
 
Accessible and interactive RNA sequencing analysis using serverless computing 

 
Ling-Hong Hung, Xingzhi Niu, Wes Lloyd, Ka Yee Yeung 

School of Engineering and Technology, University of Washington Tacoma 

Abstract:  

We present a novel method that yields 1100-fold computational speedup and allows biomedical 
scientists to interactively adjust alignment parameters in real time to iteratively improve final 
analytical results. Specifically, the alignment time for a 640 million read human RNA-sequencing 
dataset is reduced from 19 hours to 1 minute using serverless cloud computing.  We provide a 
graphical interface for the accelerated workflows, thus making our methodology accessible to 
non-cloud experts.   
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For the analyses of RNA-sequencing (RNA-seq) data, the most computationally intensive step is 

the mapping of reads to the reference sequence. Although many optimized algorithms and 

software tools have been developed for this step 1-3, the time required for alignment to a reference 

remains substantial. Consequently, once data is aligned, the analysis is rarely repeated even 

though parameter choices greatly influence the quality of the alignment 4, potentially affecting 

downstream results and conclusions. We present a novel methodology using serverless cloud 

computing to reduce the execution time for alignment by 1100-fold. We incorporate this 

methodology into a workflow that determines differentially expressed genes (DEGs). We provide 

a graphical interface that enables biomedical users who are not cloud experts to interactively tune 

alignment parameters. In a case study, we demonstrate that changing even a single alignment 

parameter can affect the composition of the list of top-10 DEGs. 

To make interactive tuning of alignment parameters practical, the execution time required to align 

a dataset must be significantly reduced. Cloud computing has been used to accelerate the 

alignment process by using many virtual severs to simultaneously process multiple datasets 7-9. 

While this approach is effective for analysis of large collections of samples, it does not improve 

the execution time for aligning an individual dataset. Other approaches that divide a single dataset 

into small pieces to be processed in parallel, and/or accelerate specific parts of the alignment 

algorithm, require specialized hardware 10 or access to a private or cloud-based cluster 11 for 

significant speedup. These solutions require significant expertise to set up and use. Recently, 

function-as-a-service (FaaS) cloud platforms provide on-demand access to small short-lived 

applications without the need to configure virtual servers before computation can proceed 5. FaaS 

platforms provide serverless functions, designed for small, short-lived microservices. These 

functions, however, have significant limitations with respect to memory, disk space, execution 

time, and network bandwidth. Using a variety of techniques, we overcome these limitations (see 

Methods) and harness serverless function instances as rapidly deployable, compute nodes to 

provide an on-demand cloud-based “supercomputer” for RNA-sequencing. Unlike approaches 

designed for processing large collections of samples 7-9, our strategy supports accelerating the 

alignment of a single dataset on Amazon Web Services (AWS) or the Google Cloud Platform 

(GCP).  

As a case study to demonstrate this novel use of serverless computing, we present an RNA-seq 

workflow using unique molecular identifiers (UMI) to obtain de-duped transcript counts 12 which 

are then processed by  edgeR 13 to obtain a list of genes that were differentially expressed upon 

treatment with different combinations of drugs14. For the analysis of this dataset, we invoked 1752 

function instances to reduce the alignment time from 19.5 hours to 1 minute when using the 
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most performant configuration on AWS (Table S2). The dataset consists of 640 million reads (46 

GB compressed files) obtained from cardiocytes treated with 15 different drug combinations for 

48 hours on 96 well plates. The sequences contain a barcode sequence to identify the sample 

which allows for multiple samples to be pooled and loaded onto the same lane (multiplexed) for 

sequencing. The resulting fastq files of reads are processed using a 3-step pipeline to obtain the 

transcript counts. The first step uses the barcode sequences to separate or de-multiplex the reads 

into the 96 originating wells. These reads are then aligned to the human transcriptome using the 

Burrows-Wheeler Aligner (BWA) 1. The resulting alignments are merged and de-duped using 

Unique Molecular Identifiers (UMIs) to compute the observed counts for each transcript. The 

original workflow14 took 29.5 hours to obtain transcript counts using a virtual cloud server (AWS 

EC2 instance m4.4xlarge). We previously reported optimizations of the implementation that 

reduce the total execution time to 3.5 hours when using 16 threads on the same type of cloud 

server 5. As expected, the longest step is the CPU-intensive alignment which takes 19.5 hours in 

the original 14 and 2.5 hours in the optimized implementation 5.  We benchmarked the serverless 

version of the workflow and observed that transcript counts can be obtained in 6 minutes at 
a cost of $3.85 (see Methods for implementation details, benchmarking code and cost 

calculations). This execution time includes the time needed for all data transfers to the cloud and 

serverless instances and the total cost includes charges to rent the client computer. Subsequent 
workflow executions take less than 2 minutes to obtain counts as there is no need to repeat 

the generation and transfer of data shards.  

We developed a containerized graphical front-end for the serverless version of the UMI RNA-seq 

workflow by extending our Biodepot-workflow-builder framework 14 (see Figure 1), that can run 

from a laptop, desktop, or cloud server. The entire setup is automated with the user needing only 

to enter the credentials for the cloud account being used for the serverless instances, and the 

location of the files that are to be processed. The graphical tool uses the original edgeR script to 

obtain a final list of DEGs that is displayed in a fully functional spreadsheet. Our interface makes 

the workflow fully interactive, and the user can start, monitor, stop, modify, and re-start the 

analysis at any step with different parameter sets. The accessibility and minimal setup of the 

graphical workflow enables biomedical researchers who are not cloud experts to use a serverless 

supercomputer to rapidly modify alignment parameters and monitor the effect on the composition 

of the final gene lists.  

Default parameter settings for aligners are often not optimal 4. Some parameter values are chosen 

to increase speed at the cost of accuracy. For example, BWA normally uses the leftmost base 

pairs of the sequence as a seed. Poor matches to the seed are immediately rejected, saving 
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considerable time. Seedless alignment is available as an option which is more accurate but takes 

2.5x longer 1.  This speed improvement becomes insignificant with the serverless implementation 

(Table 1C). Other parameters are tuned to specific properties of the data. For example, BWA sets 

the default maximum edit distance to 0.04 per 100 base pairs based on an expected number of 

sequence errors. This can be very different from the actual error rate.  We showcase the flexibility 

of our tool to increase the maximum edit distance parameter, perform seedless alignment, and 

re-analyze the data from our case study in Table 1C. Our results illustrate how the overall 

transcript counts can be almost identical while producing changes in the top-10 DEG list. For 

transcripts with low counts, changes can cause them to become too low and be filtered by edgeR 

(Methods Figure S1). Changes in alignment parameters also alter the p-value and False 

Discovery Rate (FDR) which can affect the ordering and composition of DEG lists. In the top-10 

list for alendronate treatment shown in Table 1A, we see that SLC90A4 drops out of the list and 

is replaced with SLC9A7 when we raise the maximum edit distance to 0.1 per 100 base pairs. 

This change in top-10 DEG list is confirmed using the more accurate seedless alignment in Table 

1B.  

We have demonstrated how serverless cloud computing can be harnessed to provide on demand 

and affordable “supercomputing” made accessible with a graphical tool for RNA-seq analyses 

supporting interactive refinement of alignment parameters. We have shown how parameter tuning 

affects the ordering and composition of DEG lists even when bulk transcript counts are almost 

unaffected. DEG lists can be improved by avoiding compromises that compensate for slow 

execution. Our accelerated workflows enable scientists to explore parameter values to suit the 

application and data. Most importantly, the ability for non-cloud experts to interactively tune 

parameters in all steps of the analysis to iteratively examine the effect on DEG lists.  This has 

implications for biological applications such as enabling more robust determination of diagnostic 

gene panels for personalized medicine. 
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TABLE AND FIGURE  

 

Figure 1. Graphical front-end for interactive analyses of differential expression using UMI 
RNA-seq and edgeR 
A screenshot of the interactive front-end built with the Biodepot-workflow-builder, which can be run on 
a laptop, private, or cloud server and accessed using a browser. Each icon (widget) controls a separate 
containerized module. Double-clicking on a widget reveals graphical elements for parameter entry, 
starting and stopping execution, and displaying intermediate output. The parameter entry tab is shown 
for the Align widget in the upper left corner. Lines connecting widgets indicate data flow between the 
execution modules. Connections and widgets can be added and removed using a drag-and-drop 
interface. The workflow itself is started by double-clicking on the start widget in the lower left of the 
window. The user then enters the names of the data files and credentials directory into a form and 
presses a start button to begin execution. Execution proceeds automatically and finishes by popping 
up a fully functional spreadsheet populated with a list of DEGs. This is the window in the lower right. 
The user can monitor, stop, modify, and restart the workflow at any step. Colored boxes have been 
added to show the grouping of widgets involved in setup, alignment using serverless computing, the 
UMI RNA-seq pipeline, and DEG determination using edgeR. Other tools can alternatively be used for 
DEG. A cleanup module is also provided to delete intermediate results before re-running the workflow, 
or to delete all files and cloud resources after the workflow is complete. The front-end shown here 
depicts the Amazon Web Services (AWS) workflow. A GCP version is also available, and both are 
available from GitHub. 
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Table 1 Changes in DEG lists after adjustment of alignment parameters 
The effect on the top-10 DEG lists from cardiocytes treated with alendronate, increasing the maximum edit 
distance (1A), or not using a seed (1B) are shown. All genes are differentially expressed with a Benjamini-
Hochberg False Discovery Rate of less than 0.1. The orange shading is proportional to the absolute value 
of the change in rank between the two lists. The arrow indicates where the gene is in the other list. In A, 
the gene SLC90A4 drops out of the top 10 with a drop of 13 ranks. Conversely, the gene SLC9A7, pops 
into the top 10 in the new list from position 18 in the original list. Similar changes are also seen in Table 1B 
when more accurate seedless alignment is used. Table C shows the alignment time for the entire dataset 
of 15 treatments on AWS excluding file transfer and function invocation times. The number of reads aligned 
for the entire dataset and the number of de-duped reads for alendronate treatment are also shown. 
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METHODS 
 
Basic workflow architecture 
The workflow architecture is shown in Figure S1. The split and merge phases are performed on 

the client computer and a publish-subscribe mechanism is used to invoke the serverless instances 

to perform the alignment. Serverless functions are designed for small short-lived applications and 

accordingly have resource limitations. AWS Lambda functions are limited to 512 MB of disk 

space, 15 minutes maximum runtime, up to 3GB RAM, and 2 vCPUs 5. Google functions are more 

limited with up to 2 GB RAM, part of which can be used as local disk space. 

Due to the small and transient nature of the disk space allotted to a function, a storage bucket 

(AWS Simple Storage Service (S3) or Google bucket) is used to store input files that need to be 

transferred to a function, and output files that are generated by the function that need to be sent 

back to the client. The bucket acts as an intermediary layer for data transfer between the client 

and the serverless function instances, assuming the role of a distributed file system for a 

traditional supercomputer. Our design challenge was to modify the alignment process so it could 

execute within the limitations of serverless function instances while simultaneously reducing and 

mitigating the effect of the data transfers between the client, bucket, and serverless layers. This 

was accomplished by: 

 

• Reduction of reference, data, and alignment file sizes 

• Asynchronous non-blocking execution where the workflow proceeds with partial data 

• Optimization of the client configuration 

• Optimization of the serverless configuration 

  

Reduction of reference, data, and alignment file sizes 
Data transferred to each serverless function instance includes the executables, input fastq files, 

and the human reference files. To reduce the size of reference files, we noted that BWA requires 

the reference sequence file, but only uses the name to infer filenames. To save space we created 

an empty dummy sequence file with the same name. Since we are aligning RNA sequences, we 

were also able to use the much smaller human exome reference, rather than the genomic 

reference. After the reference and executables are downloaded to the serverless instance, there 

is approximately 250 MB of space remaining for the input fastq and output alignment files. The 

original split step produced a single demultiplexed fastq file for each of the barcoded wells. We 
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modified the executable to allow the user to produce multiple files no larger than a user-defined 

maximum size for each barcode. This process takes place on the client (e.g. laptop, local server, 

or cloud server) that then invokes the serverless functions. The maximum size of the input data 

also indirectly determines the number of serverless function instances that are invoked 

simultaneously. After experimenting with different file sizes on AWS, we determined that a data 

shard size of approximately 60 MB was near optimal, which enabled the use of 1752 serverless 

function instances to be invoked in parallel.  

 

The most important file reduction was in the size of the alignment output files. BWA produces 

alignments using text-based SAM files that are approximately the same size as the input fastq 

files. Compression using gzip, or into BAM or the newer CRAM files can reduce the size by as 

much as 4-fold 15. However, even the compressed files are relatively large. Also, compressing, 

and decompressing data files requires precious time especially when using the bzip algorithm 

which offsets the benefits of compression for reducing file transfer times. Instead, we developed 

a novel approach that reduced each alignment to a 64-bit hash value. 

 

In the UMI-RNA-seq workflow, the Unique Molecular Identifier (UMI) is a random sequence 

attached to the read. Reads with the same UMI mapped to the same position are assumed to be 

amplification artifacts. Only one of these “duplicates” are counted. To detect these duplicates, we 

had previously implemented a one-to-one mapping, or perfect hash function, which combines the 

alignment position and the UMI to form a unique 64-bit value. Identical hash values are only 

possible if the reads map to the same position and have the same UMI, i.e. are amplification 

duplicates. To reduce output file sizes, the serverless instance pipes the output of BWA to a small 

executable (written in C++) that uses the same algorithm to convert the alignment and UMI into a 

hash value and then writes the hash to a binary file. The resulting binary files are 50x smaller than 

compressed SAM files, and do not require decompression to read. Once transferred to the bucket 

and downloaded to the client, the hash values are read in directly from the binary file and used 

by the merge executable to dedupe the reads. The alignment position is also recovered and used 

to obtain the transcript counts. A similar approach could also be used in non-UMI applications to 

encode just the alignment position. 

 

Asynchronous non-blocking execution 
Our previous implementations proceeded sequentially through the split, align, and merge phases 

with each step beginning only after the prior step had completed. An important optimization was 
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to refactor the splitting and upload of small files to the bucket layer to be asynchronous and non-

blocking. Split files are now uploaded to buckets in parallel, as soon as they are written, instead 

of waiting for the entire split process to complete before transferring any files to the cloud. We 

also used the same optimization when downloading the starting fastq files to the client computer. 

Instead of waiting for all files to be downloaded before beginning the split phase, individual files 

are split as soon as they are downloaded. We did not apply this strategy to the alignment, 

download of alignments, and merge steps. For AWS using a fast cloud server, these steps were 

so fast that any additional benefit would not be worth the increase in complexity to the workflow. 

In the future, we may consider implementing asynchronous execution to improve performance for 

GCP functions and local server clients where these steps take longer to execute. 

 

Optimizing client configurations 
The configuration of the client computer and the serverless function instances were also 

optimized. The longest steps in the workflow are the file splitting and upload steps which require 

good disk performance to read the fastq files, good single thread performance to process the files, 

and good network bandwidth to transfer the split files to the bucket layer. Most of the performance 

testing was done using different AWS instances spanning all families with local/resident SSDs, 

and we used equivalent GCP instances once we found an optimal AWS configuration. 

 

Disk performance: The split executable speed is limited by the speed that it can read and write 

fastq files to and from the disk. AWS provides Elastic Block Storage (EBS) network drives, and 

local SSD’s for storage. The non-volatile memory (nVME) SSDs were faster than the fastest EBS 

drives, and performance was further enhanced by combining at least two drives in a RAID-0 array. 

We did not find further benefit from using additional disks in a RAID configuration. 

 

Network performance: AWS provides different guaranteed throughput minimums. We did not 

obtain any benefit by increasing the network throughput beyond 25 GB/s. We also tried metal 

instances that do not use VMs but access the CPU directly. These instance types had significantly 

slower upload and download speeds to S3 buckets. 

 

Single thread performance: The split executable is limited to file level parallelism – i.e. each 

pair of files is handled by a single thread. Thus, the optimal client should have multiple cores each 

with high single thread performance. For AWS, we used the z1 family of instances backed by the 

Intel Xeon Platinum 8151 12-core, 24-hyperthread CPU with a base clock speed of 3.4 GHz which 
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bursts to 4.0 GHz CPUs to provide optimal single thread performance. In our initial testing, z1 

instances were faster for the split step, than the c5 (Intel Xeon Platinum 8275CL CPU), and c6g 

(ARM-64 CPU) compute optimized instances. We did not test AMD based instances as they were 

not available with SSDs at the time of the benchmarking. Metal versions of these instances were 

slightly faster in execution of the split command due to the lack of virtualization overhead. 

However, this small advantage was outweighed by poorer upload/download speeds to and from 

S3 buckets. 

 

Optimized cloud client: We found that the z1d.12xlarge AWS instance with 2 nVME SSDs in a 

RAID-0 configuration gave the best overall speed as a client for our workflow. The closest 

equivalent for GCP was the c2-standard-30 with 4 SSDs (the minimum available for this type of 

instance) and the premier network service tier. From the benchmarks in Table S1, we see that 

the GCP instance with more cores is slightly better for the merge operation which can theoretically 

use up to 96 threads, but slightly worse at the split function, likely due to poorer single thread 

performance.  

 

Optimizing serverless invocations 
Invocation rate: The rate at which function instances can be invoked is a limiting factor in the 

speed of the alignment. For AWS Lambda, a burst limit allows 3000 function instances to be 

invoked almost instantaneously. Additional function instances are then provided at a rate of 500 

per minute. However, AWS applies a default account limit on the number of concurrently running 

instances at 1000 which can be raised upon request. We also found that there was occasional 

undocumented throttling of the invocation rate when the number of concurrent instances 

exceeded one half of the limit. Therefore, for optimal performance on AWS, the number of the 

split fastq shards should not exceed 3000, and users should ask that the limit of concurrent 

instances be set to at least twice the number of shards. For Google functions, it is possible to set 

the number of concurrent instances to be unlimited. Using an unlimited number concurrent 

functions, it required approximately 3 minutes to invoke 1752 functions. It is possible that some 

of the function instances are re-used. Increasing the size of the shards to decrease the number 

of concurrent function invocations seemed to degrade performance, as the slightly shorter 

invocation time was offset by the longer execution time to align the larger shards. 

 

Serverless invocation configuration: The pub-sub mechanism is used to start the execution of 

the serverless functions. The client publishes messages to a topic that the serverless function 
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subscribes to. The client publishes messages containing the names of the files to be aligned. The 

serverless function reads these messages and spawns instances to retrieve the files from the 

bucket for alignment. On rare occasions, the alignment of some files is delayed, either from 

messages not being delivered promptly, or from some throttling of serverless invocations. Such 

a delay blocks the entire workflow, as all shards must be aligned before transcript counts can be 

obtained. To mitigate this problem, we monitored the start status of a serverless function by writing 

a start file to the bucket. We then would re-send the message from the client to the serverless 

function to process a missing shard if processing had not started within a reasonable time (set by 

the user). 

 

Serverless instance configuration: AWS Lambda function instances provide up to two vCPUs 

and 3 GB available memory. The amount of available memory is configurable with additional 

memory being more expensive per second of execution. Using instances with the full 3 GB of 

memory allows both vCPUs to be used resulting in faster execution. We found that the additional 

per second cost of the extra RAM is almost completely offset by the savings in execution time. 

For Google functions, we were limited to 2GB memory shared between the disk space and 

available RAM. With only 2GB, there was not enough RAM to use both vCPUs simultaneously 

without swapping, so we only used 1 vCPU for alignment on Google functions. It may be beneficial 

in the case of Google functions to further reduce the size of the shards. 

 

Scripts for reproducing benchmarks 
All Bash scripts used to benchmark our serverless RNA-seq workflow are available in the Github 

repository. The instructions for installing the scripts are given in the README. To facilitate 

installation on AWS, we also provide a script that begins from a basic Ubuntu image and installs 

all the executables, data, and scripts required to run the benchmarks. 

 

Installing and using graphical versions of the workflow 
We provide a graphical user interface to orchestrate the serverless alignment as a completely 

interactive differential gene expression determination workflow. The graphical interface was built 

using the BioDepot-workflow-builder (Bwb). All modules in the workflow are containerized using 

Docker to ensure reproducibility and facilitate installation. Each module is represented by a 

graphical icon (widget). Double-clicking on a widget reveals tabbed windows for parameter entry 

and a display for monitoring the output of the widget. Right-clicking on the widget allows for 

customization of the interface of the widget. Dragging and dropping from one widget to another 
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brings up dialogs for adding and deleting connections for data transfer and flow control. New 

modules from other workflows can also be added and connected by dragging-and-dropping. The 

workflows only require Docker to run, as everything, including Bwb is a container. Instructions on 

how to install Docker and use the workflows with the 46 GB of data in the case study or another 

dataset are given in a README in the repository 

 

Calculation of cost on AWS 
The cost of the z1d.12xlarge client is based on the per hour on-demand Linux rate of ~$4.46 per 

hour. This rate includes the cost of the 2 SSDs attached to the instance. The running time was 6 

min 16 seconds (0.1044 hours) for a cost of $0.47. The cost of the Lambda functions was 

calculated using the provided AWS calculator with the entries: 1752 executions, 3008 MB 

allocated memory, 39352 ms execution time and no free tier. The execution time is the average 

running time calculated over 10 sets of 1752 invocations. This results in an average cost for the 

Lambda functions of $3.38 for a total workflow cost of $3.85. 
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SUPPLEMENTARY FIGURE AND TABLES

 
Figure S1 Data flow and architecture of serverless UMI-RNA-seq workflow The workflow 
consists of 4 elements: a client- which executes the split and merge steps, serverless function 
instances- for alignment, a cloud storage bucket- for long term file storage and for temporary 
files in transit between the client and serverless instances, and a message queue- used to start 
the serverless instances and to receive status reports from the running instances. The client can 
be a laptop, local server, or cloud server. In the case of cloud clients, the starting fastq files are 
initially downloaded from a cloud storage bucket. The fastq files to be processed are 
demultiplexed and split into smaller pieces or shards. The small de-multiplexed fastq files are 
transferred to a storage bucket. When the split operation is complete, the client publishes 
messages containing the names of the sharded files to the message queue. Each function 
instance receives a message from the queue which specifies the fastq file it has been assigned 
to align. The function instance then downloads that shard from the storage bucket, along with all 
necessary executables and dependencies. The function instances run the alignment (with 2 
threads for AWS, 1 thread for GCP) generating the 64-bit hash files as described in the Methods 
section. Hash files are then written to the storage bucket. The alignment is performed 
simultaneously for 1752 data shards using 1752 function instances. When all the hash files 
have been written to the storage bucket, the files are downloaded by the client and merged to 
obtain the transcript counts.  
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Table S1 Loss of gene from DEG list due to low counts 
The top-10 DEG lists from cardiocytes treated with sunitinib and loperamide are shown. The data 
was processed using the original parameter values and using seedless alignment. The color-
coding scheme is the same as described for Table 1 with a blue gradient being used to denote 
the p-value, an orange gradient for the absolute value of the change in rank between the two lists. 
The arrows point to where the gene is in the other list. In addition, there is a logCPM (log Counts 
per Million reads) column with a green gradient bar that indicates the amount of expression found 
in the treated samples. For gene TNFRSF19, the gene counts were too low when processed with 
seedless alignment and edgeR filtered out the gene instead of calculating a logCPM. 
Consequently, it is not found in the lists of DEGs and may not be a robust gene to include in the 
top-10 list despite the highly significant p-value. 
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 Execution time (hour:minute:second) 
UMI RNA-seq implementation Alignment Total Total (re-analysis) 
Original  19:38:09     29:25:27 23:54:22 
Optimized (16 threads) 02:24:58 03:30:43        02:37:41 
Google Functions, local client 00:05:13 00:21:13  00:06:59 
Google Functions, cloud client 00:04:17 00:09:52   00:05:06 
AWS Lambda Functions, local client 00:02:31 00:19:01 00:04:14 
AWS Lambda Functions, cloud client 00:01:01 00:06:04 00:01:58 

 
Table S2. Alignment and total execution time for different UMI-RNA-seq implementations. The most 
performant implementation/configuration is highlighted in blue. See Table S3 for more details on the 
execution times. For the serverless implementations, alignment time is the execution time for the script that 
starts the serverless instances and does not terminate until all the alignment output has been uploaded to 
the storage bucket. Two values are shown for the total execution time. “Total” is the time including all file 
transfers, file splitting, and demultiplexing required only the first time the workflow is run. This also includes 
the time to transfer the 46 GB of compressed fastq files to the cloud-based clients. “Total (re-analysis)” is 
the time for subsequent re-analyses. The times for the original and optimized implementations are 
previously published median values from 3 runs on an AWS m4.4xlarge instance 5. The serverless times 
are means from 5 runs using 1752 serverless instances for alignment (see Table S3 for all the run times). 
The local client was a 10 CPU core Xeon CPU E5-2640 v4 server. The cloud-based client on GCP was a 
c2-standard-30 instance with 60 virtual CPUs (vCPUs) and 4 solid state disks (SSDs). For AWS the client 
was a z1d.12x.large instance with 48 vCPUs and 2 SSDs. In both cases, the cloud-based SSDs were 
configured as a RAID-0 array. 
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Table S3. Detailed stage execution times for different UMI-RNA-seq implementations. The individual 
run times used to calculate the mean run times in Table S2 are shown (h:m:s). Time for the split includes 
data transfer times of the fastq files to the cloud client, and data transfer times from the client to the 
cloud. Alignment times are the execution times for the script that starts the serverless instances and 
does not terminate until all the alignment output has been uploaded to the cloud bucket. Merge times 
include the time for transfer of aligned files to the client. Total1 is the time that would be required for re-
analysis of the data, which would be the sum of the Align and Merge times. Total2 is the sum of all three 
phases, including the Split phase which is only required the first time the workflow is executed. 
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