Metallothioneins in the activity of antimonials

1 Macrophage metallothioneins participate in the antileishmanial activity of antimonials
2 Deninson Alejandro Vargasa,b, David J. Gregoryc, Roni Nitzan Korend, Dan Zilbersteind,
3 Ashton Trey Belewe, Najib M. El-Sayede and María Adelaida Gómeza,b#
4 a Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Carrera 125 No. 19 – 225 Cali, Colombia.
5 b Universidad ICESI, Cali, Colombia.
6 c Pediatric Infectious Disease, Massachusetts General Hospital, Charlestown, MA, 02129.
7 d Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
8 e Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
9 Running title: Metallothioneins in the activity of antimonials
10 # Corresponding author:
11 Maria Adelaida Gomez
12 Tel: +57 (2) 5552164.
13 Fax: +57(2) 5552638
14 E-mail address: mgomez@cideim.org.co
15 Keywords: Metallothioneins, metal transcription factor-1 (MTF-1), \textit{Leishmania}, antimony.
SYNOPSIS

Background: Host cell functions that participate in the pharmacokinetics and pharmacodynamics (PK/PD) of pentavalent antimonials for treatment of American cutaneous leishmaniasis (CL) are critical for drug efficacy. Objectives: In this study, we investigated whether macrophage mechanisms of xenobiotic detoxification contribute to drug-dependent elimination of intracellular Leishmania. Methods: Transcriptomes of primary macrophages from CL patients (n=6), exposed ex vivo to Leishmania infection and SbV were generated. Candidate genes were selected and validated using short harping RNA interference (shRNA) in THP-1 cells. Results: Strong induction of metallothionein (MT) genes was observed upon Leishmania infection and exposure to SbV, with 7 MT genes (MT1 and MT2 family members) appearing within the top 20 up-regulated genes. Tandem knockdown (KD) of MT2-A and MT1-E, 1F, and 1X in THP-1 cells was achieved using a pan-MT shRNA. Intracellular parasite survival after SbV exposure was unaffected in tandem-KD cells, and this was a consequence of strong transcriptional upregulation of MTs by infection and SbV, overcoming the KD effect. Gene silencing of the metal transcription factor-1 (MTF-1) abrogated expression of MT1 and MT2-A genes. Upon exposure to SbV, intracellular survival of Leishmania in MTF-1KD cells was significantly enhanced (p ≤ 0.05). Conclusions: MTs are potent scavengers of heavy metals, and central elements of the mammalian cell machinery for xenobiotic detoxification. Results from this study highlight the participation of macrophage MTs in Sb-dependent parasite killing, revealing novel strategies for host-targeted optimization of antileishmanial drugs.
INTRODUCTION. The direct activity of antimicrobials against intracellular pathogens is dependent on drug internalization into host cells and, in some instances, on host cell processes that mediate drug metabolism (activation/inactivation). This constitutes a challenge for the design of new drugs and the optimization of existing ones, because host cells constitute an additional barrier for exposure of the intracellular microbe to the drugs. Cutaneous leishmaniasis (CL) is caused by the intracellular protozoan parasite *Leishmania*, and affects more than 1.2 million people annually\(^1\). CL is endemic throughout Central and South America, where control remains dependent on chemotherapy with pentavalent antimonial drugs (Sb\(^V\)). However, high rates of treatment failure (as high as 30% in controlled clinical trials), toxicity, and the difficulties associated to access to these drugs limit this control strategy\(^2\)–\(^8\).

Exposure to Sb\(^V\), a metalloid closely related to arsenic, induces host stress responses that lead to activation of mechanisms of redox balance control and metal/xenobiotic detoxification\(^9\)–\(^12\). Thus, factors mediating these stress responses could modulate Sb bioavailability within host cells, impacting the intracellular pharmacokinetics and pharmacodynamics (PK/PD) of these drugs. Sb modulates the expression of macrophage ATP Binding Cassette (ABC) transporters\(^13,14\). In addition, ABCC1, ABCB1 and ABCB5 have been shown to function as Sb efflux pumps in *L. donovani*\(^15\) and *braziliensis* infected macrophages\(^16\); its expression favoring intracellular parasite survival. ABCB6 can function as a plasma membrane Sb efflux transporter and as an intracellular membrane Sb importer, potentially increasing drug concentrations within the phagolysosome, favoring
Metallothioneins in the activity of antimonials

parasite killing14. These findings illustrate the participation of macrophage ABC transporters in antileishmanial drug effects.

Expression of other genes related to metal stress responses is also modulated upon Sb exposure14,16. Among these is metallothionein 2A (MT2-A), a small cysteine-rich cytoplasmic protein involved in zinc homeostasis and the scavenging of metals and electrophilic molecules such as reactive oxygen species (ROS) and nitric oxide (NO)17–22. There are four MT families members (MT1-4): MT1 and MT2 are ubiquitously expressed, whereas MT3 and MT4 are found in the central nervous system and in stratified squamous epithelium, respectively20,23. MTs can bind toxic metals with high affinity such as Cd, Hg, Pd, Ag, As, and Sb19; resulting in toxic metal tolerance and detoxification21,23,24. This efficient metal scavenging function results from the high thiol content of MTs and the tight regulation of MTs gene expression, which can increase more than 100 fold under metal stress, reaching intracellular concentrations of the order of millimolar20,23,25.

Our group and others have provided evidence of the participation of host MTs in the \textit{Leishmania}-macrophage interactions: a) \textit{Leishmania} infection and Sb can strongly induce the expression of MT genes in human macrophages14,26,27; b) an inverse correlation of MT2-A gene expression and intracellular survival of \textit{Leishmania} during \textit{in vitro} SbV exposure has been reported14; c) Sb-susceptible \textit{L. V. panamensis} strains induce higher expression of macrophage MT2-A compared with Sb-resistant strains, suggesting strain-specific manipulation of MT2-A within macrophages13. Based on the above, we sought to dissect and functionally validate the participation of MTs in the antimony-mediated killing of intracellular \textit{Leishmania}.
MATERIALS AND METHODS

Ethics statement. This study was approved and monitored by the institutional review board for ethical conduct of research involving human subjects of the Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, in accordance with national (resolution 008430, República de Colombia, Ministry of Health, 1993) and international (Declaration of Helsinki and amendments, World Medical Association, Fortaleza, Brazil, October 2013) guidelines. All individuals voluntarily participated in the study and written informed consent was obtained from each participant.

Reagents and chemicals. Additive-free meglumine antimoniate (MA) (Walter Reed 214975AK; lot no. BLO918690-278-1A1W601) was kindly provided by the Walter Reed Army Institute, Silver Spring, MD, USA. Phorbol-12-myristate 13-acetate was purchased from Sigma–Aldrich and zinc acetate dihydrate from J.T. Baker.

Subjects and primary macrophages. Six adult patients, 18 to 65 years of age, with parasitological diagnosis of CL and time of lesion evolution <6 months, without apparent immune deficiencies (negative HIV test, no evidence of immunological disorder nor treatment with medication having immunomodulating effects), participated in this study. Peripheral blood samples were obtained prior to initiation of antileishmanial treatment and mononuclear cells (PBMCs) were obtained by separation using a Ficoll-Hypaque (Sigma-Aldrich) gradient.

THP1 and primary macrophage differentiation. The human pro-monocytic cell line THP-1 and derived lines were maintained at 1 x 10^6 cells/mL in RPMI 1640 supplemented with
Metallothioneins in the activity of antimonials

10% heat inactivated FBS, 100 μg/mL streptomycin, 100 U/ml penicillin, 5 mg/mL puromycin (only for maintenance of transfected cells lines), at 37°C and 5% CO₂.

Monocytes were differentiated with 250 ng/mL of PMA for 3 hours, washed twice with D-PBS and cultured 24h in 6 well plates. Human PBMC-derived monocytes were differentiated to macrophages by adherence to cell culture plastic-ware as previously described²⁸.

Parasites, infection and intracellular parasite survival assays. Antimony susceptible L. (V.) panamensis promastigotes (MHOM/CO/2002/3594) were kept at 25°C in RPMI supplemented with 10% heat-inactivated FBS, 100 μg/mL streptomycin, 100 U/mL penicillin. Primary human macrophages and differentiated THP-1 cells were infected with human AB+ serum-opsonized stationary phase promastigotes at 10:1 Leishmania-macrophage ratio for 2h, washed twice with D-PBS and incubated for 24h at 34°C, 5% CO₂.

After infection was established, cells were exposed for 24 h or 48 h to MA (8, 16, and 32 μg/mL), or left untreated as a control. Intracellular parasite survival was measured by RT-qPCR as previously described²⁹ (primers used in supplementary table S1).

RNA isolation, cDNA library preparation, and sequence analyses. Total RNA was isolated with Trizol from uninfected, infected, and drug-treated cells. RNA quality was assessed with an Agilent 2100 Bioanalyzer using RNAnano chips (Agilent). RNA Integrity Number (RIN) ≥ 7 was considered acceptable to continue with library construction. Poly-A enriched libraries were generated using the Illumina TruSeq Standard mRNA preparation kit and checked via the Bioanalyzer and quantitative PCR (KAPA Biosystems). Paired-end reads
Metallothioneins in the activity of antimonials

(100 nt) were obtained using the Illumina HiSeq 1500 (BioProject ID PRJNA633893 and supplementary table S2). Fastqc30 was used to evaluate sequencing quality; Trimmomatic31 filtered low-quality reads and trimmed bases when the mean quality score fell below a threshold phred score of 20. Reads were mapped against the human32 (hg38) and L. V. panamensis33 genomes (v36ish) using tophat34. HTSeq35 was used to count reads mapping to each gene feature. The count tables were restricted to the set of protein coding genes and filtered to remove non-expressed and very weakly expressed genes. The remaining genes were assessed for significant outliers and batch effects by visualizations of normalized data. Library sizes and count densities were calculated on non-normalized data; pairwise correlation and distances, outlier detection, and principal component analysis (PCA) was performed on log2, cpm, quantile normalized data with and without accounting for batch in the model or surrogate estimation with sva (using svaseq or combat)36. DESeq237 was used to perform differential expression analyses alongside a statistically uninformed basic method as a negative control (supplementary table S3).

Differentially expressed genes were contrasted between control vs. infected and MA treated primary human macrophages. Genes deemed significantly different according to DESeq2 (|logFC| > 1.0 and a FDR adjusted p-value < 0.05) were passed to various ontology tools. Enrichment PPI network analysis was carried out using STRING 10.

Short hairpin RNA (shRNA) constructs. A lentivirus-based system was used for shRNA-mediated gene silencing in THP-1 monocytes as previously described38. At least two independent sets of oligonucleotide pairs for gene knockdown of human MTs and the transcription factor MTF-1 (supplementary table S4) were synthesized and cloned into the
Metallothioneins in the activity of antimonials

pLKO.1-TCR vector (Addgene, Cambridge, MA, USA); the same vector was also used as an empty vector control. Lentiviral particles were generated by co-transfection of endotoxin-free hairpin-containing pLKO.1-TCR, psPAX2 and MD2.G (Addgene) into HEK-293T cells. FuGENE HD (Roche) was used as the transfection reagent. Lentivirus-containing cell supernatant was collected 4 days after transfection and subsequently used to transduce THP-1 monocytes in medium containing 10 mg/mL polybrene in a proportion 1:1. Transduced cells were selected under puromycin pressure (5 mg/mL) for a minimum of 5 days. Gene knockdown was confirmed by RT–qPCR using SYBR green (Applied Biosystems) and TaqMan® Gene Expression Assays (Applied Biosystems, supplementary table 2). shRNA transduction was confirmed by DNA sequencing.

Cytotoxicity assays. PMA-differentiated THP-1 cells and derived cell lines were exposed to a dose range (8 μg/mL – 256 μg/mL) of MA for 72 hours. Cell viability was assessed by MTT assay (ATCC) (supplementary figure S1).

Statistical analysis. Based on the distribution of the data, differences in gene expression were tested with one-way analysis of variance and Tukey’s multiple comparisons test. Differences in variance for the remaining experiments were analyzed with unpaired t test. A significance level of $p \leq 0.05$ was used for all statistical tests. Statistical analyses were performed using GraphPad Prism software (version 6).

RESULTS

Metallothioneins are within the top 20 transcripts up-regulated by *Leishmania* infection and exposure to SbV in macrophages from CL patients. Peripheral blood mononuclear cell
Metallothioneins in the activity of antimonials

(PBMC)-derived macrophages from CL patients (n=6) were infected ex-vivo with L.V. *panamensis* and exposed to SbV (32µg-Sb/mL, as meglumine antimoniate - MA). Following RNAseq data collection, a total of 16,841 transcripts were detected. Principal Component Analysis (PCA) showed separation between uninfected/untreated control macrophages and those infected with *L.V.panamensis* and exposed to MA (Figure 1A). After filtering of the differential expression (DE) data by a $|\text{logFC}| \geq 2$ and $p \leq 0.05$, a set of 106 transcripts remained, of which 69 were up-regulated and 37 down-regulated (Supplementary table 1). Interestingly, among the top twenty up-regulated transcripts, seven were metallothionein genes: MT1-E, MT1-F MT1-M, MT1-G, MT1-H, MT1-X and MT2-A (Figure 1B and Supplementary table 1).

Figure 1. PCA plot and network analysis of macrophage transcriptomes. A) PCA plot of RNAseq data after batch correction (each donor as an independent batch), of PBMC-derived macrophages from CL patients (n=6), which were infected ex-vivo with L.V. *panamensis* (Lp001) and exposed to MA (32µg-Sb/mL) for 24 h (purple), or were left uninfected and untreated as controls (green). Ovals represents confidence Interval-CI:
Metallothioneins in the activity of antimonials

90% (inner) and 95% (outer). Symbols represent samples from each patient. B) STRING network analysis of up-regulated genes with a |logFC| cutoff ≥ 2. Nodes represent proteins and edges represent protein-protein interactions (PPI) with the confidence of interaction set at 0.7. Highlighted in red is the metallothioneins PPI network.

Induction of MTs expression by zinc acetate enhances MA-mediated killing of *Leishmania*. To discern how MTs participate in the activity of antimonials, THP-1 cells were exposed to Sb\(^{V}\) and the expression of MT1-E, 1-F, 1-X, MT2-A, MT3 and MT4 was quantified (primer sequences available in Supplementary table 2). Expression of MT1-X was the highest, peaking at 8-fold induction over untreated cells; followed by MT1-E, MT2-A and MT1-X (Figure 2A). MT3 and MT4 transcripts were not detected in macrophages, consistent with their tissue specificity. Next, we explored whether maximal induction of MTs in THP-1 cells would enhance the Sb\(^{V}\) mediated killing of *Leishmania*. To do so, THP-1 cells were exposed to a dose range of 25 µM to 400 µM Zn acetate for 24h, and peak expression of MTs (>100 fold) was observed with 400 µM Zn acetate\(^{23}\) (Figure 2B). Therefore, THP-1 cells were pre-treated for 24h with 400 µM Zn acetate, followed by *L. V. panamensis* infection for additional 24h, and exposed to increasing and non-cytotoxic concentrations of MA (Supplementary figure 1). Pre-treatment with Zn acetate increased over 40% the Sb-dependent intracellular elimination of *L.V. panamensis* (Figure 2C), supporting the contribution of MTs to this phenotype.
Figure 2. MTs are induced by zinc acetate and antimony. **A)** Fold change gene expression of MTs in THP-1 cells exposed to sub-cytotoxic doses of Sb\(^V\). **B)** Fold change gene expression of MT1-E, 1-F, 1-X and MT2-A in THP-1 cells exposed to increasing doses of zinc acetate. **C)** *L.V. panamensis* survival (%) in THP-1 cells pre-treated with 400 µM Zn-acetate for 24h and exposed to Sb\(^V\) (8, 16 and 32 µg/mL). THP-1 gene expression and parasite survival were quantified by RT-qPCR. Each experiment was run as 3 independent replicates. Data are shown as mean ± SD.

Strong transcriptional up-regulation of MTs abrogates shRNA silencing of MT genes.

Taking advantage of the high sequence similarity of MT genes, a shRNA was constructed which targets the tandem knockdown (MT\(_{tandem}^{KD}\)) of MT1 and MT2 family member genes (Figure 3A and Supplementary table 3). Expression of MT1-E, 1F, 1X and MT2-A was efficiently silenced as shown in Figure 3B. To explore the phenotypic effects of MTs...
knockdown on intracellular survival of *Leishmania*, MT_tandemKD cells were infected with *L. V. panamensis* and exposed to SbV. Despite efficient knockdown of MT genes, intracellular parasite survival remained unchanged in MT_tandemKD cells compared to empty-vector transfected control cells (Figure 3C). Considering that expression of MT genes is strongly induced by *Leishmania* and SbV, we questioned whether MTs knockdown was maintained during the experimental conditions (infection and drug exposure). Despite the efficient tandem knockdown of MTs at basal conditions, their strong transcriptional up-regulation during *Leishmania* and SbV exposure overcame the shRNA-silencing effect (Figure 3D); partially explaining why parasite survival was similar in MT_tandemKD and empty-vector control cells.
Figure 3. MTs tandem knockdown is abrogated by strong transcriptional up-regulation.

A) Sequence alignment of MT genes and MT_tandemKD oligo sequence showing the conserved region targeted for tandem shRNA. **B)** Validation of the tandem KD shown by MTs gene expression in uninfected MT_tandemKD and empty-vector control cells. **C)** Percentage of parasite survival in empty vector control and MT_tandemKD cells infected with *L.V. panamensis* and exposed to SbV (8, 16 and 32 µg/mL). **D)** Fold change gene expression of MTs upon infection and exposure to SbV (8, 16 and 32 µg/mL) in empty vector control and MT_tandemKD cells. Gene expression and parasite survival were
Metallothioneins in the activity of antimonials

quantified by RT-qPCR. Each experiment was performed in 3 independent replicates. Data are presented as mean values ± SD.

Expression of MTs is silenced by knockdown of MTF-1 and favors survival of intracellular Leishmania. Metal transcription factor-1 (MTF-1) is the principal transcription factor regulating expression of MTs genes during metal-induced stress. We explored whether knockdown of MTF-1 could limit the transcriptional induction of MT genes in our experimental conditions. Using shRNA, the steady-state level of MTF-1 was knocked down by 50% (Figure 4A). Expression of MTs in MTF-1KD cells was evaluated under basal conditions and upon infection with L.V. panamensis and exposure to SbV. A slight reduction (ranging from 5% to 40%) of MT1 and MT2 genes expression was observed in uninfected and unstimulated MTF-1KD cells (Figure 4B). However, induction of MT1-E, F, X and MT2-A expression was completely repressed in L.V. panamensis infected cells subsequently exposed to Sb (Figure 4C).

MTF-1KD and empty vector control THP-1 cells were infected and exposed to SbV (8 - 32 µg/mL), and intracellular parasite survival measured by RT-qPCR. Sb-dependent parasite killing was efficient in empty-vector control cells, where parasite survival was below 50% for all SbV doses tested (Figure 4D). In contrast, Leishmania survival after drug exposure significantly increased in MTF-1KD cells compared to empty vector control cells (Figure 4D), and was above 50% for all evaluated doses and up to 75% in the 8 µg/mL SbV dose. These data suggest that MTF-1KD favors intracellular survival of Leishmania by impairing MTs gene expression.
Figure 4. Induction of MTs is abolished by knockdown of MTF-1 favoring intracellular parasite survival. A) Fold change gene expression of MTF-1 in empty vector control and MTF-1KD THP-1 cells. B) Fold change gene expression of MTs in unstimulated or infected and SbV (8, 16 and 32 µg/mL) exposed MTF-1KD cells. D) Percentage of intracellular L.V. panamensis survival after SbV exposure. Gene expression and parasite survival were quantified by RT-qPCR. Each experiment was run in 3 independent replicates. Mann-Whitney test was used for statistical analysis. Data are presented as mean values ± SD.
DISCUSSION.

Metallothioneins were initially reported in the early ’70s and characterized as cadmium binding proteins with a role in metal detoxification\(^{40}\). Subsequent studies demonstrated that these proteins could also bind other metals including Sb\(^{19}\), leading to protection against metal-induced toxicity. Pentavalent antimonials continue to be first line treatment for leishmaniasis in many endemic countries\(^{41}\). Despite more than 100 years of use, the mechanisms of action and of exposure of the intracellular parasite to the active drug (Sb\(^{III}\)), remain poorly understood. Recently, the role of host cells in antimony metabolism and detoxification has gained increased attention due to their potential participation in treatment outcome, and as potential targets for optimization of drug exposure\(^ {13,14,16}\). Here, we provide evidence of the participation of macrophage metallothioneins in the Sb-mediated killing of intracellular Leishmania.

Studies in MT1/MT2-null mice have demonstrated increased toxicity of cisplatinum, Cd, Hg, Cu, Zn and As - a metalloid closely related to Sb-\(^ {21,24,42–44}\). Concurring with these findings, tolerance to metal-induced hepato- and nephrotoxicity has been demonstrated in transgenic mice overexpressing MTs\(^ {40,45,46}\). Although the precise mechanism by which MTs facilitate Sb-dependent killing of Leishmania remains to be determined, the metal scavenging function of MTs could promote Sb accumulation within infected macrophages. Interestingly, it has been shown that MTs translocate to lysosomes\(^ {40,47,48}\), suggesting that MT-Sb complexes could be found within lysosomes. Leishmania resides in phagolysosomal compartments within host cells. Therefore, as a consequence of the biological process of phagosome-to-phagolysosome maturation,
fusion of MT-Sb containing lysosomes with Leishmania-containing phagosomes could result in enhanced exposure of the intracellular parasite to the drug.

Pentavalent antimonials are pro-drugs which need to be reduced to the trivalent active form to exert their antileishmanial activity (Sb⁵→Sb³). MTs have an important function in the cellular redox balance due to their high thiol content. Under stress conditions, the strong up-regulation of MTs gene expression results in a redox capacity that can surpass that of GSH. High GSH content has been shown to promote Sb⁵ to Sb³ reduction in mammalian cells as well as in Leishmania. Thus, MTs could participate in the reduction Sb⁵ to Sb³ favoring parasite elimination.

MTF-1 is the main transcription factor involved in MTs expression during metal stress responses, and partially during oxidative stress exposure/response. Our results and those of others demonstrate that MTF-1 knockout/knockdown efficiently abolishes cellular expression of MTs under metal and oxidative stress. Although our data provide evidence that repression of MTs expression via MTF-1 gene knockdown promotes intracellular survival of Leishmania after exposure to Sb, we cannot rule out the intervention of other MTF-1 mediated mechanisms in the enhanced parasite survival, such as those involved in Zn transport.

Our results support a dual role of MTs in toxic as well as therapeutic metal binding, highlighting the potential to harness host cell redox and metal detoxification systems to enhance drug bioavailability and exposure targeted to intracellular pathogens. These findings enlighten interesting drug-related homeostatic processes occurring during
Metallothioneins in the activity of antimonials

treatment of intracellular microbe infections, whereby the same mechanism that
promotes host protection to drug-induced toxicity, in this case against Sb-induced stress,
can enhance the antimicrobial activity of the drug.

ACKNOWLEDGEMENTS. We gratefully acknowledge the patients and volunteers who
participated in this study and the members of the Clinical Unit of CIDEIM in Cali and
Tumaco for recruitment of participants and follow-up. This work was conducted in partial
fulfillment of the requirements for the DSc degree in Biomedical Sciences of Universidad
del Valle to DAV.

FUNDING. This work was supported in part by US National Institutes of Health (NIH) Grant
R01AI104823 (https://www.niaid.nih.gov/) and Wellcome Trust award 107595/Z/15/Z to
MAG. DAV was supported by COLCIENCIAS DSc student award 647.

TRANSPARENCY DECLARATIONS. The authors declare that they have no conflicts of
interest with the contents of this article. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of
Health. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
REFERENCES

7. Oliveira LF, Schubach AO, Martins MM, et al. Systematic review of the adverse effects of

Metallothioneins in the activity of antimonials

446 40. Klaassen CD, Liu J, Choudhuri S. METALLOTHIONEIN: An Intracellular Protein to Protect
447 Against Cadmium Toxicity. *Annu Rev Pharmacol Toxicol* 1999; **39**: 267–94. Available at:

450 2010; **949**: 22–6.

451 42. Liu J, Liu Y, Goyer RA, Achanzar W, Waalkes MP. Metallothionein-I/II null mice are
452 more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic
453 oral or injected inorganic arsenicals. *Toxicol Sci* 2000; **55**: 460–7. Available at:

455 43. Eddins D, Petro A, Pollard N, Freedman JH, Levin ED. Mercury-induced cognitive
457 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0892036207003650.

458 44. Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD. Targeted disruption of

462 *Toxicol Appl Pharmacol* 1995; **133**: 305–12. Available at:
Metallothioneins in the activity of antimonials

465 Overexpress Metallothionein-I Are Protected from Cadmium Lethality and Hepatotoxicity.
466 Toxicol Appl Pharmacol 1995; 135: 222–8. Available at:

468 47. Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in
469 cadmium traffic and toxicity in kidneys and other mammalian organs. BioMetals 2010; 23:

471 48. Moffatt P, Denizeau F. Metallothionein in Physiological and Physiopathological
472 Processes. Drug Metab Rev 1997; 29: 261–307. Available at:

474 49. Miekeley N, Mortari S, Schubach A. Monitoring of total antimony and its species by
475 ICP-MS and on-line ion chromatography in biological samples from patients treated for
476 leishmaniasis. Anal Bioanal Chem 2002; 372: 495–502. Available at:

479 F. Thiol-induced reduction of antimony(V) into antimony(III): A comparative study with

481 51. Pearce LL, Gandley RE, Han W, et al. Role of metallothionein in nitric oxide signaling as
483 Available at:
Metallothioneins in the activity of antimonials

52. Dalton TP, Shertzer HG, Puga A. Regulation of Gene Expression by Reactive Oxygen.

53. St. Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR. Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by

nuclear translocation of the metal responsive transcription factor, MTF-1 is mediated by

55. Laity JH, Andrews GK. Understanding the mechanisms of zinc-sensing by metal-
463: 201–10. Available at:

Metallothioneins in the activity of antimonials

 the Zinc-ZIP8-MTF1 Axis. *Cell* 2014; 156: 730–43. Available at:
 http://dx.doi.org/10.1016/j.cell.2014.01.007.

508 58. Lichten LA, Ryu M-S, Guo L, Embury J, Cousins RJ. MTF-1-Mediated Repression of the
 e21526. Available at: http://dx.plos.org/10.1371/journal.pone.0021526.

 by MTF-1 reveals a role for ferroportin in transition metal efflux. *Blood* 2010; 116:
 4657–64. Available at: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2010-04-278614.