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ABSTRACT 
 

Where and when alien organisms are successfully introduced are central questions to elucidate 

biotic and abiotic conditions favorable to the introduction, establishment and spread of invasive 

species.  We propose a modelling framework to analyze multiple introductions by several invasive 

genotypes or genetic variants, in competition with a resident population, when observations 

provide knowledge on the relative proportions of each variant at some dates and places. This 

framework is based on a mechanistic-statistical model coupling a reaction-diffusion model with a 

probabilistic observation model. We apply it to a spatio-temporal dataset reporting the relative 

proportions of five genetic variants of watermelon mosaic virus (WMV, genus Potyvirus, family 

Potyviridae) in infections of commercial cucurbit fields. Despite the parsimonious nature of the 

model, it succeeds in fitting the data well and provides an estimation of the dates and places of 

successful introduction of each emerging variant as well as a reconstruction of the dynamics of each 

variant since its introduction.  

 

INTRODUCTION  

Plant and animal species – and as a consequence, their pathogens and pests – are translocated 

across the globe at an ever-increasing rate since the 19th century [1]. Most introductions of 

microorganisms and insects (notably plant pathogens and/or their arthropod vectors) are 

accidental, while a few are deliberate for biological control purposes [2]. Introductions of plant 

pathogens can have a dramatic impact on agricultural production and food security (Anderson et 

al., 2004) and being able to predict the fate of a newly introduced disease based on surveillance 

data is pivotal to anticipate control actions [3]. 

Where and when alien organisms are successfully introduced are central questions for the study of 

biological invasions, to elucidate biotic and abiotic conditions favorable to the introduction and 

establishment and spread of invasive species [4, 5]. Indeed, unraveling such conditions is a 

prerequisite to map the risk of invasion and to design an efficient surveillance strategy [5] as initial 

phases are critical for the establishment success of introduced pathogens [6, 7]. It is also during this 

phase that invaders are the easiest to control [4, 8]. In addition, a precise knowledge of the dates 
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and places of introduction is critical to accurately determine invader reproduction and dispersal 

parameters, as their estimated values are directly dependent on the time and distance between the 

actual introduction and the observations [9, 10]. However, biological invasions by alien organisms 

are often reported several years after the initial successful introduction event [11]. Thus, monitoring 

data generally do not provide a clear picture of the date and place of introduction. 

Many successful emergences of plant viruses have taken place worldwide in the last decades [12, 

13], whereas some have only been observed punctually with no long term establishment of the 

pathogens [14]. As plant viruses are rapidly-evolving pathogens with small genomes and high 

mutation rates [15], they may present measurably evolving populations [16] over the time scale of 

decades. Thus, the spatio-temporal histories of invading species can sometimes be reconstructed 

from georeferenced and dated genomic data, with phylogeographic methodologies [17, 18, 19] or 

population dynamic models embedding evolutionary processes. Over shorter time-scales, or when 

only abundance data are available, recent mechanistic modelling approaches have been proposed 

to infer the date and place of introduction of a single species along with other demographic 

parameters [20]. In many modeling approaches, the interactions of the new viruses or new strains 

with preexisting virus populations are not taken into consideration, even if it is known that 

synergism or competition between virus species or strains can affect their maintenance and spread 

[21, 22, 23]. 

Mechanistic models are increasingly used in statistical ecology because, compared to purely 

correlative approaches, their parameters can directly inform on biological processes and life history 

traits. Among them, the reaction-diffusion framework is widely used in spatial ecology to model 

dynamic species distributions [24, 25]. In such models, the diffusion coefficient is related to dispersal 

ability and the growth or competition coefficients may help in understanding the respective 

interactions between different species, variants or genotypes. Additionally, reaction-diffusion 

models can easily account for spatio-temporal heterogeneities [26, 27]. A drawback of this type of 

approach is that the compartments that are modelled typically correspond to continuous population 

densities, which rarely match with observation data. There is therefore a challenge in connecting 

the solution of the model with complex data, such as noisy data, binary data, temporally and 

spatially censored data. Recent approaches have been proposed to bridge the gap between 

reaction-diffusion models and data (e.g., [28], in a framework known as mechanistic-statistical 

modelling [29, 30, 31]. An advantage of this method is that it allows to estimate simultaneously both 

the biological parameters and the date and place of introduction in a single framework [20]. 

Recently, this type of approach was applied to localize and date the invasion of South Corsica by 

Xylella fastidiosa, based on a single-species reaction-diffusion model and binary data [9].  

Our objective here is to propose a modelling framework to deal with multiple introductions by 

several invasive variants, in competition with a resident population, when observations provide 

knowledge on the relative proportions of each variant at some dates and places rather than absolute 

abundances of the different variants.  We develop a reaction-diffusion mechanistic-statistical model 

applied to a genetic spatio-temporal dataset reporting the relative proportions of five genetic 

variants of watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) in infections of 

commercial cucurbit fields. Our framework allows us to (i) estimate the dates and places of 
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successful introduction of each emerging variant along with other ecological parameters, (ii) 

reconstruct the invasion history of the emerging variants from their introduction sites, (iii) detect 

competitive advantages of the emerging variants as compared to the resident population, and (iv) 

predict the fate of the different genetic groups, in particular the takeover of the emerging variants 

over the resident population.  

MATERIAL AND METHODS 

Data 

Pathosystem. WMV is widespread in cucurbit crops, mostly in temperate and Mediterranean 

climatic regions of the world [14]. WMV has a wide host range including some legumes, orchids and 

many weeds that can be alternative hosts [14]. Like other potyviruses, it is non-persistently 

transmitted by at least 30 aphid species [14]. In temperate regions, WMV causes summer epidemics 

on cucurbit crops, and it can overwinter in several common non-cucurbit weeds when no crops are 

present [14, 32]. WMV has been common in France for more than 40 years, causing mosaics on 

leaves and fruits in melon, but mostly mild symptoms on zucchini squash. Since 2000, new 

symptoms were observed in southeastern France on zucchini squash: leaf deformations and 

mosaics, as well as fruit discoloration and deformations that made them unmarketable. This new 

agronomic problem was correlated to the introduction of new molecular groups of WMV strains. At 

least four new groups have emerged since 2000 and they have rapidly replaced the native “classical” 

strains, causing important problems for the producers [33]. 

In this study, we focus on the pathosystem corresponding to a classical strain (CS) and four emerging 

strains (ESk, 𝑘 = 1, … ,4) of WMV and their cucurbit hosts.  

Study area and sampling. The study area, located in Southeastern France, is included in a rectangle 

of about 25000 km2 and is bounded on the South by the Mediterranean Sea. Between 2004 and 

2008, the presence of WMV had been monitored in collaboration with farmers, farm advisers and 

seed companies. Each year, cultivated host plants were collected in different fields and at different 

dates between May 1st and September 30th. In total, more than two thousand plant samples were 

collected over the entire study area. All plant samples were analyzed in the INRAE Plant Pathology 

Unit to confirm the presence of WMV and determine the molecular type of the virus strain causing 

the infection (see [33] for detail on field and laboratory protocols). All infected host plants were 

cucurbits, mostly melon and different squashes (e.g., zucchini, pumpkins). 

Observations. In the absence of individual geographic coordinates, all infected host plants were 

attributed to the centroid of the municipality (French administrative unit, median size about 10 km²) 

where they have been collected. Then for one date, one observation corresponded to a municipality 

in which at least one infected host plant was sampled. Table 1 summarizes for each year, the number 

of observations (i.e. number of municipalities), the number of infected plants sampled and the 

proportion of each WMV strain (CS, and ES1 to ES4) found in the infected host plants. Errors in 

assignment of virus samples to the CS or ES strains was negligible because of the large genetic 

distance separating them: 5 to 10 % nucleotide divergence both in the fragment used in the study 
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and in complete genomes [33], also precluding the possibility of local jumps between groups by 

accumulation of mutations. 

 2004 2005 2006 2007 2008 

# observations 67 64 68 50 40 

# infected samples 408 371 422 280 212 

Classical strain 55% 45% 28% 17% 14% 

Emerging strain 1 21% 23% 22% 37% 27% 

Emerging strain 2 13% 18% 23% 21% 32% 

Emerging strain 3 1% 4% 3% 5% 3% 

Emerging strain 4 10% 10% 24% 20% 24% 

 

Table 1. Number of observations and corresponding proportions of classical and emerging strains. 

Landscape. To approximate the density of WMV host plants over the study area, we used 2006 land 

use data (i.e. BD Ocsol 2006 PACA and LR) produced by the CRIGE PACA (http://www.crige-

paca.org/) and the Association SIG-LR (http://www.siglr.org/lassociation/la-structure.html). Based 

on satellite images, land use is determined at a spatial resolution of 1/50,000 using an improved 

three-level hierarchical typology derived from the European Corine Land Cover nomenclature. Here 

we used the third hierarchical level of the BD Ocsol typology (i.e. 42 land use classes) to classify the 

entire study area in three habitats: 1) WMV-susceptible crops, 2) habitats unfavorable to WMV host 

plants (e.g. forests, industrial and commercial units…) and, 3) non-terrestrial habitat (i.e. water). The 

proportion of WMV-susceptible crops was then computed within all cells of a raster covering the 

entire study area, with a spatial resolution of 1.4 × 1.4 km2.  These proportions were used to 

approximate host plant density 𝑧(𝒙), which was normalized, so that 𝑧(𝒙) = 0 corresponds to an 

absence of host plants and 𝑧(𝒙) = 1 to the maximum density of host plants (Fig. 1).  
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Fig. 1. Approximated density 𝒛(𝒙) of the host plants in the study area. The density was normalized, so that 

𝑧(𝒙) = 𝑧(𝑥1, 𝑥2) = 0 corresponds to an absence of cucurbit plants and 𝑧(𝒙) = 1 to the maximum density. 

The axes 𝑥1 and 𝑥2 correspond to Lambert93 coordinates (in km). The white regions are non-terrestrial 

habitats (water). Land use data were not available in the gray regions; the host plant density was then 

computed by interpolation. 

Mechanistic-statistical model 

The general modeling strategy is based on a mechanistic-statistical approach [31, 20, 10]. This type 

of approach combines a mechanistic model describing the dynamics under investigation with a 

probabilistic model conditional on the dynamics, describing how the measurements have been 

collected. This method that has already proved its theoretical effectiveness in determining dispersal 

parameters using simulated genetic data [10] aims at bridging the gap between the data and the 

model for the determination of virus dynamics.  

Here, the mechanistic part of the model describes the spatio-temporal dynamics of the virus strains, 

given the model parameters (demographic parameters, introduction dates/sites). This allows us to 

compute the expected proportions of the five types of virus strains (CS and ES1 to ES4) at each date 

and site of observation. The probabilistic part of the mechanistic-statistical model describes the 

conditional distribution of the observed proportions of the virus strains, given the expected 

proportions. Using this approach, it is then possible to derive a numerically tractable formula for the 

likelihood function associated with the model parameters. 

Population dynamics 

The model is segmented into two stages: (1) the intra-annual stage describes the dispersal and 

growth of the five virus strains during the summer epidemics on cucurbit crops, and the competition 

between them, during a period ranging from May 1st (noted 𝑡 = 0) to September 30 (noted 𝑡 = 𝑡𝑓, 

𝑡𝑓 = 153 days); (2) the inter-annual stage describes the winter decay of the different strains when 

no crops are present and the virus overwinters in weeds. We denote by 𝑐𝑛(𝑡, 𝒙) and 𝑒𝑘
𝑛(𝑡, 𝒙) the 

densities of classical strain (CS) and emerging strains (ESk, 𝑘 = 1,… ,4), at position 𝒙 and at time 𝑡 of 

year 𝑛.  

Dynamics of the classical strain before the first introduction events. Before the introduction of the 

first emerging strain, the intra-annual dynamics of the population CS is described by a standard 

diffusion model with logistic growth:  𝜕𝑡𝑐
𝑛 = 𝐷Δ𝑐𝑛 + 𝑟𝑐𝑛(𝑧(𝒙) − 𝑐𝑛). Here, Δ is the Laplace 2D 

diffusion operator (sum of the second derivatives with respect to coordinate). This operator 

describes uncorrelated random walk movements of the viruses, with the coefficient 𝐷 measuring 

the mobility of the viruses (e.g., [24, 34]). The term 𝑟 𝑧(𝒙) is the intrinsic growth rate (i.e., growth 

rate in the absence of competition) of the population, which depends on the density of host plants 

𝑧(𝒙) and on a coefficient 𝑟 (intrinsic growth rate at maximum host density). Under these 

assumptions, the carrying capacity at a position 𝒙 is equal to  𝑧(𝒙), which means that the population 

densities are expressed in units of the maximum host population density. The model is initialized by 

setting 𝑐1980(0, 𝒙) = (1 − 𝑚𝑐)  𝑧(𝒙), where 𝑚𝑐 is the winter decay rate of the CS (see the 

description of the inter-annual stage below). In other terms, we assume that the CS density is at the 
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carrying capacity in 1979, i.e., 5 years after its first detection and 20 years before the first detections 

of ESs [35].  

Introduction events. The ESs are introduced during years noted 𝑛𝑘 ≥ 1981, at the beginning of the 

intra-annual stage (other dates of introduction within the intra-annual stage would lead – at most – 

to a one-year lag in the dynamics). Their densities are 0 before introduction: 𝑒𝑘
𝑛 = 0 for 𝑛 < 𝑛𝑘. 

Once introduced, the initial density of any ES is assumed to be 1/10th of the carrying capacity at the 

introduction point (other values have been tested without much effect, see Supplementary Fig. S1), 

with a decreasing density as the distance from this point increases: 

𝑒𝑘
𝑛𝑘(0, 𝑥)=

𝑧(𝒙)

10
exp (−

‖𝒙−𝑿𝒌‖
2

2𝜎2
),  

where 𝑿𝒌 is the location of introduction of the strain 𝑘. In our computations, we took 𝜎 = 5 km for 

the standard deviation. 

Intra-annual dynamics after the first introduction event. Intra-annual dynamics were described by a 

neutral competition model with diffusion (properties of this model have been analyzed in 

[RGHK12]): 

{
 
 

 
 𝜕𝑡𝑐

𝑛(𝑡, 𝒙) = 𝐷Δ𝑐𝑛 + 𝑟𝑐𝑛 (𝑧(𝒙) − 𝑐𝑛 −∑𝑒𝑖
𝑛(𝑡, 𝒙)

4

𝑖=1

)

𝜕𝑡𝑒𝑘
𝑛(𝑡, 𝒙) = 𝐷Δ𝑒𝑘

𝑛 + 𝑟𝑒𝑘
𝑛 (𝑧(𝒙) − 𝑐𝑛 −∑𝑒𝑖

𝑛(𝑡, 𝒙)

4

𝑖=1

)

, 

for 𝑡 = 0… 𝑡𝑓 and for all introduced emerging strains, i.e. all 𝑘 such that 𝑛 ≥ 𝑛𝑘. We assume 

reflecting boundary conditions, meaning that the population flows vanish at the boundary of the 

study area, due to truly reflecting boundaries (e.g., sea coast in the southern part of the site) or 

symmetric inward and outward fluxes  [24]. In addition, in order to limit the number of unknown 

parameters, and in the absence of precise knowledge on the differences between the strains, we 

assume here that the diffusion, competition and growth coefficients are common to all the strains 

during the intra-annual stage (see the discussion for more details on this assumption).  

Inter-annual dynamics. The population densities at time 𝑡 = 0 of year 𝑛 are connected with those 

of year 𝑛 − 1, at time 𝑡 = 𝑡𝑓, through the following formulas: 

{
𝑐𝑛(0,𝒙) = (1 −𝑚𝑐)𝑐

𝑛−1(𝑡𝑓, 𝒙) for 𝑛 ≥ 1981

𝑒𝑘
𝑛(0, 𝒙) = (1 −𝑚𝑒)𝑒𝑘

𝑛−1(𝑡𝑓 , 𝒙) for 𝑛 ≥ 𝑛𝑘 + 1
 

with 𝑚𝑐 and 𝑚𝑒 the winter decay rates of the CS and ESs strains (note that 𝑚𝑒 is common to all of 

the ESs). Estimation of CS and ES decay rates provides an assessment of the competitive advantage 

of one type of strain vs the other.  

Numerical computations. The intra-annual dynamics were solved using Comsol Multiphysics® time-

dependent solver, which is based on a finite element method (FEM). The triangular mesh which was 

used for our computations is available as Supplementary Fig. S2. 
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Probabilistic model for the observation process 

During the years 𝑛 = 2004,… ,2008, 𝐼𝑛 observations were made (see Section Observations above 

and Table 1). They consist in counting data, that we denote by 𝐶𝑖  and 𝐸𝑘,𝑖  for 𝑘 = 1,… ,4 and 𝑖 =

1,… , 𝐼𝑛, corresponding to the number of samples infected by the CS and ESs strains, respectively, 

at each date of observation and location (𝑡𝑖, 𝒙𝑖). Note that these dates and locations depend on the 

year of observation 𝑛. More generally, the above quantities should be noted 𝐶𝑖
𝑛 , 𝐸𝑘,𝑖

𝑛 , 𝑡𝑖
𝑛 , 𝒙𝑖

𝑛;for 

simplicity, the index 𝑛 is omitted in the sequel, unless necessary. 

We denote by 𝑉𝑖 = 𝐶𝑖 +∑ 𝐸𝑘,𝑖
4
𝑘=1  the total number of infected samples observed at (𝑡𝑖, 𝒙𝑖). The 

conditional distribution of the vector (𝐶𝑖 , 𝐸1,𝑖 , 𝐸2,𝑖 , 𝐸3,𝑖, 𝐸4,𝑖), given 𝑉𝑖  can be described by a 

multinomial distribution ℳ(𝑉𝑖 , 𝒑𝑖) with 𝒑𝑖 = (𝑝𝑖
𝑐 , 𝑝𝑖

𝑒1 , 𝑝𝑖
𝑒2 , 𝑝𝑖

𝑒3 , 𝑝𝑖
𝑒4) the vector of the respective 

proportions of each strain in the population at (𝑡𝑖 , 𝒙𝑖). We chose to work conditionally to 𝑉𝑖  because 

the sample sizes are not related to the density of WMV. 

Statistical inference 

Unknown parameters. We denote by 𝚯 the vector of unknown parameters: the diffusion coefficient 

𝐷, the intrinsic growth rate at maximum host density 𝑟, the winter decay rates (𝑚𝑐 , 𝑚𝑒) and the 

locations (𝑥𝑘 ∈ ℝ
2) and years (𝑛𝑘) of introduction, for 𝑘 = 1, … ,4. Thus 𝚯 ∈ ℝ16. 

Computation of a likelihood. Given the set of parameters 𝚯, the densities 𝑐𝑛(𝑡, 𝒙|𝚯) and 𝑒𝑘
𝑛(𝑡, 𝒙|𝚯) 

can be computed explicitly with the mechanistic model for population dynamics. Thus, at a given 

year 𝑛, at (𝑡𝑖, 𝑥𝑖), the parameter 𝒑𝑖  of the multinomial distribution ℳ(𝑉𝑖 , 𝒑𝑖) writes: 

𝑝𝑖
𝑐(𝚯) =

𝑐𝑛(𝑡𝑖, 𝒙𝑖|𝚯)

𝑐𝑛(𝑡𝑖, 𝒙𝑖|𝚯) + ∑ 𝑒𝑖
𝑛(𝑡𝑖, 𝒙𝑖|𝚯)

4
𝑖=1

, 𝑝𝑖
𝑒𝑘(𝚯) =

𝑒𝑘
𝑛(𝑡𝑖, 𝒙𝑖|𝚯)

𝑐𝑛(𝑡𝑖, 𝒙𝑖|𝚯) + ∑ 𝑒𝑖
𝑛(𝑡𝑖, 𝒙𝑖|𝚯)

4
𝑖=1

. 

The probability  𝑃(𝐶𝑖, 𝐸1,𝑖 , 𝐸2,𝑖, 𝐸3,𝑖 , 𝐸4,𝑖|𝚯, Vi) of the observed outcome 𝐶𝑖 , 𝐸1,𝑖 , 𝐸2,𝑖 , 𝐸3,𝑖, 𝐸4,𝑖  is then  

𝑃(𝐶𝑖 , 𝐸1,𝑖, 𝐸2,𝑖 , 𝐸3,𝑖, 𝐸4,𝑖|𝚯, Vi) =
(𝑉𝑖)!

𝐶𝑖! ∏ 𝐸𝑘,𝑖!
4
𝑘=1

(𝑝𝑖
𝑐(𝚯))𝐶𝑖∏(𝑝𝑖

𝑒𝑘(𝚯))𝐸𝑘,𝑖 .

4

𝑘=1

 

Assuming that the observations during each year and at each date/location are independent from 

each other conditionally on the virus strain proportions, we get the following formula for the 

likelihood: 

ℒ(𝚯) = ∏ ∏ 𝑃(𝐶𝑖 , 𝐸1,𝑖 , 𝐸2,𝑖 , 𝐸3,𝑖 , 𝐸4,𝑖|𝚯, Vi).

𝑖=1,…, 𝐼𝑛

2008

𝑛=2004

 

A priori constraints on the parameters. By definition and for biological reasons, the parameter vector 

𝚯 satisfies some constraints. First, 𝐷 ∈ (10−4, 10) km2/day, 𝑟 ∈ (0.1,1) day−1, and 𝑚𝑐 , 𝑚𝑒 ∈

{0,0.1,0.2,… ,0.9}, (see Supplementary Note S7 for a biological interpretation of these values). 

Second, we assumed that the locations of introductions 𝑿𝒌 belong to the study area. To facilitate 

the estimation procedure, the points 𝑿𝒌 were searched in a regular grid with 20 points (see 
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Supplementary Fig. S3), and the dates of introduction 𝑛𝑘 were searched in 

{1985,1990,1995,2000}.  

Inference procedure. Due to the important computation time (4 minutes in average for one 

simulation of the model on an Intel(R) Core(R) CPU i7-4790 @ 3.60GHz), we were not able to 

compute an a posteriori distribution of the parameters in a Bayesian framework. Rather, we used a 

simulated annealing algorithm to compute the maximum likelihood estimate (MLE), i.e., the 

parameter 𝚯∗ which leads to the highest log-likelihood. This is an iterative algorithm, which 

constructs a sequence (𝚯𝑗)𝑗≥1 converging in probability towards a MLE. It is based on an 

acceptance-rejection procedure, where the acceptance rate depends on the current iteration 𝑗 

through a "cooling rate" (𝛼). Empirically, a good trade-off between quality of optimization and time 

required for computation (number of iterations) is obtained with exponential cooling rates of the 

type 𝑇0 𝛼
𝑗 with 0 < 𝛼 < 1 and some constant 𝑇0 ≫ 1 (this cooling schedule was first proposed in 

=[36]=[36]). Too rapid cooling  (𝛼 ≪ 1) results in a system frozen into a state far from the optimal 

one, whereas too slow cooling (𝛼 ≈ 1) leads to important computation times due to very slow 

convergence. Here, we ran 6 parallel sequences with cooling rates 𝛼 ∈ {0.995,0.999,0.9995}. For 

this type of algorithm, there are no general rules for the choice of the stopping criterion [HenJac03], 

which should be heuristically adapted to the considered optimization problem. Here, our stopping 

criterion was that 𝚯𝑗  remained unchanged during 500 iterations. The computations took about 100 

days (CPU time). 

Confidence intervals and goodness-of-fit. To assess the model’s goodness-of-fit, 95% confidence 

regions were computed for the observations (𝐶𝑖, 𝐸1,𝑖, 𝐸2,𝑖 , 𝐸3,𝑖 , 𝐸4,𝑖) at each date/location (𝑡𝑖, 𝒙𝑖), 

and for each year of observation. The confidence regions were computed by assessing the 

probability of each possible outcome of the observation process, at each date/location, based on 

the computed proportions 𝒑𝑖 = (𝑝𝑖
𝑐 , 𝑝𝑖

𝑒1 , 𝑝𝑖
𝑒2 , 𝑝𝑖

𝑒3 , 𝑝𝑖
𝑒4), corresponding to the output of the 

mechanistic model using the MLE 𝚯∗ and given the total number of infected samples 𝑉𝑖. Then, we 

checked if the observations belonged to the 95% most probable outcomes.  

RESULTS 

Convergence and goodness-of-fit. As expected, the highest likelihood was obtained with a slow 

cooling rate (𝛼 = 0.9995). The corresponding MLE, denoted by  𝚯∗ =

(𝐷∗, 𝑟∗, 𝑚𝑐
∗ ,𝑚𝑒

∗ , 𝑿𝟏
∗ , 𝑿𝟐

∗ , 𝑿𝟑
∗ , 𝑿𝟒

∗ , 𝑛1
∗ , 𝑛2

∗ , 𝑛3
∗ , 𝑛4

∗) is presented in Table 2. In average, 96% of the 

observations fell within the 95% confidence regions, indicating that the model fits the data well (277 

observations over a total of 289; 94% in 2004, 98% in 2005, 96% in 2006, 96% in 2007 and 95% in 

2008). We also note that the likelihood function is peaked at 𝚯∗ in the sense that any perturbation 

in one component of 𝚯∗ leads to lower likelihood (see Supplementary Note S8 for likelihood-ratio 

based confidence intervals and Supplementary Fig. S4 for more details on the profile of the 

likelihood function). This suggests that the MLE 𝚯∗ is close to the actual maximizer of the likelihood 

function.  
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Biological parameter 𝐷∗ 𝑟∗ 𝑚𝑐
∗ 𝑚𝑒

∗  

Value 0.44 km2 day−1 0.31 day−1 0.5 year−1 0 year−1 

Date of introduction 𝑛1
∗ (𝐸𝑆1) 𝑛2 

∗  (𝐸𝑆2) 𝑛3
∗  (𝐸𝑆3) 𝑛4

∗  (𝐸𝑆4) 

Value 1990 1990 1990 1995 

Site of introduction 𝑿1
∗  𝑿2

∗  𝑿3
∗  𝑿4

∗  

Value (Lambert 93, km) (926,6369) (926,6369) (758,6369) (758,6294) 

Table 2. Maximum likelihood estimates. 

Parameter values. As shown in Table 2, the MLE corresponds to the same date of introduction for 

ES1, ES2, ES3 whereas ES4 has been introduced five years later. Note that a same date of introduction 

does not mean a same date of detection: depending on local conditions, some strains may establish 

and spread faster than others (as observed below for ES4). 

Regarding the sites of introduction, the MLE indicates that ES1 and ES2 have been introduced at the 

northeastern corner of the study area, ES3 in the northwest and ES4 in the southwest (see the white 

crosses in the 2004 panel of Fig. 2; see also Supplementary Fig. S3 for more details on the 

corresponding likelihood). Three introduction points (ESs 1, 2 and 3) were estimated at the edge of 

the study site, indicating that the introductions may have occurred outside of the study area.  

Regarding the biological parameters, the winter decay rate of the CS strain was much higher than 

that of the ESs strains (0.5 vs. 0), reflecting a high competitive advantage of the ESs. The value 𝐷∗ =

0.44 km2 per day of the diffusion coefficient indicates that a virus travels about 1.2 km per day in 

average during the growing season of cucurbit crops (see Supplementary Note S7). The growth rate 

of 0.31 day−1 corresponds to an increase by a factor 𝑒0.31 ≈ 1.3 each day, in the absence of 

competition.  

Strain distributions. Fig. 2 depicts the most prevalent strains at each position in the landscape, 

during four of the five years of observation (2008 is presented in Supplementary Fig. S5), obtained 

by solving our model with the MLE 𝚯∗, together with the data. We graphically note a good 

agreement between the positions of the observed strains and the distributions obtained with the 

model: ES1 and ES2 tend to be distributed in the eastern part of the study area, ES3 in the 

northwestern part and ES4 in the southwestern part, while the CS strain tends to be progressively 

confined to the central part of the study area. In 2007, ES3 seems to be more prevalent according to 

the model than suggested by the observations, probably due to its introduction site, which is far 

from the observation sites (see the first panel in Fig. 2). Note that, with the deterministic framework 

used here, as ES1 and ES2 share the same date and position of introduction, and the same parameter 

values, their distributions are completely equal; thus only ES1 is represented in the Figures.  
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Fig. 2. Proportions of the classical and emerging strains in the landscape: data and simulations. The colors 

of the shaded regions indicate which strain is the most prevalent. The red regions correspond to the CS strain; 

light blue and blue: ES1, ES2 (these two strains have the same density, only ES1 is represented); green: ES3; 

pink: ES4. The pie charts describe the relative proportions of the strains found in the data (same color legend). 

The white crosses on the 2004 panel represent the estimated sites of introduction. The simulation results 

presented here correspond to the middle of the  intra-annual stage (2nd week of June), and were obtained 

with the MLE 𝚯∗.  

The spatial distributions of the different strains at each year where one of the emerging strains 

becomes locally more prevalent are depicted in Fig. 3. Although ESs 1, 2 and 3 have been introduced 

at the same date, their dynamics are influenced by local conditions: ESs 1 and 2 become the most 

prevalent at least in one part of the study area in 1996 (6 years after their introduction), ES3 in 2001 

(11 years after introduction) and ES4 in 2002 (7 years after its introduction). Thus, despite the 

neutrality assumption, the heterogeneity of the landscape leads to different durations of the 

establishment stage. The full timeline of the dynamics of the different strain proportions in the 

landscape, from the first estimated introduction date of an emerging strain (1990) to 2019 is 

available as Supplementary Fig S6. Since 2008, due to their competitive advantage (modelled here 

as a lower winter decay rate), the ESs replaced the CS, which is not anymore the most prevalent 

strain, whatever the position in the study area, 18 years after the first introduction. Before 

saturation, the spread rates of the ESs are about 5km/year (estimated as the slope of 

√𝑖𝑛𝑣𝑎𝑑𝑒𝑑 𝑎𝑟𝑒𝑎/𝜋, the invaded area corresponding to virus densities> carrying capacity/100).  

Then, the distribution of the ESs remains almost at equilibrium until the last year of simulation, 

which is a consequence of the neutrality assumption (equal fitness of all the ESs) (Fig. 3; last panel).  

 

2004 2005 

2006 
2007 

1996 2001 
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Fig. 3. Simulated proportions of the classical and emerging strains in the landscape: before and after the 

observation window. The simulation results presented here correspond to the middle of the  intra-annual 

stage (2nd week of June), and were obtained with the MLE 𝚯∗. The colors of the shaded regions indicate which 

strain is the most prevalent. The red regions correspond to the classical strain; blue: ES1, ES2 (these two 

strains have the same density, only ES1 is represented); green: ES3; pink: ES4. 

Average proportions in the study area and effect of the CS on the ESs. To get a quantitative insight 

into the replacement of the CS by the ESs, we computed the relative global proportion of each strain 

by integrating the simulation results (with the parameters corresponding to the MLE 𝚯∗) over the 

study area (Fig. 4, panel (A)). Before the first introduction in 1990, the classical strain represents 

100% of the infections. In 2010, it represents only 10% of the infections. This decline, which was 

already visible in the 2004-2008 data [33, 32], is well-captured by the model, though with a slight 

advance. These discrepancies between the predicted proportions and the data are probably due to 

the positions of the observation sites, which are concentrated at the center of the domain, where 

the CS is more prevalent (see Fig. 2). In order to understand the effect of the presence of a resident 

CS strain on the emerging ESs strains, we compared the dynamics presented in Fig. 4, panel (A) with 

a hypothetical scenario describing the dynamics of the ESs in the absence of CS. For this, we used 

the MLE 𝚯∗, to simulate the hypothetical dynamics of the ESs assuming that the CS density is 0. The 

results are depicted in Fig. 4, panel (B). We observe a very fast convergence to an equilibrium, 

compared to the situation where the CS is present. Additionally, the last introduced ES (ES4) cannot 

establish, and ES3 which was confined in an unfavorable region in the presence of the CS, reaches 

more favorable regions, leading to a higher proportion. Thus, the competition with the CS alters the 

outcome of the competition between the ESs, and seems to promote the diversity of the ESs by 

slowing down the overall dynamics.  

2002 2019 
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Fig. 4 Estimated average proportions of the classical and emerging strains in the study area. Panel 

(A):  the plain lines correspond to the simulated proportions and the red crosses correspond to the 

proportions of CS in the data. Panel (B): simulated proportions of the ESs obtained by assuming that 

the CS is absent. In both cases, the parameter values correspond to the MLE 𝚯∗. Note that the curves 

corresponding to the ESs 1 and 2 are superimposed. 

DISCUSSION 

In this work, we developed a reaction-diffusion model to describe the spatial dynamics of invasion 

of a resident population inhabiting a spatially structured environment by newly introduced variants. 

Using a mechanistic-statistical framework, we confronted the model to a dataset recording the 

invasion by several emerging genetic variants of a resident population of WMV and succeeded in (i) 

estimating the dates and places of successful introduction of each emerging variant as well as 

parameters related to growth and dispersal, (ii) reconstructing the invasion by the new variants 

from their introduction sites, (iii) establishing a competitive advantage of the new variants as 

compared to the resident population and (iv) predicting the fate of each variant. Simulations with 

the optimal parameter values showed an adequate fit, proving that the model is able to reproduce 

the observed spatial dynamics despite the strong mechanistic constraints of the model structure 

and the strong spatial censorship of the dataset, i.e. missing data. We used fraction frequencies in 

the dataset rather than counting data. We argue that such observations are more robust to 

heterogeneities in the sampling conditions as they do not require a standardized observation 

protocol. As stated by [37], abundance data can only be used if the count-proportion, i.e. the ratio 

between expected count and population size, can safely be assumed to be constant, or if factors 

affecting variation in the count-proportion can be identified and then accommodated through 

parametric modeling.  

The estimations suggest that three of the four emerging strains have been introduced at 

approximately the same date, while the fourth one was introduced 5 years later (the model 

considered only 5-yr intervals of introductions because of constraints on computation time). Despite 

the neutrality assumption that we made between the emerging strains, we observed different 

durations of the establishment stage: while ESs 1 and 2 became locally the most prevalent strains 

only 6 years after their introduction, ES3 displayed delayed dynamics since it became locally the 

most prevalent strain 11 years after its introduction. In comparison, ES4 was introduced 5 years later 

than ES3 but became locally the most prevalent strain at about the same date. The low prevalence 

(A) (B) 
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of the ES3 in the dataset could be explained by a lower fitness of this strain, e.g. higher winter decay 

rate, lower growth rate or weaker competitivity. Our results indicate that this pattern can also be 

observed with a neutrality assumption, as a result of the joint effects of the local composition of the 

landscape, and of the position of the sampling sites, far away from the introduction site. Indeed, in 

the area where ES4 was first observed, cucurbits crops are very frequent with high connectivity 

between crops, whereas the area where ES3 was found is patchier. Similarly, our results indicate 

that the overall prevalence of the CS strain in the study area has been slightly overestimated in the 

data, due to sampling sites concentrated in the regions where it is indeed the most prevalent strain. 

The reconstructed dynamics of the five strains therefore underline the importance of estimating 

jointly the places and dates of the introduction and the other ecological parameters as well as the 

importance of considering the spatial structure of the sampling design.  

Based on WMV-infected samples collected in Southeastern France for more than 30 years, ES1 was 

first detected in 1999 [35] whereas the other ESs were observed in 2002 to 2004 [33], i.e. 9 to 14 

years after the estimated introduction dates. Such a lapse between the introduction of a plant 

pathogen and its first detection is consistent with estimations obtained for other plant viruses [38, 

39, 40, 19]. ESs strains have been detected in several European and Mediterranean countries ([14]), 

and in the USA [41], in the few years following their description in France, and their prevalence in 

these countries seems to increase even if few time series data are available. The reasons for these 

almost simultaneous emergences in distant countries and variable environments are not fully 

understood. WMV being considered so far as not seed-transmitted, the ESs strains have probably 

been disseminated through long-distance exchanges of plant material [33].  

In addition to the dates and places of successful introduction, our model provides estimation of  

ecological parameters in natura. In particular, the diffusion parameter, measuring the mobility of 

the viruses (or, more precisely, of their aphid vectors) was estimated, leading to a value 0.44 km2 

per day for WMV. Among plant viruses, there are few estimates of diffusion coefficients, and most 

estimate rather focus on the speed of range expansion, which can be more directly derived from 

observations. For instance, an average speed of 33 km/yr and 13 km/yr was estimated for the 

leafhopper-transmitted wheat streak virus [42] and the whitefly-transmitted East African cassava 

mosaic virus [43] respectively, to be compared with the spread rate of 5 km/year found here. For 

non-persistently aphid-transmitted viruses like WMV and the other potyviruses, the insect remains 

viruliferous after probing on an infected plant for only a few minutes to hours [14], and the dispersal 

distance is supposed to be limited, even if in exceptional climatic conditions, the potyvirus maize 

dwarf mosaic virus was transmitted by viruliferous aphids over more than 1000 km [44]. Estimations 

for the potyvirus plum pox virus indicated that 50% of the infectious aphids leaving an infected plant 

land within about 90 meters, while about 10% of flights terminate beyond 1 km [45]. Here, a 

diffusion coefficient of 0.44 km2 per day corresponds to a mean dispersal distance of √𝜋𝐷 ≈ 1.2 km 

after 1 day (see Supplementary Note S7), which seems in agreement with these data.  

Another critical parameter that was estimated is the winter decay rate. Most studies focus on the 

epidemic period but off-season dynamics can be crucial to understand demography and genetic 

diversity [32, 46]. We assumed here that emerging strains differed from the resident population 

only through this parameter. Indeed, no obvious differences in host range, including both cultivated 
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hosts and weeds, have been found between CS and ES strains, whereas ESs strains were found to 

be better transmitted than CS ones from some weeds infected by both CS and ESs [47]. This could 

contribute to more efficient transfer from weeds to crops at the beginning of the growing season, 

leading to a lower winter decay of ESs strains. In our modelling approach we found that ESs strains 

were able to invade the resident population because of a lower decay during winter. Nevertheless, 

as all of the other parameters in the model of population dynamics have been set to the same value 

for the CS and the ESs, all of the competitive advantage of the ESs can be expressed only through 

the decay rates, explaining these differences, and the unrealistic 0-decay rate of the ESs. The 

unrealistic null winter decay rate that we found for the ESs suggests that, contrarily to our 

assumptions, competitive advantage of ESs probably occurs also during summer. Consistently, there 

is no efficient cross-protection between CS and ESs strains [47], but [21] found that superinfection 

by ESs strains of a plant already infected by CS is easier than the opposite situation. In our model, 

we also make a neutrality assumption between the ESs that differ only by their introduction 

dates/sites. This assumption may not completely reflect the complexity of the interactions between 

viral strains and the biological variability between and within molecular groups [47]. 

In 2008, the ESs have replaced the CS, which was not anymore the most prevalent strain, whatever 

the position in the study area, 18 years after the first ESs introduction. Moreover, this competitive 

advantage of the ESs is expected to lead to the total replacement of the CS by the ESs in about 25 

years, i.e. in 2015. These results are consistent with current knowledge: new observations carried 

out in 2016 and 2017 showed than the classical CS strain is no more detectable [48]. Besides the 

disappearance of CS strains, the surveys performed in 2016-2017 revealed a complex and dynamic 

situation that fitted partially with the model. ES3 was detected in only one location in the 

southwestern part of the study area, confirming its low dispersal and probable low fitness. As 

predicted by the model, ES1 and ES2 were present in the Eastern part of the area and ES4 was present 

in all the study area. However, it was found to be more prevalent than ES1 and ES2 even in the 

Eastern part, suggesting that its fitness is higher than ES1 and ES2. New variants, not detected in 

2004-2008, were also observed in 2016-2017, and some of them presented a high prevalence in all 

the area. Deep sequencing of two genomic regions revealed, contrary to the 2004-2008 situation 

[49], a high prevalence of recombinants among these new strains [48], blurring the distinction 

between molecular groups based on CP sequences only. As in 2004-2008, landscape heterogeneity 

seemed to affect virus dispersal [48].  

In a more general perspective, this study shows how mechanistic approaches can be used to infer 

the historical dynamics of invasive genotypes or species from initial introduction. These approaches 

enable considering hypothetical scenarios, to get a better understanding of the impact of the 

biological interactions on the overall dynamics. Here, in agreement with theoretical results in [50], 

the simulations without the CS strain showed that its presence promotes a higher diversity among 

the emerging strains, by altering the outcome of the competition between the ESs, and by slowing 

down the overall dynamics, thus reducing founder effects. Another advantage of using a 

mechanistic-statistical approach, compared to a correlative approach, is that the parameter values 

bring some insight into biological processes and life history traits, (e.g. the diffusion coefficient is 

related to dispersal ability). Good knowledge of the parameter values, especially for the biological 

parameters, will be helpful for future modelling, either with reaction-diffusion models or with other 

approaches such as stochastic diffusion models, which share some common parameters with 

reaction-diffusion models (e.g., [10]. The method developed in this work is computationally very 
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costly. We plan to develop much faster methods, based on deterministic optimization algorithms 

and analytic descriptions of the gradients of the likelihood. Introducing specific fitness parameters, 

besides winter decay rate, for the different groups will also help to better understand the effect of 

interactions between variants on the evolution of viral populations. 
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Supplementary Fig. S1. Effect of the initial population density  

We computed the proportions of each strain with the MLE 𝚯∗, assuming other initial densities of 

the ESs instead of 1/10th of the carrying capacity at the introduction point. Fig. S1 depicts the 

proportions of each strain, assuming either that the initial density of the ESs are increased or 

decreased by a factor 2. 

 

Fig. S1. Estimated average proportions of the classical and emerging strains in the study area with 

varying values of the initial density of the ESs. The plain lines correspond to initial densities divided 

by 2 (1/20th of the carrying capacity) and the dotted lines to initial densities multiplied by 2 (1/5th of 

the carrying capacity).  
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Supplementary Fig. S2. Finite element method. 

Partial differential equations were solved with Comsol Multiphysics® time-dependent solver which 

is based on a finite element method (FEM). The triangular mesh which was used for our 

computations is depicted below (Fig. S2). It is made of 4706 triangular elements. 

 

Fig. S2. Triangular mesh of the study site. 
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Supplementary Fig. S3: Introduction points 

 

 

Fig. S3. Likelihood function in terms of the introduction point. The area of the circles are proportional to the 

highest value reached by the function 𝑓(𝚯𝑗) when the introduction point of the 𝐸𝑆𝑘  (each panel corresponds 

to a different strain) is located at the center of the circle.  
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Supplementary Fig. S4: Profile of the likelihood function. 

The simulated annealing algorithms led to 6 sequences (𝚯𝑗)𝑗≥1 ∈ ℝ
16, for a total of  32000 

elements 𝚯𝑗  and 32000 evaluations of ℒ(𝚯𝑗). Fig.  S4 depicts the values of a monotone transform 

of the likelihood 𝑓(𝚯𝑗) =
100

100+log (ℒ(𝚯∗)/ℒ(𝚯𝑗))
, projected onto the 1D variables 𝐷,  𝑟, 𝑚𝑐, 𝑚𝑒, 𝑛1, 𝑛2, 

𝑛3, 𝑛4. We observe that close parameter values tend to lead to close values of the likelihood, which 

strongly suggests that the MLE 𝚯∗ is close to the actual maximizer of the likelihood function.  
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Fig. S4. Profile of the likelihood function. Each panel corresponds to a projection of the 32000 computed 

values of 𝑓(𝚯𝑗), over the 1D variables 𝐷,  𝑟, 𝑚𝑐, 𝑚𝑒, 𝑛1, 𝑛2, 𝑛3, 𝑛4, respectively. The blue crosses corresponds 

to parameters  𝚯𝑗  obtained with the slowest cooling rate (𝛼 = 0.9995, 2 chains); the green crosses to the 

intermediate cooling rate  (𝛼 = 0.999, 2 chains) and the red crosses correspond to fastest cooling rate (𝛼 =

0.995, 2 chains). Note that 𝑓(𝚯∗) = 1 and 𝑓(𝚯) = 0.1 when log(ℒ(𝚯)) = log(ℒ(𝚯∗)) − 900 (here, 

log(ℒ(𝚯∗)) ≈ −1229).  
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Supplementary Fig. S5: Proportions of the classical and emerging strains in the landscape: 2008. 

 

Fig. S5. Proportions of the classical and emerging strains in the landscape: data and simulations. The colors 

of the shaded regions indicate which strain is the most prevalent. The red regions correspond to the classical 

strain; light blue and blue: 𝐸𝑆1, 𝐸𝑆2 (these two strains have the same density, only 𝐸𝑆2 is represented); 

green: 𝐸𝑆3; pink: 𝐸𝑆4. The pie charts describe the relative proportions of the strains found in the data (same 

color legend). The simulation results presented here correspond to the middle of the  intra-annual stage (2nd 

week of June), and were obtained with the MLE 𝚯∗. 
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Supplementary Fig. S6. Full timeline of the dynamics of the different strain proportions in the 

landscape, obtained with the maximum likelihood estimate (MLE) 𝚯∗.  

The pictures below represent the dynamics of the classical and emerging strains, from the first 

estimated introduction date of an emerging strain (1990) to 2019. The colors of the shaded regions 

indicate which strain is the most prevalent. The red regions correspond to the classical strain; blue: 

ES1, ES2 (these two strains have the same density, only ES1 is represented); green: ES3; pink: ES4. The 

results presented here correspond to the middle of the  intra-annual stage (2nd week of June).  
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Supplementary Note S7. A priori bounds on the parameter values, and relationship between 

diffusion coefficient and dispersal distance 

Assuming a random walk movement with discrete space step 𝜆 and time step 𝜏, the corresponding 

diffusion coefficient is 𝐷 =
𝜆2

4𝜏
. With a time step 𝜏 equal to 1 day, we get 𝜆 = 2√𝐷. The bounds 𝐷 ∈

(10−4, 10) km2/day thus correspond to space steps 𝜆 ∈ (10−2, √10)km. In other words, each day 

the average distance travelled by a virus (through its vector) is a priori assumed to be comprised 

between 10 m and 3.16 km. 

The solution of a pure diffusion equation (i.e., without reproduction), 𝜕𝑡𝑢(𝑡, 𝒙) = 𝐷Δ𝑢 in dimension 

2, starting from a localized initial condition at 𝒙 = 0 is 𝑢(𝑡, 𝒙) =
1

4 𝜋𝐷 𝑡
exp (−

‖𝒙‖2

4 𝐷 𝑡
). The mean 

dispersal distance after 1 day is: 

∬
‖𝒙‖

4 𝜋𝐷 𝑡
exp (−

‖𝒙‖2

4 𝐷 𝑡
) 𝑑𝒙 = √𝜋𝐷. 

Having a growth rate 𝑟 day−1 means an increase by a factor 𝑒𝑟 each day, in the absence of 

competition. The bounds 𝑟 = 0.1 and 𝑟 = 1 thus correspond a daily increase by a factor comprised 

between 1.1 and 2.7.   

Supplementary Note S8. Computation of likelihood-ratio based confidence intervals. 

To compute confidence intervals for 𝜃𝑖, where 𝜣 = (𝜃1, … , 𝜃16), we first define the profile 

likelihood function, ℎ𝑖(𝜌) = max
𝜣 𝑠.𝑡.𝜃𝑖=𝜌

log(ℒ(𝜣)). The (1 − α) confidence intervals for 𝜃𝑖  can be 

constructed by finding the set of parameter values 𝜌 such that 2 (log(ℒ(𝜣∗)) − ℎ𝑖(𝜌)) ≤ 𝜒1−𝛼,1
2 , 

where 𝜒1−𝛼,1
2  is the (1 − α) percentile of the χ2 distribution with 1 degree of freedom [1] (note that 

𝜒0.95,1
2 ≃ 3.84). For each value of 𝜌,  ℎ𝑖(𝜌) was computed based on the values of 𝜣𝑗 which have 

been explored by the simulated annealing algorithm (using the 6 sequences together, this 

corresponds to ≈ 32000 values for 𝜣𝑗). For the parameters 𝐷, 𝑟  which have not been discretized, 

to be able to compute ℎ𝑖(𝜌) for values of 𝜌 which have not been explored by the algorithm, we 

approached ℎ𝑖(𝜌) by max
𝜣 𝑠.𝑡.𝜃𝑖∈(𝜌−𝜖/2,𝜌+𝜖/2)

log(ℒ(𝜣)), for some 𝜖 ≥ 0 (we took 1/100th of the length 

of the support of the prior distribution). For the other parameters, ℎ𝑖(𝜌) is computed by 

interpolation between the discrete grid points.  
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