out that have either fewer than 500 

total UMIs, below 200 expressed genes, or more than 50% total UMI counts derived from mitochondrial 

genes. The total number of transcripts in each cell was normalized to 10,000, which was followed by a 

natural log transformation. The highly variable genes were detected and used for principal component 

analysis (PCA). Cells were then clustered with the Seurat package4. The cell type of each cell was 

annotated based on known marker genes5 (SI Figure 1, SI Table 1). Initial somatic copy number variation 

(CNV) estimates were made using inferCNV6, based on which CNV scores and CNV correlation scores1 

were calculated. The CNV score of a single cell was defined as the sum of the squared copy number 

variations across all gene positions. The CNV correlation score was calculated as the correlation between 

the copy number variations of a single cell and the average copy number variation of the top 2% cells 

ranked by CNV scores from the same sample. Tumor cells were identified as epithelial cells with an 

average CNV score greater than 0.0015. The two samples from patient 1 and patient 2 had 5,422 and 

7,462 cells remaining, respectively, after data pre-processing. 

The quality control of the three hepatocellular carcinoma scRNAseq patient samples was conducted 

consistently with the study1. For each sample, genes expressed in less than 0.1% of the cells were 

SI Table 1. Marker genes used to annotate cell types in scRNAseq patient samples from four 
cancer types. 

  Colorectal adenocarcinoma5 Hepatocellular carcinoma1 Lung adenocarcinoma2 Pancreatic adenocarcinoma3,7,8 

B cell CD79A, CD38 CD79A, SLAMF7, BLNK CD79A, IGKC, IGLC3 CD79A, CD38 

T cell CD2, CD3E, CD3D CD2, CD3E, CD3D CD3D, TRBC1, TRBC2 CD2, CD3D 

NK cell    NKG7, KLRF1 

Myeloid CD14, CD68, ITGAX CD14, CD163, CD68 LYZ, MARCO, CD68 CD14, CD68 

Fibroblast COLA1A, COL1A2, COL3A1 COL1A2, FAP, PDPN COLA1A, DCN, COL1A2 COLA1A, COL1A2 

Endothelial PECAM1, VWF, ENG  PECAM1, VWF, ENG CLDN5, FLT1, CDH5  

Alveolar   FOLR1, AQP4, PEBP4  

Epithelial EPCAM, KRT18, KRT20  CAPS, TEME190, PIFO, 
SNTN EPCAM, KRT18, KRT20 

Tumor cell     LCN2, CCL20, PTTG1   
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removed. Cells with fewer than 700 total UMIs, fewer than 500 expressed genes, or more than 20% total 

UMI counts derived from mitochondrial genes were excluded. An additional quality control step of doublet 

removal was performed based on the number of cells loaded and recovered. The total number of 

transcripts in each cell was normalized to 10,000, followed by a natural log transformation. The highly 

variable genes were detected and used for the PCA. Cells were then clustered with the Seurat package4. 

The cell type of each cell was annotated based on known marker genes1 (SI Figure 1, SI Table 1). Tumor 

cells were identified as epithelial cells with CNV scores above the 80th percentile and CNV correlation 

scores above 0.4. The three samples of patient 1, patient 2 and patient 3) had 83, 761 and 796 cells 

remaining, respectively, after data pre-processing. 

The quality control of the two lung adenocarcinoma scRNAseq patient samples was conducted 

consistently with the study2. For each sample, genes expressed in less than 0.5% of the cells were 

removed. Any cell with either fewer than 201 total UMI counts, below 101 or over 6,000 expressed genes, 

or more than 10% total UMI counts derived from mitochondrial genes were filtered out from downstream 

analysis. The total number of transcripts in each cell was normalized to 10,000, followed by a natural log 

transformation. The highly variable genes were detected and used for the principal component analysis 

(PCA). Cells were then clustered with the Seurat package4. The cell type (including tumor cell) of each 

cell was annotated based on known marker genes2 (SI Figure 1, SI Table 1). The two samples of patient 

1 and patient 2 had 8,845 and 13,658 cells remaining, respectively, after data pre-processing.  

For each of the two pancreatic adenocarcinoma scRNAseq samples, genes expressed in less than three 

cells were removed. Cells were filtered out that have either fewer than 500 total UMIs, below 200 

expressed genes, or more than 50% total UMI counts derived from mitochondrial genes. The total number 

of transcripts in each cell was normalized to 10,000, followed by a natural log transformation. The highly 

variable genes were detected and used for the PCA. Cells were then clustered with the Seurat package4. 

The cell type of each cell was annotated based on known marker genes7,8 (SI Figure 1, SI Table 1). 

Tumor cells were identified as epithelial cells with CNV score above 0.015 and CNV correlation above 

0.4. The two samples of patient 1 and patient 2 had 2,404 and 7,037 cells remaining after QC, respectively, 

after data pre-processing. 

Within each cell type, we further merged clusters that are not significantly different in gene counts 

(Wilcoxon rank-sum test, α=0.001) (SI Figure 2).  
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SI Figure 1. UMAPs of scRNAseq data from four cancer types.  
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Normalized total UMI counts 

We performed scale normalization on the raw count data to ensure the total unique molecular identifiers 

(UMI) count per cell across all cells are comparable for different samples. Specifically, let UMIi = 

{UMIigc}GxCi be a matrix of raw UMI counts for the scRNAseq data for sample i being investigated, with 

genes g on the rows and cells c on the columns. G denotes the total number of genes, Ci is the number 

of cells in sample i. Then, the normalized UMI matrix UMIi, denoted as UMIi
norm , is calculated as 

UMIi
norm=UMIi/ri , where, 	ri = UMIi

sum/Ci
baseline

, baseline = median"UMI1
sum/C1,UMI2

sum/C2,…, UMIn
sum/Cn# , 

UMIi
sum=∑ ∑ UMIigc

G
g=1

Ci
c=1 .  

Given a cell cluster, we let ugc denote the amount of mRNA of gene g in cell c. The average total mRNA 

amount per cell is	∑ (∑ ugc
G
g=1

C
c=1 )/C. For scRNAseq data, we assume the UMIgc from gene g, cell c is 

proportional to the total mRNA ugc of gene g in that cell, with a constant kg that represents technical 

effects: UMIgc=kg*	ugc . The constant kg is introduced because every single-cell sequencing platform 

presents a <100% capture efficiency for mRNA, and such efficiency varies across different platforms9. 

Under the assumption that the technical effect kg remains constant across cells and is often evaluated as 

an average effect across genes within the same platform, we can evaluate total mRNA expression in the 

scRNAseq data using the average total UMI counts, which is ∑ (∑ UMIgc
G
g=1

C
c=1 )/C. Notably, we observed 

strong correlations between gene counts and total UMI across cells in each cell cluster across all cell 

types and cancer types (Fig. S1B). This observation supports our assumption of a stable technical effect 

 
SI Figure 2. An example of merging cell clusters by gene counts. Tumor cells in patient 2 of 
colorectal adenocarcinoma are used. The initial 4 clusters were determined by Seurat clustering 
(resolution=0.5). Wilcoxon rank-sum tests comparing gene counts were performed between clusters 
and those that did not pass the significance level of 0.001 were merged. The resulting two tumor cell 
clusters had 1,696 cells (low UMI cluster, e.g. 1&2&4) and 359 cells (high UMI cluster, e.g. 3), 
respectively. We repeated this process based on the initial Seurat clustering with resolution=1.0. There 
were still two tumor cell clusters after merging. The differences of tumor cells in the high UMI cluster 
and in the low UMI cluster based on the two resolutions were only 12 cells and 13 cells, respectively. 
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kg within each study, and that the average total UMI counts serve as a reasonable surrogate to compare 

total mRNA expression across cells that are generated from the same experiment.  

The average gene counts and average total UMI counts for both individual cell clusters and all the clusters 

pooled within a cell type are summarized in SI Table 2. 

  

 

SI Table 2. The average gene counts and average total UMI counts for both individual cell 
clusters and all the clusters pooled. The 95% CI is estimated using bootstrapping with 1,000 
iterations. 

 

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Cluster 3
5,649 

(5,526, 5,779)
48,706 

(46,811, 50,691) NA NA NA NA NA NA NA NA

Cluster 2
2,438 

(2,325, 2,561)
13,787 

(12,661, 15,063) NA NA NA NA NA NA NA NA

Cluster 1
646 

(620, 675)
1,929 

(1,805, 2,058) NA NA NA NA NA NA NA NA

Pooled
1,926 

(1,785, 2,074)
13,626 

(11,990, 15,228) NA NA NA NA
2,135

 (2,041, 2,239)
7,378 

(6,845, 7,899) NA NA

Cluster 2
1,782 

(1,710, 1,848)
7,307 

(6,910, 7,700) NA NA NA NA NA NA NA NA

Cluster 1
604 

(573, 638)
1,964 

(1,800, 2,142) NA NA NA NA NA NA NA NA

Pooled
1,576 

(1,506, 1,642)
6373 

(5988, 6781)
1,272 

(1,225, 1,326)
4,455 

(4,199, 4,721) NA NA NA NA NA NA

Cluster 2
5,338 

(5,252, 5,425)
48,457 

(47,098, 49,861) NA NA NA NA NA NA NA NA

Cluster 1
1,364 

(1,325, 1,405)
4,670 

(4,402, 4,954) NA NA NA NA NA NA NA NA

Pooled
3,660 

(3,524, 3,800)
29,969 

(28,109, 31,625) NA NA NA NA NA NA NA NA

Patient 2*
(Stage IV, 

PFS ≥ 18 months)
Pooled 1,871 

(1,787, 1,949)
7,961 

(7,471, 8,460)
NA NA NA NA 1,760 

(1,734, 1,787)
4,150 

(4,037, 4,259)
1,947 

(1,906, 1,986)
5,255

 (5,089, 5,415)

Cluster 2 NA NA NA NA NA NA
4,149 

(4,064, 4,241)
16,410 

(15,796, 17,043) NA NA

Cluster 1 NA NA NA NA NA NA
2,368 

(2,306, 2,429)
7,131 

(6,813, 7,462) NA NA

Pooled
2,921 

(2,876, 2,966)
13,289 

(12,897, 13,647) NA NA NA NA
2,708 

(2,634, 2,788)
8,904 

(8,447, 9,380)
1,961 

(1,918, 2,002)
5,699 

(5,491, 5,922)

Cluster 2 3,999 
(3,921, 4,073)

15,664 
(15,180, 16,128)

NA NA NA NA NA NA 1,663 
(1,612, 1,713)

4,179 
(3,995, 4,375)

Cluster 1
649 

(616, 682)
1,230 

(1,132, 1,341) NA NA NA NA NA NA
717 

(675, 767)
1,680 

(1,498, 1,869)

Pooled
1,869 

(1,761, 1,979)
6,489 

(5,952, 7,050)
3,233 

(3,156, 3,314)
9,846 

(9,502, 10,176)
724 

(692, 754)
1,479 

(1,394, 1,569)
1,371 

(1,314, 1,432)
3,200 

(2,989, 3,417)
1,520 

(1,464, 1,574)
3,801 

(3,612, 3,993)

Cluster 2
2,778 

(2,680, 2,871)
8,458 

(8,041, 8,868) NA NA
2,097 

(2,039, 2,160)
6,123 

(5,856, 6,411) NA NA
1,898 

(1,836, 1,968)
5,179 

(4,899, 5,486)

Cluster 1
831 

(784, 880)
1,703 

(1,535, 1,897) NA NA
586 

(561, 612)
1,091 

(1,024, 1,168) NA NA
649 

(623, 676)
1,255 

(1,190, 1,321)

Pooled
1612 

(1515, 1703)
4,411 

(4,058, 4,763) NA NA
1200 

(1134, 1266)
3,135 

(2,917, 3,360)
684 

(652, 715)
1,316 

(1,232, 1,401)
1,128 

(1,071, 1,188)
2,760 

(2,549, 2,985)

Cluster 2
4,315 

(4,205, 4,421)
21,718 

(20,860, 22,550)
2,549 

(2,437, 2,654)
11,066 

(10,341, 11,818) NA NA NA NA NA NA

Cluster 1
1,510 

(1,439, 1,578)
4,631 

(4,314, 4,938)
616 

(588, 645)
1,491 

(1,393, 1,599) NA NA NA NA NA NA

Pooled
3,323 

(3,193, 3,458)
15,675 

(14,823, 16,549)
1,423 

(1,334, 1,527)
5,489 

(4,933, 6,075) NA NA NA NA NA NA

Cluster 2
2,235 

(2,160, 2,306)
8,896 

(8,437, 9,317)
1,382 

(1,324, 1,442)
6,017 

(5,635, 6,386) NA NA NA NA NA NA

Cluster 1
997 

(959, 1,039)
3,381 

(3,173, 3,581)
779 

(728, 831)
2,496 

(2,246, 2,765) NA NA NA NA NA NA

Pooled
1,614 

(1,542, 1,682)
6,129 

(5,715, 6,486)
1,086 

(1,028, 1,142)
4,286 

(3,965, 4,644) NA NA NA NA NA NA

Lung 
adenocarcinoma

Patient 1
{Stage IIIB}

Patient 2
{Stage IIB}

Pancreatic 
adenocarcinoma

Patient 1
(Stage IV, 

PFS = 11 months)

Patient 2
(Stage IIB, 

PFS ≥ 26 months)

Colorectal 
adenocarcinoma

Patient 1 
(Stage IVA, 

PFS = 4 months)

Patient 2 
(Stage IVA, 

PFS ≥ 8 months)

Hepatocellular 
carcinoma

Patient 1
(Stage IV, 

PFS < 5 months)

Patient 3
(Stage I, 

PFS ≥ 18 months)

Cancer type Patient id Cell cluster

Cell type

Tumor Epithelial Alveolar Endothelial Fibroblast
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SI Table 2. (Continued) 

 
PFS: progression free survival. 
*: for a patient, if all cell types have one cluster each, only the results from the pooled cells of each cell type are shown. 
NA:  due to no cells or only one cell cluster in the corresponding cell type; for the latter, the results of gene counts and total 
UMI counts are shown in the "Pooled" position. 

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Cluster 3 NA NA NA NA NA NA NA NA

Cluster 2
2,984 

(2,920, 3,054)
13,050 

(12,518, 13,573)
NA NA NA NA NA NA

Cluster 1
535 

(523, 548)
1,415 

(1,372, 1,457)
NA NA NA NA NA NA

Pooled
1,787 

(1,691, 1,877)
7,365 

(6,853, 7,920)
1,211 

(1,177, 1,243)
3,600 

(3,473, 3,743)
NA NA

1,102 
(1,058, 1,149)

5,422 
(5,012, 5,873)

Cluster 2 NA NA NA NA NA NA NA NA

Cluster 1 NA NA NA NA NA NA NA NA

Pooled
662 

(627, 700)
2,054 

(1,881, 2,231)
1,203 

(1,177, 1,230)
4,377 

(4,250, 4,505)
NA NA

963 
(911, 1,011)

3,633 
(3,330, 3,936)

Cluster 2 NA NA NA NA NA NA NA NA

Cluster 1 NA NA NA NA NA NA NA NA

Pooled NA NA
1,318 

(1,285, 1,350)
3,720 

(3,561, 3,879)
NA NA NA NA

Patient 2
(Stage IV, 
PFS ≥ 18 
months)

Pooled
1,406 

(1,376, 1,434)
4,228 

(4,085, 4,368)
1,303 

(1,272, 1,340)
3,221 

(3,079, 3,366)
NA NA

1,105 
(1,088, 1,122)

11,686 
(11,426, 11,965)

Cluster 2 NA NA NA NA NA NA NA NA

Cluster 1 NA NA NA NA NA NA NA NA

Pooled
1,602 

(1,571, 1,634)
5,879 

(5,711, 6,057)
1,410 

(1,373, 1,448)
4,590 

(4,412, 4,782)
NA NA NA NA

Cluster 2
1,293 

(1,253, 1,329)
3,936 

(3,776, 4,102)
NA NA NA NA NA NA

Cluster 1
393 

(381, 407)
876 

(838, 917)
NA NA NA NA NA NA

Pooled
1,233 

(1,191, 1,271)
3,732 

(3,573, 3,889)
584 

(566, 602)
1,050 

(1,011, 1,090)
NA NA

544 
(520, 568)

2,569 
(2,278, 2,858)

Cluster 2
1,207 

(1,164, 1,251)
3,504 

(3,302, 3,721)
NA NA NA NA NA NA

Cluster 1
361 

(352, 370)
728

 (699, 754)
NA NA NA NA NA NA

Pooled
1,137 

(1,089, 1,183)
3,275 

(3,080, 3,482)
765 

(745, 789)
1362 

(1310, 1417)
NA NA

762 
(732, 796)

4,396 
(4,083, 4,746)

Cluster 2
3,213 

(3,131, 3,292)
16,221 

(15,618, 16,851)
NA NA NA NA NA NA

Cluster 1
1,460 

(1,420, 1,504)
3,840 

(3,688, 3,980)
NA NA NA NA NA NA

Pooled
1,788 

(1,726, 1,851)
6,158 

(5,746, 6,568)
1,531 

(1,508, 1,554)
4,814 

(4,716, 4,922)
1,651 

(1,630, 1,671)
4,064 

(4,001, 4,126)
1,352 

(1,327, 1,378)
4,119 

(4,022, 4,213)

Cluster 2
2,210 

(2,155, 2,271)
10,285 

(9,860, 10,748)
NA NA NA NA NA NA

Cluster 1
890 

(857, 926)
2,523 

(2,344, 2,711)
NA NA NA NA NA NA

Pooled
1,960 

(1,891, 2,030)
8,818 

(8,327, 9,245)
936 

(919, 953)
2,526 

(2,467, 2,586)
1,169 

(1,148, 1,191)
2,855 

(2,763, 2,950)
927

 (904, 950)
2,684 

(2,586, 2,775)

Lung 
adenocarcinoma

Patient 1
{Stage IIIB}

Patient 2
{Stage IIB}

Pancreatic 
adenocarcinoma

Patient 1
(Stage IV, 
PFS = 11 
months)

Patient 2
(Stage IIB, 
PFS ≥ 26 
months)

Colorectal 
adenocarcinoma

Patient 1 
(Stage IVA, 

PFS = 4 months)

Patient 2 
(Stage IVA, 

PFS ≥ 8 months)

Hepatocellular 
carcinoma

Patient 1
(Stage IV, 

PFS < 5 months)

Patient 3
(Stage I, 
PFS ≥ 18 
months)

Cancer type Patient id Cell cluster

Cell type

Myeloid T cell Natural killer cell B cell
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The observed fold changes in total UMI counts between tumor cell clusters were significantly higher than 

those expected from expression dosage response from genome ploidy changes alone (at 2-3 fold10,11) 

among tumor cells (SI Table 3). For the two tumor cell clusters in each patient across four cancer types, 

our null hypothesis is that there is no difference between the distribution of the total UMI counts from the 

tumor cell high-UMI cluster and the distribution of the total UMI counts from the tumor cell low-UMI cluster 

multiplied by three. For each patient, the P value was obtained with a Wilcoxon rank-sum test and 

adjusted by the Benjamini-Hochberg method12; the 95% confidence interval for the ratio of means of total 

UMI counts from the respective tumor cell cluster was estimated using bootstrapping with 1,000 iterations.  

We also examined the cell cycle phase for each cell in the tumor clusters (SI Table 4) using the Seurat 

package. Cluster and patient numbers match Fig. 1B. 

 

SI Table 3. T-tests of total UMI counts between two tumor cell clusters within each patient across four 
cancer types.  

Cancer type 
Patient 1 Patient 2 

P value μ2/μ&(95% CI)* P value μ2/μ&(95% CI) 

Colorectal adenocarcinoma  1x10-11 25 (23, 27) 6x10-10 3.7 (3.4, 4.2) 

Hepatocellular carcinoma 7x10-7 10 (10,11) NA NA 

Lung adenocarcinoma < 2x10-16 13 (12, 14) < 2x10-16 5.0 (4.4, 5.6) 

Pancreatic adenocarcinoma 2x10-15 4.7 (4.3, 5.0) 0.009 2.6 (2.4, 2.8) 

* μ2 and μ1 are the means of the total UMI counts from the tumor cell high-UMI cluster and tumor cell low-UMI cluster, respectively. 

SI Table 4. Cell cycle states of the tumor cell clusters across four cancer types. The 95% confidence 
intervals for the odds ratios were calculated using Fisher’s exact tests.  

Cancer type Patient id Tumor cell cluster 
Cell cycle phase Odds Ratio for G1/S in high-UMI tumor 

cell cluster (95% CI) No. of cells in G1/S No. of cells in G2/M 

Colorectal 
adenocarcinoma 

Patient 1 
Cluster 3 711 97 Cluster 3 vs. Cluster 1: 2.5 (2.0, 3.2) 

Cluster 2 vs. Cluster 1: 0.67 (0.49, 0.94) 
Cluster 3 vs. Cluster 2: 3.8 (2.6, 5.5) 

Cluster 2 124 64 
Cluster 1 1800 626 

Patient 2 Cluster 2 1342 363 0.48 (0.33, 0.68) 
Cluster 1 318 41 

Hepatocellular 
carcinoma Patient 1 

Cluster 2 25 1 
10.9 (1.1, 549.6) 

Cluster 1 13 6 

Lung 
adenocarcinoma 

Patient 1 Cluster 2 465 32 11.2 (7.6, 17.0) 
Cluster 1 489 378 

Patient 2 
Cluster 2 632 429 

 0.18 (0.15, 0.22) 
Cluster 1 1414 172 

Pancreatic 
adenocarcinoma 

Patient 1 Cluster 2 430 32 2.1 (1.3, 3.6) 
Cluster 1 247 39 

Patient 2 
Cluster 2 1537 392 

0.33 (0.27, 0.41) 
Cluster 1 1790 152 
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2. TUMOR-SPECIFIC TOTAL MRNA EXPRESSION IN BULK SEQUENCING DATA 

2.1. A mathematical model for tumor-specific total mRNA expression  

2.1.1. Model 

  

For any group of cells, we use a ploidy-adjusted GTL (pGTL) to denote the average global mRNA 

transcript level per cell per haploid genome, which follows pGTL = ∑ (∑ ugc
G
g=1 /pc)

C
c=1 /C (SI Figure 3). 

Here pc is the ploidy, i.e., the number of copies of the haploid genome in cell c. However, the cell level 

ploidy pc is usually not measurable. Hence, in practice, we use average ploidy y of the corresponding 

cell group to approximate it: pGTL≈∑ ∑ ugc
G
g=1 /(Cy)C

c=1 . For non-tumor cells, which are commonly diploid, 

this assumption is assured. 

In the analysis of bulk RNAseq data from mixed tumor samples, we are interested in comparing tumor 

with non-tumor cell groups. We denote tumor cells by group T, and non-tumor cells by group N. Therefore, 

we define a tumor-specific total mRNA expression score (TmS) to reflect the ratio of total mRNA transcript 

level per haploid genome of tumor cells to that of the surrounding non-tumor cells, i.e., TmStumor = pGTLT 

/ pGTLN, simplified as TmS from here forward. It is necessary to calculate this ratio in order to cancel out 

technical effects presented in sequencing data that confound with both pGTLT and pGTLN .  Let 

Tg=∑ ugc
CT
c=1  and Ng=∑ ugc

CN
c=1  denote the total number of transcripts of gene g across all cells from tumor 

and non-tumor cells, let CT and CN denote the number of tumor and non-tumor cells, and let yT and yN 

represent the average ploidy of tumor and non-tumor cells, respectively. Under the assumption that the 

tumor cells have a similar ploidy, we can derive TmS without using single-cell-specific parameters as 

 
SI Figure 3. Illustration of ploidy-adjusted total mRNA amount per cell. Example of three types 
of cells, with ploidy = 2, 3, and 4. Under the scenario of linear dosage effects, as shown in the boxes 
with a yellow background, suppose their corresponding total mRNA amounts are 2, 3, and 4, then the 
ploidy-adjusted, or per haploid genome, total mRNA amount would be 1, 1, and 1. Under the scenario 
of dosage compensation, the second cell has a total mRNA amount of 2 and a per haploid value of 
0.67. Under the scenario of dosage transgression, the third cell has a total mRNA amount of 6 and a 
per haploid genome value of 1.5. 

1

2 22 3 4 6

1 1 10.67 1.5

Total mRNA amount

Total mRNA amount
per haploid genome

TmS	=
∑ Tg

G
g=1 /(CTyT)

∑ Ng
G
g=1 /(CNyN)

.                                                         Eq.S1      
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Here we further introduce a tumor-specific total mRNA expression proportion π 

=	(∑ Tg
G
g=1 ) / (∑ Tg

G
g=1 +∑ Ng

G
g=1 ) and a tumor cell proportion of tumor cells (termed “tumor purity”) r = CT 

/ (CT + CN). Note that deconvolution of just the gene expression data will not provide information on the 

total number of tumor cells and non-tumor cells, but only the sum of total mRNA expression across all 

cells of each cell type.  

Using these deconvolution parameters, we rewrite Eq.S1 as 

Additionally, we can define a ploidy-unadjusted TmS by removing the ploidy terms. 

2.1.2. Estimation 

It is a common practice to assume the ploidy of non-tumor cells yN equals to 213,14.  Hence, we have 

In what follows, we use	TmS to represent TmS) , for the sake of simplicity. 

Estimation of tumor-specific total mRNA transcript level π  using high-throughput RNA sequencing has 

not been possible due to several technical and analytical factors including: 1) the need to account for 

technical artifacts introduced by varied library size, which currently involves normalization procedures 

across samples; 2) total mRNA transcripts per cell are confounded with technical artefacts so that 

normalization procedures adjust for both effects at once, consequently losing the ability to evaluate the 

downstream global transcriptome feature15; and 3) a limited focus on estimating cell proportions by 

popular methods16–18.  

Using deconvolution to partition tumor and non-tumor cells within the same sample under the same 

experimental conditions provides a mathematical means to cancel out the effect of technical artefacts 

while maintaining the effect of cell-type-specific total mRNA counts. We use the DeMixT model19 to 

estimate tumor-specific total mRNA expression proportions. For sample i and across any gene g, we 

have 

where Yig represents the scale normalized expression matrix from mixed tumor samples, T’ig and N’ig 

represent the normalized relative expression of gene g within tumor and surrounding non-tumor cells, 

respectively. The estimated tumor-specific total mRNA expression proportions π* is the desirable quantity 

for Eq.S3.  

TmS	= yNπ(1-ρ)
yTρ(1-π).                                                                Eq.S2 

Yig=πiTig
' +(1-πi)Nig

'                                                     Eq.S4 

       

 
TmS)= 2π*(1-ρ*)

yT-ρ*(1-π*)
.                                                               Eq.S3 
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Computational deconvolution methods, e.g., ASCAT14 and ABSOLUTE13, have been developed to 

perform allele-specific copy number analysis and to estimate tumor purity r and ploidy yT from tumor 

DNA sequencing data. Such statistical methods jointly model the distribution of logR and B allele (or 

variant allele) frequency (BAF) across germline SNPs, with tumor purity and allele-specific copy number 

as parameters of interest. Then the tumor purity and ploidy (the average tumor copy number) can be 

estimated through minimizing the loss function or maximizing the likelihood. Below, we provide a detailed 

description for these methods using the ASCAT model as an example. 

Sequence read counts at known SNP loci were computed from tumor DNA sequencing data. The logRi 

can be computed from the total read counts in the tumor versus normal for the ith SNP, which provides 

information on the ratio of total copy number between the tumor and the normal. Specifically, logRi can 

be expressed as14 

where ρ is the tumor purity, yT is the tumor ploidy, 𝛾 is a constant depends on which DNA sequencing 

technology is used. nA,i and nB,i stand for the allele-specific copy number of A allele and B allele for the 

ith SNP in tumor cells, respectively. 

On the other hand, allelic imbalance can be inferred from the BAFi  for ith SNP. The BAFi  can be 

expressed as14  

Based on Eq.S5 and Eq.S6, the allele-specific copy number can be expressed as a function of the tumor 

purity and ploidy. Specifically, we have  

Allele-specific piecewise constant fitting (ASPCF)14 was then applied to both logRi  and BAFi 

simultaneously, which enforced the change points to occur at the same genomic locations. Consequently, 

a segmentation of the genome was obtained, each segment corresponding to a genomic region between 

two adjacent change points. Using the ASPCF smoothed logRi and BAFi, the final values for 𝜌0 and 

y*T were obtained through the optimization, such that the allele-specific copy number estimates n0A,i and 

n0B,i were as close to nonnegative integers as possible for germline heterozygous SNPs. 

  

logRi = γlog2 2
2(1-ρ)+ρ3nA,i+nB,i4

2(1-ρ)+yT
5,                                        Eq.S5 

BAFi =
1-ρ+ρnB,i

2(1-ρ)7ρ3nA,i+nB,i4
.                                                      Eq.S6 

n0A,i =
ρ-1+2

logRi
γ (&8BAFi)(2(1-ρ)+yT)

ρ
; 

n0B,i =
ρ-1+2

logRi
γ BAFi(2(1-ρ)+yT)

ρ
. 
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2.2. Improved estimation using DeMixT 

Many computational deconvolution methods have been developed to estimate the cell type proportions 

through transcriptome data; however, most of them focus on the cellular proportion and not the global 

gene expression level of each cell type, due to lack of appropriate normalization approaches. The 

DeMixT19 model is unique in aiming to estimate the global tumor-specific gene expression level relative 

to the normal reference in the context of admixed tumor samples. ISOpure20 is the other model that 

presents similar objectives as the DeMixT model. The following issues and our proposed solution are 

generally applicable to both models.  

The identifiability analysis of model parameters is a major issue for high dimensional models. Due to 

technical limitations, given a certain amount and quality of experimental data, not all model parameters 

are guaranteed for unambiguous estimation. Frequently, only a subset of model parameters are 

identifiable based on the available data, with the rest of the parameters considered unidentifiable. 

Confidence intervals can be derived for identifiable parameters, which contain the true value of the 

parameter with a desired probability21. Fortunately, with the DeMixT model, there is hierarchy in model 

identifiability in which the cell-type specific global gene expression proportions π are the most identifiable 

parameters, requiring only a subset of genes with identifiable expression distributions. Therefore, our 

goal is to select an appropriate set of genes as input to DeMixT that optimizes the estimation of the tumor-

specific mRNA expression proportions. In general, genes are expressed at different levels, which, due to 

different numerical ranges, can affect tumor-specific global gene expression proportion estimation. We 

found that including genes that are not differentially expressed between the tumor and non-tumor 

components within the bulk sample, or genes with large variance in expression within the non-tumor 

component, can introduce large biases into the estimated tumor-specific mRNA expression proportions. 

By applying a profile likelihood approach to detect the identifiability of model parameters22, we 

systematically evaluated the identifiability for all available genes based on the data, and selected the 

most identifiable genes for the estimation of proportions. As a result, the accuracy of the estimated 

proportions has been improved. As a general method, the profile likelihood-based gene selection strategy 

can be extended to any method that uses maximum likelihood estimation. Furthermore, we employed an 

additional virtual spike-in strategy to improve model identifiability. 

2.2.1. Likelihood model for DeMixT 

In the DeMixT model19 (Eq.S4), we assumed that the observed expression level Yig is a linear combination 

of two hidden components Tig (tumor, in place of T’ig from now on) and Nig (non-tumor, in place of N’ig 

from now on), where gene g = 1,2,…,G, sample i = 1,2,…,S , and πi  is the tumor-specific mRNA 
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expression proportions. We assume each hidden component follows the log2-normal distribution, i.e., 

Tig ~ LN;μTg, σTg
2 < and Nig ~ LN;μNg, σNg

2 <. 

Fitting the deconvolution model in Eq.S1 can be formally defined as an optimization problem that seeks 

to identify optimal estimates for sample-level, tumor-specific mRNA expression proportions πi, and gene-

level parameters. Denote the full parameter set (π,μT,σT), where π = (π1,π2,…,πS), μT = (μT1, μT2,…, 

μTG), σT = (σT1, σT2,…,σTG). The full log-likelihood of the DeMixT model can be written as                                        

where f ;Yig|πi,μTg,σTg<= 1
2πσNgσTg

∫ 1
t(Yig-t)

exp(-
(log2(t)-μNg-log2(1-πi))

2

2σNg
2 -

(log23Yig-t4-μTg-log2(πi))
2

2σTg
2 )dtYig

0 . 

The DeMixT model applies an optimization method, iterated conditional modes (ICM)23, to maximize the 

full log-likelihood function and estimate all distribution parameters (μT,σT) and proportions π. 

2.2.2. Optimized model identifiability  

Based on the most stringent definition, for a parametric model 𝑙(Y | θ), θ is identifiable if, 𝑙(𝒀	|	𝜃&) = 𝑙(Y | 
θ2) => θ1 = θ2. However, this rigorous identifiability is difficult to validate for a general high-dimensional 

and non-convex model, which is the case of the DeMixT model. Thus, for a parameter θ, we use the 

confidence interval [θ-, θ+] to measure its identifiability22.  

In the DeMixT model, if we select genes with small confidence intervals of μTg based on profile likelihood, 

which indicate high identifiability, the corresponding gene g will be more stable and reliable, so will the 

inferred tumor-specific mRNA expression proportions (π). As a result, the length of confidence interval 

of μTg serves as an estimable quantity with which we can evaluate the gene g’s identifiability and prioritize 

genes to increase the estimation quality of πi, μTg, σTg. 

The profile likelihood is preferred to compute confidence intervals of parameters that often have better 

small-sample properties than those based on asymptotic standard errors calculated from the full 

likelihood24. Assume the kth gene’s mean parameter μTk is the parameter of interest. The definition of the 

profile likelihood function of μTk is: 

𝑙3π,μT,σT4=∑ ∑ log(f(Yig|πi,μTg,σTg))G
g=1

S
i=1 ,                       

𝑙μTk
3μTk=x|π,μT,σT4 = max{F [F log 2f ;πi,μTg,σTg<5  +log ;f3πi,μTk=x,σTk4<

G

g≠k

 ]
S

i=1

} 
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The confidence interval of a profile likelihood function can be constructed through inverting a likelihood-

ratio test25. Assume the null hypothesis as H0: μTk = x, and the maximum likelihood estimator of (πi, μTg, 

σTg) are (π* i, μ*Tg, σ*Tg). The null hypothesis will not be rejected at the α level of significance if and only if 

2 G𝑙3π* , μ* T, σ*T4 − 𝑙μTk
3μTk = x | π* , μ* T, σ*T4I ≤ χ1-α

2 (1) , where χ1-α
2 (1)  stands for 1- α  percentile of  χ2 

distribution with a degree of freedom equal to 1. Since maximized likelihood 𝑙3π* , μ* T, σ*T4 and model 

parameters π* , μ* T, σ*T can be estimated by running the DeMixT model on all available gene sets, for any 

given x, we are able to investigate the profile log-likelihood function 𝑙μTk
3μTk = x | π* ,μ*T,σ*T4. Consequently, 

we can estimate the lower and upper bound of confidence interval [μTk
- , μTk

+ ] as 

Following the same procedure, we can derive the confidence interval of μTk for all available genes. 

In real data analysis, the actual profile likelihood function of μTk is intractable and prone to noise, since 

the algorithm can be easily trapped by local minimal solutions when calculating the profile likelihood. In 

addition, calculating the actual profile likelihood function of all μTk  across 20,000 genes is generally 

infeasible due to computational limits. An asymptotic approximation is necessary in order to quickly 

evaluate the profile likelihood function. If the measurement noise is small and the sample size is large 

enough, asymptotic confidence intervals are good approximations of the actual confidence intervals22. 

The asymptotic profile likelihood function can be derived from the observed Fisher information of the log 

likelihood, denoted as H(π* ,μ*T,σ*T). Then the asymptotic α level confidence interval of μTk can be written 

as follows22 

We compared the actual profile likelihood function with the asymptotic profile likelihood function for a 

random set of 20 genes in real data (the TCGA prostate adenocarcinoma dataset) and observed good 

performance of the approximation profile likelihoods (SI Figure 4). With 35 randomly selected genes, 

we calculated the root mean squared error (RMSE) between the confidence intervals from the true 

and asymptotic profile likelihoods as 0.05.   

Under the assumption that the maximum likelihood estimator is the global minimum of the full likelihood, 

the asymptotic profile likelihood-based confidence interval of μTk, as shown in Eq.S7, can be used to 

measure the identifiability of the corresponding gene 𝑘. 

 

μTk
- = min

x
{x|2 G𝑙3π* ,μ*T,σ*T4	-	𝑙μTk

3μTk	=	x	|	π* ,μ*T,σ*T4I≤χ1-α
2 (1)}

μTk
+ = max

x
{x|2 G𝑙3π* ,μ*T,σ*T4	-	𝑙μTk

3μTk	=	x	|	π*,μ*T,σ*T4I≤χ1-α
2 (1)}

 

μTk
±	=	μTk	- ±L2χ1-α

2 (1) H3π*,μ0T,σ*T4k,k

-1
 .                                              Eq.S7 
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We hence introduce a metric, the gene selection score, as the width of an asymptotic profile likelihood-

based 95% confidence interval of μTk for gene 𝑘 

Genes with a lower score have a smaller confidence interval, hence higher identifiability in their 

corresponding parameters. Genes will be ranked based on the gene selection score from the smallest to 

the largest. A subset of genes that are ranked on top will be used for parameter estimation. In the DeMixT 

R package (freely available from Bioconductor), our proposed profile likelihood-based gene selection 

approach is included as function DeMixT_GS. 

We validated the accuracy of the proposed gene selection method through simulations. The DeMixT 

model assumes every gene g has a shared mean (μTg) and variance (σTg) parameters across all tumor 

samples. However, in real data, this assumption might be violated occasionally, due to the fact that some 

genes are significantly differentially expressed in different subtypes of the cancer. For example, the 

PAM50 genes are known to be differentially expressed in different molecular subtypes in breast cancer, 

e.g., Basal, Her2, LumA, and LumB subtypes. Therefore, our simulation aimed to assess the performance 

 
SI Figure 4. Asymptotic profile likelihoods for 4 genes using 259 samples from the TCGA 
prostate cancer dataset. Comparison of asymptotic and actual profile likelihoods of μT for 4 randomly 
selected genes in the TCGA prostate adenocarcinoma data. The red curve shows the true profile 
likelihood of the corresponding parameter. The blue curve shows an asymptotic approximation of the 
profile likelihood of the corresponding parameter.  
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of the proposed gene selection method by simulating a subset of genes whose distribution is bimodal or 

trimodal, to mimic the subtype-specific differentially expressed genes. We denote these genes as subtype 

genes. The detailed simulation design is described below. 

We simulated a dataset with expression levels from 15,000 genes and 300 mixed tumor samples, plus 

100 normal reference samples. For the mixed tumor samples, the true distribution of tumor-specific 

mRNA expression proportions was simulated from a normal distribution (mean = 0.55, Standard 

Deviation (SD) = 0.2) and truncated at endpoints of 0.05 and 0.95. We generated the expressions of the 

15,000 genes for the pure tumor Tig and normal references Nig with distributions log23Tig4 ∼ N ;μTg,	σTg
2 < 

and log23Nig4 ∼ N ;μNg,	σNg
2 <, where i denotes sample, i=1, ⋯, S, g=1, ⋯, G, where μNg,	μTg∼ N37,1.524 

and σNg, σTg∼ U(0.1,0.8). The 100 normal reference samples were simulated by log23Nig4 ~ N ;μNg, 

σNg
2 <,	i=1, ⋯, 100, g=1, ⋯, G. To simulate the subtype genes that are expressed differentially in certain 

tumor subtypes, we randomly drew a subset of genes G∗ (2,000 in total) and split samples into subgroups 

S1, S2, and S3 with corresponding μT1g, μT2g, μT3g, where μTsg ~ N37,1.524 and S= S1+S2+ S3. If g ∈	G*, 

log23Tig4 ∼ N;μTkg, σTg
2 < ,  k=1, 2,3, i∈Sk, g∈ G*. Then we mixed the Tig and Nig component expression 

linearly at the generated tumor-specific mRNA expression proportions according to the DeMixT model: 

Yig= πiTig+(1-πi)Nig, where G=15,000, S=300. The simulation procedure was repeated five times. The 

estimated tumor-specific mRNA expression proportions were shown in SI Figure 5A.  

Under this simulated scenario, our proposed gene selection method successfully ranked the subtype 

genes lower than others, whereas the other gene selection method, DeMixT_DE, failed to do so. 

DeMixT_DE (also provided as an option for gene selection in the DeMixT R package) ranks genes based 

on the two-sided t-test statistic between mixed tumor and normal samples, where genes with larger t-

statistics are ranked on the top. In essence, this method is used by most deconvolution methods to pre-

select genes. Across simulations where we selected 2000, 3000, 4000, and 5000 genes, DeMixT_GS 

always outperformed DeMixT_DE in estimating proportions. Furthermore, we observed DeMixT_DE 

underestimated the proportions when the true tumor-specific mRNA expression proportions are high (IS 
Figure 5B). Such bias persisted, but was reduced with DeMixT_GS (SI Figure 5A). Across five 

simulations, when we selected the top 2,000 genes, DeMixT_DE selected an average of 1,150 subtype 

genes (>50%), and DeMixT_GS only selected an average of 277 subtype genes (SI Figure 5C). The dip 

test26 was used to measure the unimodality of the distribution of gene expression. The test statistic 

was designed to test multimodality of a random variable based on the maximum difference between 
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the empirical distribution and the unimodal distribution of all observed data points. Hence using profile 

likelihood to select genes proved to be a better approach. 

We observed that the number of genes selected by DeMixT_GS influences the performance of DeMixT. 

To estimate the optimal number of selected genes, we simulated gene expressions of 269 mixed samples 

and 100 normal references with 10,000 genes, mimicking the real data scenario presented in the TCGA 

prostate adenocarcinoma dataset. The true tumor-specific mRNA expression proportions were set as the 

tumor cell proportions derived from ASCAT. We generated the expressions of 8,000 of the 10,000 genes 

for the mixed samples and references with distributions log23Tig4 ∼ N ;μTg,	σTg
2 <  and 

log23Nig4 ∼ N ;μNg,	σNg
2 < , respectively, where μNg,	μTg∼ N37,1.524	 and σNg , σTg  were sampled with 

replacement from the observed standard deviations from the normal samples of TCGA prostate 

adenocarcinoma. For the expressions of the remaining 2,000 genes, we randomly drew a subset of genes 

G∗ (2,000 in total) and split samples into subgroups S1, S2, and S3 with corresponding μT1g, μT2g, μT3g, 

where μTsg ~ N37,1.524  and S= S1+S2+ S3 . If g ∈	G* , log23Tig4 ∼ N ;μTkg, σTg
2 < ,  k=1, 2,3, i∈Sk, g∈ G* . 

Then we mixed the Tig and Nig component expression linearly at the generated tumor-specific mRNA 

expression proportions according to the DeMixT model: Yig= πiTig+(1-πi)Nig, where G=10,000, S=269. 

The accuracies of tumor-specific mRNA expression proportion estimation based on 100, 250, 1,500, 

2,500 and 8,000 genes selected by the proposed DeMixT_GS were compared. (SI Figure 6). Accurate 

 
SI Figure 5. Profile likelihood-based gene selection (DeMixT_GS) improves tumor-specific 
mRNA expression proportions estimation. (A) Scatter plot of true versus estimated tumor-specific 
mRNA expression proportions using the DeMixT_GS method from 2,000 top genes with the smallest 
gene selection score. (B) Scatter plot of true versus estimated tumor-specific mRNA expression 
proportions using the DeMixT_DE method from 2,000 top genes with the smallest P values of 
differential expressed genes between mixed tumor and normal samples. (C) Density of P values based 
on a dip test for selected genes by DeMixT_GS and DeMixT_DE methods. The dip test was applied 
to indicate the distribution of gene expression for selected genes based on the DeMixT_GS and 
DeMixT_DE methods, respectively. A small P value of the dip test suggests the corresponding gene 
is not unimodally distributed, which violates the model assumption of log2-normal distribution across 
samples. 
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tumor-specific mRNA expression proportion estimation, as measured by the RMSE, was achieved with 

1,500 or 2,500 genes. In real data, we used either the top 1,500 or top 2,500 genes to estimate the tumor-

specific mRNA expression proportion. 

In summary, our proposed profile likelihood-based gene selection approach was shown to substantially 

improve the tumor-specific mRNA expression proportions estimation by ranking the identifiability of genes 

in the DeMixT model. 

 

Virtual spike-ins to improve identifiability 

In the studies of simulation, we further observed that the tumor-specific mRNA expression proportions 

estimation is unbiased only when the true proportions are centered around 0.5. When the true proportions 

are skewed towards the high end (i.e., median above 0.5), which is expected to occur frequently in real 

data (tumor samples with a low percentage of tumor cells are already discarded), the DeMixT estimation 

procedure, after careful gene selection, still underestimates the high proportions (SI Figure 5A).  

To resolve this issue, we introduce a step to enforce the center of true proportions to be around 0.5. We 

will simulate additional “tumor” samples, i.e. spike-ins, with close to 0% of tumor-specific mRNA 

 
Supplementary Figure 6. Optimization of the number of genes selected for DeMixT_GS to 
improve mRNA expression proportions estimation. (A) Scatter plot of true versus estimated 
tumor-specific transcript proportions using DeMixT_GS method with different numbers of top-ranking 
genes with the smallest gene selection score. (B) Root Mean Square Error (RMSE) was calculated 
for each simulation scenario. 
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expression proportions, so that there are roughly the same number of samples with tumor proportions 

below and above 50%, i.e., SP + Q"i Q	ρi<0.5#Q @ |{i | ρi≥0.5}|, where SP represents the number of spike-

ins, ρi represent tumor purity of sample i, and the | ∙ | represent cardinality of a set. For the cancer type 

whose median tumor purity is below 0.5, we set SP at 5. The spike-ins are generated based on gene 

expression profiles observed from the input data of normal reference samples. We conducted a 

simulation study to assess the utility of spike-ins. We simulated 100 mixed samples and 100 normal 

reference samples with 8,000 genes based on the aforementioned simulation parameters with five 

replicates. Tumor-specific mRNA expression proportions were simulated from a normal distribution 

(mean = 0.55, SD = 0.2) and truncated at endpoints of 0.05 and 0.95. μNg, μTg ∼ N37,1.524  and 

σNg,σTg ∼ U(0.1, 0.8). The expression level of spike-ins is denoted as Pjg. We simulate Pjg ~ LN ;μ0Ng, 

σ*Ng
2 <, for gene g = 1,2,…,G and sample j = 1,2,…,SP. The spike-ins were then combined with mixed 

tumor samples. We ran DeMixT on the combined samples while fixing the mRNA expression proportions 

for the spike-ins at 0.01. We found adding spike-ins can reduce biases in the estimation of tumor-specific 

mRNA expression proportions (SI Figure 7A). Such utility from adding spike-ins was made by lowering 

gene selection scores in the top-ranking genes (SI Figure 7B).  

 

  

 
SI Figure 7. Adding spike-ins reduces systematic bias of estimated tumor-specific mRNA 
expression proportions. (A) Scatter plot of true versus estimated tumor-specific mRNA proportions 
using DeMixT_GS method under different strategies of adding spike-ins. (B) Distribution of gene 
selection score to top 2,000 genes under different strategies of adding spike-ins, where the x-axis 
represents the sorted genes by the gene selection score from low to high and the y-axis represents 
the estimated gene selection score for the corresponding genes. 
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2.3. Tumor-specific total mRNA expression in patient samples 

2.3.1. Datasets  

The Cancer Genome Atlas (TCGA) data 
Publicly available transcriptome profiling HT-seq raw read counts from 7,054 tumor samples from 15 

cancer types in TCGA (breast adenocarcinoma, bladder urothelial carcinoma, colorectal cancer (colon 

adenocarcinoma + rectum adenocarcinoma), head and neck squamous cell carcinoma, kidney 

chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver 

hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, pancreatic 

adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma, uterine 

corpus endometrial carcinoma) were downloaded from the GDC data portal (v14.0)27 

(https://portal.gdc.cancer.gov/). They were generated through the standard RNAseq analysis pipeline 

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/) by aligning 

reads to the GRCh38 reference genome and then by quantifying the mapped reads. We downloaded the 

clinical annotation data including overall survival (OS), progression free interval (PFI), pathologic stage, 

age, and sex of patients across 15 cancer types from the GDC data portal (https://gdc.cancer.gov/about-

data/publications/pancanatlas). Somatic mutation data of the 15 cancer types were downloaded from the 

re-annotated mutation annotation file (MAF) format at the GDC (https://gdc.cancer.gov/about-

data/publications/mc3-2017). ABSOLUTE tumor purity and ploidy data were downloaded from Aran et 

al28.  ASCAT tumor purity and ploidy data were downloaded from Alexandrov et al29. Driver mutation and 

indels annotation were downloaded from the TCGA pan-cancer driver mutation database: 

http://intogen.org/download version 2016.530. NarrowPeak format ATAC-seq data for TCGA samples was 

obtained from Corces et al31. NarrowPeak files were annotated using the R package chipseeker32. Peaks 

outside of promoter regions (-2kb to 1kb of transcription start sites) were excluded. For breast 

adenocarcinoma, molecular subtype, triple negative status, status of hormone receptor, were obtained 

from Koboldt et33. The copy number alternation status of MYC and PVT1 were called by GISTIC34 using 

the SNP6 DNA microarray data from breast carcinoma in TCGA, were obtained from cBioPortal 

(https://www.cbioportal.org/)35. For prostate adenocarcinoma, the Gleason score was obtained from 

Abeshouse et al36. For head and neck squamous cell carcinoma, the HPV status was obtained from 

Lawrence et al37. In renal papillary carcinoma, the molecular subtypes was obtained from Linehan et al38. 

A CONSORT diagram is provided for the dataset (Fig. S7A,B). 

International Cancer Genome Consortium – Early Onset Prostate Cancer (ICGC-EOPC) data39 

Matched RNAseq and whole genome sequencing (WGS) data from 121 tumor samples and 9 adjacent 

normal samples from 96 patients, the corresponding clinical data including biochemical recurrence (BCR), 

and Gleason scores were downloaded from an early-onset (treatment age < 55) prostate cancer patient 
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cohort39. Among these 96 patients, there were 13 with a Gleason score = 3+3, 58 with a Gleason score 

= 3+4, 11 with a Gleason score = 4+3, 1 with a Gleason score = 4+4, 6 with a Gleason Score = 4+5, 6 

with a Gleason score = 5+4, and 1 with a Gleason Score = 5+5. 

For the early-onset prostate adenocarcinoma dataset, the gene expression read counts from the ultra-

deep total RNAseq and relevant clinical data of 121 tumors samples from 96 patients were obtained from 

Gerhauser et al 39. RNA reads were aligned to the human GRCh37 reference genome using BWA and 

SAMtools. Uniquely mapped reads were annotated using Ensembl v62. DNA library preparation and 

WGS was performed on Illumina sequencers40 with a median insert size of 310 bp (sd 57 bp) and a 

median WGS coverage of 61-fold for tumor and 38-fold for germline control samples. WGS data was 

aligned to the GRCh37 reference genome using BWA-MEM41 according to Pan Cancer Analysis of Whole 

Genomes (PCAWG) protocol (https://doi.org/10.1101/161638). The clinical data contain the biochemical 

relapse (BCR) interval, Gleason score, pathologic stage, and mutation clonal status. DNAseq-based 

purity and ploidy estimates for 113 samples from 89 patients were determined by Sequenza42. A 

CONSORT diagram is provided for the dataset (Fig. S7C). 

TRAcking Cancer Evolution through therapy (Rx) (TRACERx) data43,44 

For this cohort of 100 patients, multi-region RNAseq and WES data were sequenced from the same 

tissue45. The WES data were aligned to the human hg19 reference genome by the Ion Torrent Torrent 

Suite software. SAMtools mpileup (0.1.19)46 was used to locate non-reference positions in tumor and 

germline samples. A combination of picard tools (1.107), GATK (2.8.1) and FastQC (0.10.1) 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) were used to perform quality control. RNA 

data were generated using a modification of the AllPrep kit (Qiagen) and assessed by TapeStation 

(Agilent Technologies). The STAR package47 (version 2.5.2b) was used to perform alignment and map 

reads to the human hg19 reference genome. 

We downloaded clinical information including information of whether recurrence occurred, progression 

free survival (time to recurrence in the paper43) and per region segmented copy number data of the 100 

patients from Jamal-Hanjani  et al.43. DNAseq-based purity and ploidy estimates for 327 tumor samples 

from the 100 patients were determined by Sequenza42. RNAseq-based tumor-specific mRNA proportions 

for 159 tumor samples from 64 patients were estimated by DeMixT19. The other 168 samples with only 

DNAseq data and no matching RNAseq data were removed. In the end, we focus on 30 patients with 

multi-region samples (m = 94) and 52 patents with both single and multi-region samples (m = 116) for 

the downstream analysis. A CONSORT diagram is provided for this dataset to demonstrate the filtering 

steps (Fig. S7D). 

Genotype-Tissue Expression (GTEx) data48 
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Publicly available transcriptome profiling raw read counts data which is based on the Illumina TruSeq 

RNA sequencing platform from normal prostate samples, normal thyroid samples, and normal lung 

samples were downloaded from the GTEx data portal (https://www.gtexportal.org/home). RNAseq data 

were aligned to the human GRCh37 reference genome using Tophat (v1.4.1)49. Gencode (v12)50 was 

used as a transcriptome model for the alignment as well as all gene and isoform quantifications. Of all 

the samples provided by GTEx, we selected 42 normal prostate samples, 67 normal thyroid samples, 

and 20 normal lung samples without significant pathology in the corresponding tissue types. 
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2.3.2. TCGA  

 

Data pre-processing  
To estimate the tumor-specific mRNA expression proportions (π) for each sample, we used the two-

component mode of DeMixT for 15 TCGA cancer types where sufficient normal reference samples were 

available (the minimum number of normal samples is seven). For each cancer type, the following quality 

control was performed on both the tumor and normal samples to remove any suspicious samples. For 

each gene, we first used the Wilcoxon rank-sum test to test for differential expression between normal 

and tumor samples. The top 1,000 genes with the smallest P values were selected as the feature genes. 

The first two principal component scores of the feature genes were extracted for hierarchical clustering 

using Euclidean distance and the Ward method. We separated samples into two groups using the “cutree” 

function. In general, one cluster contained tumor samples and the other contained normal samples. Any 

samples that were clustered outside of its general group label, e.g., tumor samples clustered within the 

normal sample cluster or normal samples in the tumor cluster, were considered as suspicious samples 

and filtered out (SI Figure 8).  

SI Table 5 summarizes the selected sample numbers for the 15 cancer types before and after quality 

control. Scale normalization at the seventy-fifth percentile based on the DSS package51 was then applied 

to the post quality-control tumor and normal samples. Next, we applied two criteria to filter out spurious 

 
SI Figure 8. Hierarchical clustering of read count data from adjacent normal and mixed tumor 
samples for breast and prostate adenocarcinoma in TCGA as examples. Dendrograms of the 
hierarchical clustering results based on the top 1,000 differentially expressed feature genes for breast 
carcinoma (A) and prostate adenocarcinoma (B), respectively. Circles represent adjacent normal 
samples and dots represent mixed tumor samples. 
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genes. First, we filtered out genes with a zero count in either the mixed tumor or normal samples. Second, 

we filtered out genes with a large variance (σ*Ng
2  > 0.6) in the normal reference samples. Here, the 

standard deviation of a gene is calculated as σ*Ng
2  = sd(log23R.g4), where R.g is the normalized expression 

of gene g for normal reference samples. 

For each cancer type, we applied the DeMixT algorithm (DeMixT_DE) to the quality-controlled expression 

data together with simulated spike-ins as input data, to generate initial tumor-specific mRNA expression 

proportions π0. We used ASCAT estimated tumor purities as an informed prior to calculate a reasonable 

number for SP . With other datasets in general, we set SP= max(50, 0.3*Sample size),	as the default 

option of the DeMixT_GS function. Results from the TCGA datasets across 15 cancer types were largely 

consistent with small to moderate changes from with or without spike-ins (SI Figure 9).  

We then used these π0
S 𝑠	as initial values in the profile likelihood calculation on all genes to calculate gene 

selection scores. We ranked all genes based on their gene selection scores from the smallest to the 

largest. Based on a simulation study (SI Figure 7) and observed distributions of gene selection scores in 

real data, we chose the top 1,500 or 2,500 genes to ensure accuracy in proportion estimation (SI Figure 
6B). Within each cancer type, we used the spike-ins as benchmarking samples and evaluated the RMSE 

of the estimated proportions of the spike-ins with either the top 1,500 or top 2,500 genes (π*1500(Sp) and 

SI Table 5. Summary of sample sizes for 15 TCGA cancer types. 
Cancer type Original number of 

normal samples 

Original number 
of tumor 
samples 

Number of normal 
samples after quality 

control 

Number of tumor 
samples after quality 

control 

Bladder urothelial carcinoma 19 414 17 385 

Breast carcinoma 113 1101 98 1032 

Colorectal carcinoma 51 633 43 598 

Head & neck squamous cell carcinoma 44 500 31 494 

Renal chromophobe 24 65 23 64 

Renal clear cell carcinoma 72 538 66 495 

Renal papillary carcinoma 32 288 26 276 

Hepatocellular carcinoma 50 371 50 362 

Lung adenocarcinoma 59 532 57 446 

Lung squamous cell carcinoma 49 502 48 486 

Pancreatic adenocarcinoma 4 177 7* 142 

Prostate adenocarcinoma 52 498 47 295 

Stomach adenocarcinoma 32 375 32 299 

Thyroid papillary carcinoma 57 502 55 418 

Endometrial carcinoma 35 549 26 524 

 
*Pancreatic adenocarcinoma is the only cancer type with increased normal samples, for pseudo-normal samples are added, which are tumor samples of stromal 
tissue with scant tumor presence. 
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π*2500(Sp)). If RMSE(π*1500(Sp)-0)<RMSE(π*2500(Sp)-0), we used the results of the top 1,500 genes, i.e., 

the tumor proportions π=π1500; otherwise, π=π2500. The finalized tumor proportions are shown in Fig. 
S2A. In general, the RMSEs were small (median = 0.02 across 15 cancer types), and the two sets of 

tumor proportions, π*1500 and π*2500 , were consistent within each cancer type.  

  

 
SI Figure 9. Comparison of tumor-specific mRNA expression proportions with and without spike-
ins across 15 TCGA cancer types. A scatter plot of estimated tumor-specific mRNA expression 
proportions using the DeMixT_GS method for 5,031 TCGA samples across 15 cancer types with and 
without spike-ins. The x axis represents the estimated tumor-specific transcript proportions without 
spike-ins and the y-axis represents the estimated tumor-specific transcript proportions with spike-ins. 
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2.3.2.1. Consensus TmS estimation  

For DNA-based deconvolution methods such as ASCAT and ABSOLUTE, there could be multiple tumor 

purity ρ and ploidy y pairs that have similar likelihoods. Consequently, the estimated tumor purity ρ and 

ploidy y for some samples would be ambiguous without a unique solution. To be specific, both of ASCAT 

and ABSOLUTE can accurately estimate the product of purity and ploidy ρy; however, they sometimes 

lack power to identify ρ and y separately, as they use BAF (B allele frequency) of germline SNPs, which 

only measures the total proportions of alternative allele. TmS is derived from estimates of tumor purity 

and ploidy via their product, hence automatically deals with any ambiguity in tumor purity and ploidy 

estimation, ensuring the robustness of the TmS calculation. We validated this point by showing that 

among 20% of all TCGA samples, the agreement between TmS values calculated from ASCAT and 

ABSOLUTE was substantially improved, as compared to those for the ploidy or purity individually (Fig. 
S2D-F). To calculate one final set of TmS values for a maximum number of samples, we took a consensus 

strategy. We first calculated TmS values for 5,295 TCGA samples with matched tumor-specific mRNA 

expression proportions and ABSOLUTE or ASCAT derived tumor purity and ploidy estimates. We then 

fitted a linear regression model on log2-transformed TmS calculated by ASCAT using log2-transformed 

TmS calculated by ABSOLUTE as a predictor variable. We removed samples with a Cook’s distance ≥ 

4/n (n is the number of total samples) (Fig. S2F), and for the remaining samples, which were the majority, 

we calculated the final TmS as: TmS=2(log2(TmSASCAT)+log2(TmSABSOLUTE))/2. These TmS estimates were used 

throughout the paper (SI Table 6). A CONSROT diagram demonstrates the sample exclusion for TmS in 

TCGA (Fig. S7A). 
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SI Table 6. Summary of sample sizes for 15 TCGA cancer types before and after consensus 
TmS estimation. 

Cancer type 
Number of samples 
before consensus 

analysis 

Number of samples 
after consensus 

analysis 

Number of 
samples 
removed 

Bladder urothelial carcinoma 350 328 22 

Breast carcinoma 932 916 16 

Colorectal carcinoma 499 490 9 

Head & neck squamous cell 
carcinoma 449 443 6 

Renal chromophobe 59 59 0 

Renal clear cell carcinoma 299 295 4 

Renal papillary carcinoma 192 169 23 

Hepatocellular carcinoma 333 317 16 

Lung adenocarcinoma 399 395 4 

Lung squamous cell carcinoma 440 431 9 

Pancreatic adenocarcinoma 105 101 4 

Prostate adenocarcinoma 266 259 7 

Stomach adenocarcinoma 272 265 7 

Thyroid papillary carcinoma 297 202 95 

Endometrial carcinoma 403 361 42 
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2.3.2.2. Global transcription signature genes 

 We found the genomic locations of the selected genes covered 22 autosomes and the X chromosome 

(Fig. S3A) across 15 cancer types, which is expected for an unbiased gene set to measure global gene 

expression.  

For each cancer type, as well as consistently across 15 cancer types, we found that 54-68% (mean = 

62%) of global transcription signature genes are housekeeping genes52 or essential genes53, and 3.5-

7.2% (mean = 5.4%) are MYC targets genes (Fig. S3B). The common pan-cancer essential genes are 

derived from a total of 147 cancer cell lines and 16,733 genes that were screened independently by both 

the Sanger and Broad institutes53. We observed similar proportions of each gene group among the top 

100 genes in terms of gene selection scores for each cancer type (SI Figure 10B).  

We conducted gene set enrichment analyses on Hallmark pathways54 and KEGG pathways54 for all the 

available genes with their gene selection scores calculated by DeMixT using GSEA54 and g:Profiler55. For 

each cancer type, the genes were ranked according to their gene selection scores from the smallest to 

the largest and then fed into GSEA in the “pre-ranked” mode and g:Profiler. For GSEA, we adopted 

permutation tests (1,000 times) to generate a normalized enrichment score (NES) and an adjusted P 

value for each candidate pathway. Specifically, for each pathway, a running-sum statistic was calculated 

by walking down the ranked list of the genes from top to bottom. The enrichment score (ES) is the 

maximum deviation from zero for the running-sum statistic. Then the normalized enrichment score is 

calculated as NES = ES/mean(ES’s of all permutations). A gene set permutation which randomly permute 

gene labels was then implemented to estimate the null distribution of the NES54. The nominal P values 

and P values adjusted for multiple testing for pathways are estimated by comparing observed NES 

against the null distribution. g:Profiler detects statistically significantly enriched pathway for the given 

gene list by implementing hypergeometric tests. This technique starts from the top-ranked genes to the 

bottom-ranked genes in the list and identifies the optimal subset where the hypergeometric statistic is the 

largest. For each candidate pathway, a nominal P values is calculated by the hypergeometric test, and 

adjusted for multiple testing by the Benjamini-Hochberg method. We combined results from GSEA and 

g:Profiler: only the pathways with adjusted P value < 0.05 from both GSEA and g:Profiler were considered 

as significantly enriched and shown in Fig. S3C,D. As a result, the minimum NES of significantly enriched 

Hallmark pathways and KEGG pathways are above 1.74 and 1.70, respectively.  

We also checked the percent overlap between individual signature gene sets across cancer types. A total 

of 114 genes were repeatedly selected in at least 13 out of 15 cancer types (SI Figure 10C). We used 

GeneMANIA56 to evaluate the functional relationship of these genes and found they encode for proteins 

related to mRNA processing, namely binding and splicing mRNA, which is consistent with findings from 

KEGG pathways (SI Figure 10D). Seven genes (CPSF3, EIF2B1, LAS1L, ELAVL1, SMARCD1, UBE2Z 
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and WDR46) were consistently selected within the transcriptional signature genes across all 15 TCGA 

cancer types. Endonuclease activity of CPSF3 is associated with pre-mRNA processing. EIF2B1 is a 

translation factor. LAS1L is associated with ribosome biogenesis. ELAVL1 is associated with RNA binding. 

SMARCD1 belongs to the SWI/SNF complex. UBE2Z is associated with ubiquitin ligase. WDR46 is 

associated with ribosomal RNA processing. In summary, the seven genes encode for proteins related to 

fundamental processes previously linked to cancer such as RNA splicing, ribosomal RNA processing, 

chromatin remodeling, and protein translation. 

We further evaluated the chromatin accessibility of signature genes using ATAC-seq data TCGA 

samples31. For each sample, peak scores (-log10(p-value)) were scaled by dividing each individual peak 

score by the sum of all of the peak scores in the given sample divided by 1 million. These scaling values 

ranged from 1.4 to 67.4 across cancer types (SI Figure 10E). The 75th percentile of normalized peak 

scores across all peaks within the promoter region was selected for each gene as a representative peak 

score, and genes with normalized peak scores less than 1 were excluded, with 7.1% to 20.4% of genes 

excluded across cancer types (SI Figure 10E). For each sample, we calculated the mean of the peak 

scores of all signature genes. A null distribution of mean peak scores was generated by calculating means 

from 1,000 random subsets of genes with the matching number of the signature genes from all 

genes. P values assessing the significance of the deviation of the observed mean score for signature 

genes from the null distribution were calculated as the percentile of the permuted means being greater 

than or equal to the observed mean. Within cancer types, P values were adjusted for multiple testing 

using the Benjamini-Hochberg procedure. A total of 259 (84%) out of 310 samples across 13 cancer 

types presented a significant difference in peak score >1 (10 fold difference in P values between signature 

and non-signature genes), and 121 samples (40%) showing a significance difference in peak score >3 

(1,000 fold change in P values between signature and non-signature genes) (Fig. S3E), indicating higher 

chromatin accessibility in the global transcription signature genes. 

In summary, we reasoned that the global transcription signature genes provided reasonable genome-

wide coverage and were associated with transcriptional regulation and mRNA processing across cancer 

types. As such, the global transcription signature provided representative gene sets to track global gene 

expression across cancer types. 



 31 

 
Supplementary Figure 10. Validation of gene selection to represent a global transcription 
signature across cancer types. (A) Ordered gene selection scores of all genes from low to high 
across 15 cancer types. The black solid dots represent the cutoffs for gene selection in the 
corresponding cancer type. (B) Proportions of the top 100 genes in five gene categories across 15 
cancer types. (C) Histogram of the numbers of genes selected in five gene categories as they overlap 
across 15 cancer types. The y axis represents the total number of genes and the x axis represents how 
many times the same genes were selected across cancer types. (D) The association network and 
enrichment statistics of the top 114 repeatedly selected genes using GeneMANIA. Top seven gene 
functional enriched pathways are shown on the nodes with different colors. Seven types of gene 
interactions, i.e., co-expression, physical interaction, co-localization, predicted, pathway, shared 
protein domains, and genetic interactions, are shown on the edges with different colors. (E) Boxplots 
showing sums of peak scores across samples / 1 million (yellow) and percentages of genes removed 
per sample (white). The sums of peak scores were used as scaling factors to normalize the ATAC-seq 
data. The genes with normalized scores <1 were removed from downstream analysis. For A,B,E, all 15 
TCGA cancer types are annotated using colored squares as shown in the legend of A. 
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2.3.2.3. Validation using scRNAseq data. 

Using the aforementioned scRNAseq data from four cancer types (Section 1.2), we found the glonal 

transcription signature genes were consistently expressed at higher levels in tumor cells than in non-

tumor cells in all patient samples (Fig. S3F,G). Wilcoxon rank-sum tests were used to compare the 

distribution of mean UMI counts of the global transcription signature genes per cell in tumor cells to that 

in non-tumor cells within each patient (Fig. S3F). The same tests were used to compare the distribution 

of mean UMI counts of the global transcription signature genes per cell to that of the non-global 

transcription signature genes per tumor cell within each patient (Fig. S3G). The P values from Wilcoxon 

rank-sum tests were adjusted using the Benjamini-Hochberg correction across the nine patients. 

Furthermore, within each cancer type, the signature genes were significantly highly expressed in patient 

samples with worse prognoses (Fig. S3H). Kruskal-Wallis tests were used to compare the ratio of mean 

UMI counts of the global transcription signature genes per cell of tumor cells to that of non-tumor cells 

between patients within each cancer type. The P values from the Kruskal-Wallis tests were adjusted for 

multiple testing using the Benjamini-Hochberg correction across the four cancer types. We also 

calculated the correlations between the total UMI counts of the signature genes and the total UMI counts 

of all genes for each tumor cell. The Spearman correlation coefficients (r) are between 0.92-0.98 across 

the nine patients (SI Figure 11). Therefore, we posit the global transcription signature genes represented 

important gene pathways in global gene expression regulation and tumor progression. 

We further pooled scRNAseq data to form pseudo-bulk samples. We calculated the ratio of the mean 

total UMI counts of tumor cells to that of the non-tumor cells for each of the nine scRNAseq patient 

samples. This ratio represents the ploidy-unadjusted TmS (defined in Section 2.1.1) in pseudo-bulk data. 

Within each patient sample, we also constructed the 95% confidence interval for the ratio using 

bootstrapping with 1,000 repetitions. For each bootstrap repetition, we sampled the same number of 

tumor cells as the original with replacement from the corresponding patient, and kept all non-tumor cells. 

The results are shown in Fig. S1C. 
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SI Figure 11. Correlations between the total UMI counts of the signature genes and the total 
UMI counts of all genes. Scatter plots of correlations measured for each tumor cell. The Spearman 
correlation coefficients (r) is shown on each panel. 
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2.3.2.4. Statistical analysis  

Association with clinical variables 
In breast carcinoma, the association of TmS with clinical variables including molecular subtype (Luminal 

A, Luminal B, Her2, and Basal), triple negative status, status of hormone receptor (ER and PR), and the 

copy number alternation status of MYC and PVT1, were tested by using all subjects who had both TmS 

and clinical variables. In prostate adenocarcinoma, the association of TmS and the Gleason score was 

tested by using all subjects who had both TmS and Gleason score. In head and neck squamous cell 

carcinoma, the association of TmS and HPV status was tested by using all subjects who had both TmS 

and HPV status. In renal papillary carcinoma, the association of TmS and molecular subtypes was tested 

by using all subjects who had both TmS and molecular subtypes. Kruskal-Wallis tests were used to 

compare the distribution of TmS between subgroups defined by each clinical variable. The P values from 

Kruskal-Wallis tests for the clinical variables were adjusted using Benjamini-Hochberg correction across 

all available clinical variables within the corresponding cancer type (Fig. 3A-D). 

Association with survival outcomes 
For the TCGA datasets, we used clinical data that passed at least one of the three quality control steps 

introduced from the TCGA pan-cancer clinical paper57. We used two survival outcomes, the overall 

survival (OS) and the progression-free interval (PFI). To ensure sufficient sample size in each category, 

we combined pathologic stages into two stage categories: early stage and advanced stage. The early 

stage includes Stage I, Stage IA, Stage IB, Stage IC, Stage II, Stage IIA, Stage IIB, and Stage IIC, while 

the advanced stage consists of Stage III, Stage IIIA, Stage IIIB, Stage IIIC, Stage IV, Stage IVA, Stage 

IVB, and Stage IVC. With prostate cancer, we used Gleason score (Gleason Score = 7 versus Gleason 

Score = 8+) instead of early and advanced stage. The CONSROT diagram that demonstrates the sample 

exclusion for survival analysis in TCGA is shown in Fig. S7B.  

Due to the potential nonlinear relationship between TmS and survival outcomes, we used a recursive 

partitioning survival tree model, rpart58, to find an optimized TmS cutoff that best separated differentiating 

survival outcomes within each of the two stages as defined above in each cancer type. The splitting 

criteria were Gini index, and the maximum tree depth was set to 2. The TmS cutoffs of early/advanced 

stage across cancers are shown in SI Table 7. For each cancer type, samples are divided by both TmS 

and pathological stage into four groups: (1) Early stage, High TmS, (2) Early stage, Low TmS, (3) 

Advanced stage, High TmS, and (4) Advanced stage, Low TmS. The Kaplan-Meier (KM) survival curves 

of overall survival and progression free interval for the corresponding groups defined by TmS and stage 

are shown in Fig. 4 and Fig. S4. Log-rank tests between high and low TmS groups within early or 

advanced pathological stages were performed. We then fitted multivariate Cox Proportional Hazard 

models with age, TmS, stage, and the interaction term of TmS and Stage (TmS x Stage) as predictors 
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for overall survival and progression free interval analysis for each cancer type (Table S3). We also divided 

samples for 14 cancer types combined (endometrial carcinoma was excluded due to missing pathological 

stage information) into four groups using the rpart (Fig. 4A). In addition, we applied the rpart to find an 

optimized TmS cutoff that best separated differentiating survival outcomes of 15 cancer types combined 

regardless of pathological stage (Fig. 4A). The splitting criteria were Gini index, and the maximum tree 

depth was set to 1.  

TmS, ploidy, and ploidy-unadjusted TmS 

We also compared effects of the three metrics that follow: TmS x ploidy = ploidy-unadjusted TmS values 

(SI Figure 3), in four cancer types: head and neck squamous cell carcinoma, lung squamous cell 

carcinoma, renal clear cell carcinoma, and ER-positive breast carcinoma. The distributions of TmS and 

ploidy estimates were independent across cancer types (SI Figure 12A). We then applied rpart to find 

optimized cutoffs for ploidy and ploidy-unadjusted TmS that best separate differentiating survival 

outcomes within each pathologic stage of each cancer type. Ploidy alone was not able to effectively 

distinguish survival outcomes (SI Figure 12B). Ploidy-unadjusted TmS scores roughly recapitulated 

TmS-defined survival groups, but to a lesser extent (SI Figure 12C). Consequently, the refined 

SI Table 7. Summary of TmS cutoffs for early/advanced stage across cancers. 

Cancer type 

Overall survival Progression free interval 

Early stage Advanced 
stage 

Early stage 
(Gleason 

score=7 for 
prostate cancers) 

Advanced stage 
(Gleason 

score>=8 for 
prostate cancers) 

Pan-Cancer(14 cancer types) 1.10 1.72 1.65 1.72 

Bladder urothelial carcinoma 0.15 NA 0.15 0.60 
Triple-negative breast 

carcinoma 4.11 1.80 3.02 1.80 

ER-positive breast carcinoma 2.14 NA 3.61 3.24 

Colorectal carcinoma 1.94 4.52 NA 4.14 

Head & neck squamous cell 
carcinoma (HPV-) 1.00 0.26 0.14 0.26 

Renal chromophobe 2.21 3.95 1.79 0.74 

Renal clear cell carcinoma 0.54 1.78 0.33 1.67 

Renal papillary carcinoma 0.61 0.71 0.87 0.64 

Hepatocellular carcinoma 0.16 1.81 NA 0.64 

Lung adenocarcinoma 0.81 0.97 0.51 8.66 

Lung squamous cell carcinoma 6.67 2.08 5.67 6.37 

Pancreatic adenocarcinoma 1.83 NA 1.83 NA 

Stomach adenocarcinoma 0.40 0.15 0.28 0.31 

Thyroid papillary carcinoma NA NA 0.57 1.25 

Prostate adenocarcinoma NA NA 0.50 0.48 

Early-onset prostate 
adenocarcinoma (ICGC-EOPC) NA NA 1.25 0.84 
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prognostication by TmS over stage was more pronounced for TmS as compared to TmS scores without 

ploidy adjustment across cancer types. 

 
 

 
Supplementary Figure 12. Prognostication using ploidy or ploidy-unadjusted TmS on 
pathological stages in four cancer types. (A) Scatter plot of TmS (y axis) versus tumor ploidy (x 
axis) for samples from head and neck squamous cell carcinoma (HPV negative), lung squamous cell 
carcinoma, renal clear cell carcinoma, and ER-positive breast carcinoma cohorts. The samples were 
grouped into high versus low TmS within early or advanced pathological stages, with different groups 
shown in different colors. (B) KM survival curves of overall survival or progression free interval in four 
cancer types over patient groups defined by ploidy and stage. We grouped patients into high versus 
low ploidy based on a cutoff of 2.5 within early or advanced pathological stage. (C) KM survival curves 
of overall survival or progression free interval in four cancer types over patient groups defined by 
ploidy-unadjusted TmS and stage. P values of log-rank tests between high and low TmS groups within 
each of the three pairs of patient groups are shown with matching colors and are indicated by asterisk 
(* P < 0.05, ** < 0.01, *** < 0.001). 
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Association with genomic dysregulations and hypoxia 
Tumor mutation burden (TMB) was calculated by counting the total number of all somatic mutations 

based on the consensus mutations calls (MC3)59. Chromosomal Instability (CIN) scores were calculated 

as the ploidy-adjusted percent of genome with an aberrant copy number state. ASCAT was used to 

calculate allele-specific copy numbers14. For samples present in both TCGA and PCAWG, the consensus 

copy number was derived from published results60. Tumor samples that had undergone WGD were 

identified based on homologous copy-number information13. Hypoxia scores were generated as 

described previously61,62 using the Buffa Signature63, which have been previously shown to be well-

correlated with direct and transcriptional measures of hypoxia64. Signature scoring was done on Level 3 

mRNA abundance data (2016-01-28 data release) as a single cohort of 7,791 patients to ensure 

comparability of scores across cancer types. For each gene in the signature, patients were median 

dichotomized. Patients with RNA abundance above the median were assigned a gene-score of +1, while 

those with RNA abundance below the median were assigned a gene-score of -1. The gene-scores for all 

signature genes were summed to generate a per-patient hypoxia-score. High values of this score suggest 

more hypoxia (lower levels of oxygen), while low values suggest less hypoxia (higher levels of oxygen).  

We calculated the Spearman correlation coefficients between TmS, and hypoxia scores/TMB/CIN scores 

for each cancer type (SI Table 8). Within each cancer type, tumor samples were evenly split into high 

SI Table 8. Spearman correlation coefficients between TmS and hypoxia scores/TMB/CIN scores 
across 15 cancer types. 

Cancer type 
Hypoxia 

score TMB CIN 

Breast carcinoma 0.65 0.35 0.46 

Lung adenocarcinoma 0.61 0.3 0.23 

Thyroid papillary carcinoma 0.44 0.066 0.1 

Pancreatic adenocarcinoma 0.43 0.082 0.1 

Renal clear cell carcinoma 0.41 0.17 0.35 

Lung squamous cell carcinoma 0.38 0.04 0.051 

Bladder urothelial carcinoma 0.35 0.21 0.24 

Renal papillary carcinoma 0.35 -0.21 0.18 

Colorectal carcinoma 0.3 -0.021 0.056 

Prostate adenocarcinoma 0.26 0.072 0.3 

Endometrial carcinoma 0.25 -0.062 0.16 

Hepatocellular carcinoma 0.2 -0.066 -0.095 

Head & neck squamous cell carcinoma 
(HPV+) 0.17 0.32 0.27 

Head & neck squamous cell carcinoma 
(HPV-) -0.08 -0.017 -0.081 

Stomach adenocarcinoma NA -0.073 -0.15 

Renal Chromophobe NA 0.13 0.23 
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TMB/CIN score/WGD/Hypoxia score or low TMB/CIN score/WGD/hypoxia score, based on the median 

value of TMB/CIN score/WGD/Hypoxia score, respectively. The Wilcoxon rank-sum test was then used 

to compare the distributions of TmS estimates between tumor samples with high and low TMB/CIN 

score/Hypoxia score (Fig. S5A,B,D). 

We calculated median value of TMB/CIN score/Hypoxia score of samples from groups defined by TmS 

and stage in 14 cancer types (Fig. 5D). The Kruskal-Wallis test was used to test the distribution of the 

TMB/CIN score/Hypoxia score across these groups. The null hypothesis was that there is no difference 

of TMB/CIN score/Hypoxia score for each group defined by TmS and stage. The P values from the 

Kruskal-Wallis tests were adjusted for multiple testing using Benjamini-Hochberg correction across all 

cancer types.  

Association with somatic SNVs and indels 
Driver mutation annotation (including nonsense, missense and splice-site SNVs and indels) was obtained 

from a TCGA pan-cancer driver mutation database30. For each cancer type, we considered a gene as a 

candidate gene, if there were at least 10 samples containing driver mutations in that gene. For any given 

candidate gene, individuals were labelled as “Driver Mutant” if the tumor sample carried at least one 

driver mutations in that candidate gene or “WT” if no SNVs or indels were identified (Fig. 5B). The 

mutation types of TP53 driver mutations are shown in the SI Table 9. We applied a Wilcoxon rank-sum 

test to each candidate gene to compare the distributions of TmS of the Driver Mutant and WT samples. 

The P values of each gene was adjusted for multiple testing using Benjamini-Hochberg correction across 

all candidate genes within the corresponding cancer type. We did not observe any significant association 

between TmS and driver mutation burden across 15 cancer types (SI Figure 13).  

 

 
SI Figure 13. Distribution of TmS with respect to driver mutation burden across 15 TCGA 
cancer types. For each sample, the total number of driver mutation were calculated and categorized 
by four categories: no driver mutation (“0”), only one driver mutation (“1”), only two driver mutations 
(“2”), and equal or more than three driver mutations (“3+”). 
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We also implemented an agnostic search over all genes for the 15 available cancer types to identify, 

among non-silent mutations (including SNVs and indels), those were significantly associated with TmS. 

We applied two statistical tests to evaluate the difference between the “mutant” and “wild type” samples. 

We first applied a Wilcoxon rank-sum test for each candidate gene to evaluate the difference between 

the distribution of TmS of the mutant and wild-type samples. We then fitted a linear regression model 

using log2-transformed TmS as the dependent variable and mutation status as a predictor: 

log2(TmS) = b0 + b1 log2(TMB)+ b2MUT, where TMB represents tumor mutation burden. MUT = 1 if the 

sample has at least one mutation in the candidate gene, and MUT = 0 otherwise. The P values were 

calculated by a t-test of the regression coefficient b2. The P values of each cancer-gene pair from both 

Wilcoxon rank-sum tests and t-tests were adjusted using Benjamini-Hochberg correction across all 

candidate genes within the corresponding cancer type. We also performed the same analysis for silent 

mutations and did not found any gene in any cancer type that is significantly different in terms of TmS 

based on the adjusted P values of Wilcoxon rank-sum test and t-test. 

 
  

SI Table 9. Distribution of TP53 driver somatic mutation type for 4 cancer types in Fig. 5B. 
Cancer type Driver mutation type Frequency 

Breast carcinoma Frame_Shift_Del 16 

Breast carcinoma Frame_Shift_Ins 10 

Breast carcinoma Missense_Mutation 140 

Breast carcinoma Nonsense_Mutation 30 

Breast carcinoma Splice_Site 19 

Lung adenocarcinoma Frame_Shift_Del 1 

Lung adenocarcinoma Frame_Shift_Ins 1 

Lung adenocarcinoma Missense_Mutation 42 

Lung adenocarcinoma Nonsense_Mutation 13 

Lung adenocarcinoma Splice_Site 7 

Prostate adenocarcinoma Frame_Shift_Del 3 

Prostate adenocarcinoma Missense_Mutation 15 

Prostate adenocarcinoma Splice_Site 1 

Stomach adenocarcinoma Frame_Shift_Del 5 

Stomach adenocarcinoma Missense_Mutation 15 

Stomach adenocarcinoma Nonsense_Mutation 7 

Stomach adenocarcinoma Splice_Site 1 
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2.3.3. ICGC-EOPC  

Data pre-processing  
For the ICGC-EOPC dataset, all 121 tumor samples from 96 patients passed the quality control as 

described in Section 2.3.2. We then used the 9 available adjacent normal samples from this cohort as 

the normal reference for DeMixT to estimate the tumor-specific mRNA expression proportions for the 

tumor samples. The RNAseq data came from 3 batches - batch 1 (17 patients, 25 samples), batch 2 (42 

patients, 52 samples) and batch 3 (37 patients, 44 samples). To evaluate and adjust for potential batch 

effects, we applied the DeMixT deconvolution pipeline in three scenarios: (1) ran all samples together; 

(2) ran each batch separately; (3) applied Combat65 to adjust for batch effect then ran all samples 

together. The Spearman correlation coefficients between in tumor-specific mRNA expression proportions 

obtained in scenarios (1) and (2), scenarios (1) and (3), scenarios (2) and (3) were 0.9, 0.8, 0.8, 

respectively. Given the consistency across the three scenarios and the robustness of DeMixT to select 

signature genes that can capture global transcription level across samples from subtypes, we presented 

results from scenario (1). 

To calculate TmS values, we additionally removed eight samples from seven patients without DNA based 

tumor purity and ploidy estimates based on Sequenza42. For six patients with multiple regions, we 

calculated the maximum TmS value across regions to represent patient-wise TmS value for downstream 

analysis, which was a summary strategy for multi-region samples consistent with our findings in the 

TRACERx dataset (see Section 2.3.4 for details). For survival analysis, an additional 10 patients were 

removed due to missing follow-up information of biochemical recurrence intervals. The CONSROT 

diagram that demonstrates the sample exclusion for TmS is shown below in Fig. S7C. 

Survival prediction model using TmS as a prognostic feature 
We applied the recursive partitioning survival tree model, rpart, to iteratively partition samples by TmS 

and the Gleason score (Gleason Score = 7 versus Gleason Score = 8+). The splitting criteria were Gini 

index, and the maximum tree depth was set to 2. The TmS cutoff of Gleason Score = 7/8+ groups are 

shown in SI Table 7. The summary statistics and percentage of disease progression risk of TmS and 

Gleason score defined groups comparing TCGA prostate adenocarcinoma and early-onset prostate 

adenocarcinoma are shown in Table S4A. We then fitted multivariate Cox Proportional Hazard models 

with age, TmS, stage, and the interaction term of TmS and Gleason score (TmS x Gleason score) as 

predictors for progression free interval analysis of TCGA prostate adenocarcinoma (Table S4B). 

To perform an external validation for the risk prediction model with TmS, we first built a multivariant Cox 

regression model with age, TmS, Gleason score and TmS x Gleason score as predictors based on the 

TCGA prostate adenocarcinoma data. We then used the trained Cox model to predict disease 

progression risk for patients from the EOPC study, taking only the observed covariate values from these 
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patients (Table S4B). We compared the prediction performances in these two studies between the “Age 

and Gleason score model”, which only contains covariates such as age and Gleason score, and the “Age 

and TmS x Gleason score model”, which contains covariates such as age, TmS, Gleason score and TmS 

x Gleason score. We evaluated the model’s discrimination ability using Uno’s estimator of cumulative 

AUC (iAUC)59 for survival outcomes and constructed 95% confidence intervals of iAUC by bootstrap 

resampling with 1,000 repetitions (Fig. S4G). To measure the calibration ability of the TmS model, we 

also calculated the Integrated Brier Score (IBS)66 for 5-year survival. The median iAUC, median IBS, and 

constructed 95% confidence intervals of d-iAUC and d-IBS are shown in Table S4B. For each bootstrap 

repetition, d-iAUC is defined as iAUC of “Age and TmS x Gleason score model” subtracted by the iAUC 

of the “Age and Gleason score model”. d-IBS is defined as IBS of “Age and TmS x Gleason score model” 

subtracted by the IBS of the “Age and Gleason score model”. The higher 5-year IBS for the external 

validation is mainly due to distinct baseline hazard functions between the testing and training datasets 

(SI Figure 14), as the hazard ratios for the TmS and Gleason score are similar for the two datasets 

(Table S4B).  

  

 
SI Figure 14. Baseline hazard functions of Cox models for the TCGA prostate adenocarcinoma 
and the ICGC-EOPC datasets. The baseline is calculated for samples with a Gleason score of 7 and 
low TmS in each dataset. 
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2.3.4. TRACERx  

This dataset does not contain RNAseq data from adjacent normal samples, which is required for running 

DeMixT. Instead, we used RNAseq data from normal lung samples which are available in the GTEx study. 

To mitigate the technical artefacts, such as batch effects, scale normalization was applied before 

deconvolution. The final tumor-specific mRNA expression proportions were estimated using the 

DeMixT_DE mode with the top 1,500 genes19. DNA-based tumor purity and ploidy were estimated by 

Sequenza42. 

 
Deconvolution using normal reference samples from GTEx 

 
SI Figure 15. DeMixT deconvolution using normal reference from different studies. (A) Scatter 
plot of DeMixT estimated tumor proportions for TCGA-prostate adenocarcinoma samples using GTEx 
normal (y axis) or TCGA normal (x axis) samples. (B) Scatter plot of DeMixT estimated tumor 
proportions of EOPC using EOPC normal (y axis) and TCGA normal (x axis) samples. (C) Scatter plot 
of DeMixT estimated tumor proportions of TCGA-thyroid papillary carcinoma samples using GTEx 
normal (y axis) and TCGA normal (x axis) samples. (D) Scatter plot of DeMixT estimated tumor 
proportion of TRACERx samples using GTEx normal (y axis) and TCGA normal (x axis) samples. 
Spearman correlation coefficients (r) between the two sets of tumor proportion estimates are shown 
on the top of each panel. 
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We conducted a series of experiments across cancer types to evaluate the impact of technical artefacts 

such as batch effects to the proportion estimation when using a different cohort. We first applied GTEx 

expression data48 from normal prostate samples as the normal reference to deconvolute the TCGA 

prostate cancer samples. Even though the overall performance of deconvolution was negatively impacted, 

the estimated proportions showed a reasonable correlation (Spearman correlation coefficient = 0.65) with 

those generated using TCGA normal prostate samples as the normal reference (SI Figure 15A). We 

repeated this experiment on the deconvolution of TCGA thyroid papillary carcinoma samples using 

RNAseq data from TCGA normal and GTEx normal thyroid samples as the reference, respectively. Again, 

the two sets of estimated tumor-specific mRNA expression proportions were highly correlated (Spearman 

correlation coefficient = 0.65) (SI Figure 15B). For the EOPC tumor samples where RNAseq data from 

9 normal samples were available, we observed a higher correlation (Spearman correlation coefficient = 

0.77) between the estimated tumor-specific mRNA expression proportions using EOPC normal and 

TCGA prostate normal samples on the deconvolution of EOPC tumor samples, respectively (SI Figure 
15C). Furthermore, for the deconvolution of TRACERx tumor samples, we also observed a high 

correlation (Spearman correlation coefficient = 0.83) between the estimated tumor proportions using 

TCGA and GTEx normal lung samples as the reference, respectively. (SI Figure 15D). 

We calculated TmS values for all regions (median number of regions per patient = 2, ranging from 1 to 

6) in the TRACERx dataset. The CONSORT diagram demonstrating the sample exclusion for TmS is 

shown below in Fig. S7D.  

Association of regional TmS with measures of chromosomal instability 

We calculated the percentage of copy number alteration burden per region, the percentage of subclonal 

copy number alteration per region, and the percentage of subclonal copy number alteration per patient. 

For each chromosomal segment i in tumor region k, we define the copy number alteration (gain and loss) 

event43 as an indicator function Iik, 

Iik= U 1 if α>log2(2.5/2) or α<log2(1.5/2)
0 otherwise

, 

where α= cnTotalik
Ploidyk

 and cnTotalik is the integer total copy number of this segment43. 

We then define the percentage of CNA (copy number alteration) burden for each region as the percentage 

of genome affected by copy number alterations, 

percentage of	CNA burdenk= 
∑ Di×IiknS

i=1

∑ Di
nS
i=1

× 100%, 

where nS and Di denotes the number of shared segments and the length of shared segment i across 

regions, respectively. 
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Further, for each region, whether the segment i has a subclonal copy number alteration event is defined 

as 

Sik=Y  1 Iik=1 andF Iik
K

k=1
≠K

0 Otherwise
, 

 

where K is the total number of regions for a given tumor sample. We then introduce Si as an indicator 

function representing the subclonal copy number alteration event on shared segment i across regions: 

Si =	⋃ Sik
[
\]& . 

Besides, we define Ti as an indicator function which denotes whether there is a copy number alteration 

event (including clonal and subloncal) on shared segment i. 

Ti=Y  1 0 <F Iik
K

k=1
≤K

0 Otherwise
. 

Therefore, the percentage of subclonal CNA for region k (percentage of subclonal CNA per region) is 

defined as  

percentage of subclonal CNAk=
∑ Di×Sik

nS
i=1

∑ Di×Ti
nS
i=1

× 100%. 

Correspondingly, the percentage of subclonal CNA for each patient is defined as 

percentage of subclonal CNA=
∑ Di×Si

nS
i=1

∑ Di×Ti
nS
i=1

× 100%. 

Across regions, the Spearman correlation coefficient between log2(TmS) and percentage of subclonal 

CNA per region is 0.44; the Spearman correlation coefficient between log2(TmS) and copy number 

aberration burden per region is 0.26. The difference between these two correlation coefficients between 

is statistically significant (bootstrapping 1,000 times, mean difference = 0.2, 95% confidence interval: 

0.04, 0.37).  

Two subclonal structures in two regions can be linearly related to each other, or have a common ancestor, 

but develop a branching relationship, which is more common in this dataset (Fig. 6A). For example, a 

linear relationship can be described as a parent and child relationship, where two subclonal structures 

share overlapped segments and one structure evolves further than the other. For a branching relationship, 

two subclonal structures usually share a common node (ancestor), and two structures evolve in different 

directions. The subclonal structures of 5 out of 30 patients are defined as linear relationships. For each 

evolutionary relationship per patient sample, we defined the range of TmS = log2(maximum TmS	)-

log2(minimum TmS	)  across regions (SI Table 10). We observed a strong correlation between 

log2(TmSmax) and percentage of subclonal CNA among 30 patients with multi-region sequencing data 
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(Spearman correlation coefficient r = 0.69, Fig. S6A). To further explore the underlying relationship 

between log2(TmSmax) and all variables (e.g., percentage of subclonal CNA, number of regions, range of 

TmS, evolutionary relationship and their interactions) across patients, we fit linear regression models by 

taking TmSmax as the response variable and others as predictors. The best model was selected by 

stepwise adding or dropping one predictor that achieves the best AIC (Akaike's Information Criteria, R 

function stepAIC) (Fig. 6E, SI Table 11A). We also adopted a logistic regression model by taking the 

evolutionary relationship as the response variable, and after the model selection (likelihood ratio test), 

percentage of subclonal CNA and range of TmS were chosen separately as predictor variables (SI Table 
11B-C, SI Figure 15). 

Association between TmS and survival outcomes 
We used rpart58 to find an optimized cutoff on TmSmax that best separates survival outcomes of the 

patients (cutoff = 3.5, log-rank test P value = 0.02, Fig. 6F). As a negative control, we ranked the patients 

using TmSmed across regions, then assigned the top 10 patients into one group and the rest of the patients 

go into the other group. The disease-free survival outcomes of the two groups are not significantly 

different (log-rank test P value = 0.8, Fig. 6G).  

The percentage of subclonal CNA was shown to be highly associated with survival outcomes within this 

dataset43, which was recapitulated in our analysis (Fig. S6B). Using both TmSmax and the percentage of 

subclonal CNA in the recursive partitioning survival tree model, we separated 30 patients into three 

groups with distinct survival outcomes (log-rank test P value = 0.003, Fig. 6H). In the negative control, 

we kept the number of groups and the number of patients in each group. We first used TmSmed to rank 

the patients, and assigned the top 7 into high TmSmed group. The rest of 23 were further sorted into two 

other groups with high (9 patients) and low (14 patients) percentage of subclonal CNA. The disease-free 

survival outcomes of the three groups are not significantly different (log-rank test P value = 0.7, Fig. S6C). 

Finally, we added patients with only a single region sample to the patients with multiple-region samples, 

resulting in 52 patients (Fig. S6D), and separated them into two groups using TmSmax values and rpart. 

The KM survival curves of disease-free probability remained significantly different between the two 

groups (log-rank test P value = 0.005) (Fig. S6E). 
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SI Table 10. Evolutionary relationships for 30 TRACERx patients with multi-region samples. 

Patient Histology Evolutionary 
Relationships 

Region with Maximum 
TmS Maximum TmS Region with Minimum 

TmS Minimum TmS Range of TmS 

CRUK0005 LUAD Branching R4 3.5 R3 3.4 0.050 

CRUK0013 LUAD Branching R2 3.0 R3 1.6 0.90 

CRUK0017 LUAD Branching R4 1.9 R1 1.3 0.58 

CRUK0018 LUAD Branching R4 3.4 R2 0.88 2.0 

CRUK0021 LUAD Branching R1 1.8 R2 1.7 0.050 

CRUK0023 LUAD Branching R4 2.7 R1 0.80 1.7 

CRUK0024 LUAD Branching R1 4.1 R4 2.2 0.89 

CRUK0025 LUAD Branching R3 1.8 R1 0.87 1.0 

CRUK0029 LUAD Branching R2 4.0 R6 2.2 0.85 

CRUK0030 LUAD Linear R2 2.7 R3 2.4 0.14 

CRUK0033 LUAD Linear R1 1.3 R2 0.85 0.58 

CRUK0036 LUAD Branching R4 7.4 R2 5.4 0.47 

CRUK0037 LUAD Branching R2 7.5 R3 1.5 2.3 

CRUK0039 LUAD Branching R1 2.3 R2 2.0 0.19 

CRUK0041 LUAD Branching R4 2.5 R1 1.8 0.48 

CRUK0046 LUAD Branching R2 2.5 R1 1.6 0.65 

CRUK0047 LUAD Branching R2 2.7 R1 2.4 0.16 

CRUK0050 LUAD Linear R4 1.1 R3 0.98 0.19 

CRUK0057 LUAD Branching R1 2.7 R2 2.0 0.40 

CRUK0062 LUSC Branching R7 4.0 R2 1.7 1.2 

CRUK0065 LUSC Branching R3 3.9 R1 1.7 1.2 

CRUK0067 LUSC Branching R1 2.2 R3 1.3 0.73 

CRUK0069 LUSC Branching R1 3.5 R3 0.81 2.1 

CRUK0070 LUSC Branching R6 1.4 R1 0.85 0.72 

CRUK0076 LUSC Linear R2 2.9 R4 2.6 0.16 

CRUK0077 LUSC Branching R1 3.7 R2 1.4 1.5 

CRUK0079 LUSC Branching R1 3.5 R3 2.0 0.81 

CRUK0083 LUSC Branching R3 3.7 R1 1.2 1.6 

CRUK0084 LUSC Branching R2 0.91 R3 0.72 0.34 

CRUK0090 LUSC Linear R1 1.3 R2 1.0 0.30 
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SI Figure 15. ROC curves for predicting evolutionary relationships: branching versus linear. 
Two logistic models were used (SI Table 11B-C), with either the range of TmS or the percentage of 
subclonal CNA as the predictor. The 95% confidence intervals and area under the ROC curves (AUC) 
are provided. 
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SI Table 11. Summary of regression models 
A. linear regression model with maximum TmS as response variable 

Variable Coefficient T-statistics Standard Error P value 

Intercept 0.3 0.7 0.5 0.5 

% Subclonal CNA 2.8 4.5 0.6 0.0002*** 

Range of TmS 0.3 0.4 0.6 0.7 

No. of Regions -0.1 -1 0.1 0.3 

% Subclonal CNA * Range of TmS -1.8 -2.3 0.8 0.03* 

Range of TmS * No. of Region 0.3 2.2 0.1 0.04* 

F-statistics R-squared Adjusted R-squared RMSE P value 

 9.4 on 5 and 24 DF  0.7 0.6 0.4 4x10-05 *** 

B. Logistics regression model with Range of TmS as predictor and Evolutionary Relationships (Branching = 1, Linear = 0) as response variable 

Variables Coefficient Z-statistics Standard Error P value 

Range of TmS 3.3 2.7 1.3 0.008** 

C. Logistics regression model with % Subclonal CNA as predictor and Evolutionary Relationships (Branching = 1, Linear = 0) as response variable 

Variables Coefficient Z-statistics Standard Error P value 

% Subclonal CNA 4.3 3.1 1.4 0.002** 
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