Supplementary Files for

Characterization of Met25 as a Color Associated Genetic Marker in *Yarrowia lipolytica*

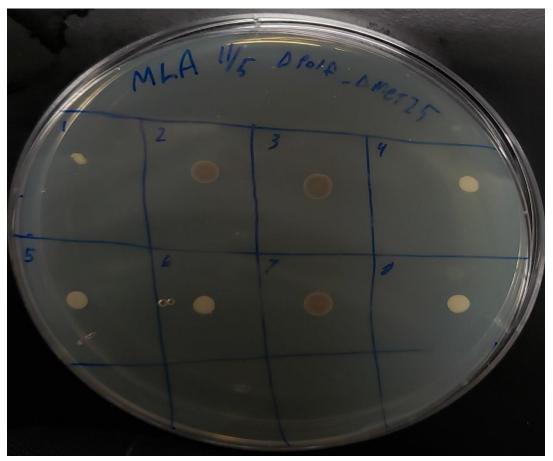
Harley Edwards ¹, Zhiliang Yang ¹ and Peng Xu ^{1*}

¹ Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250

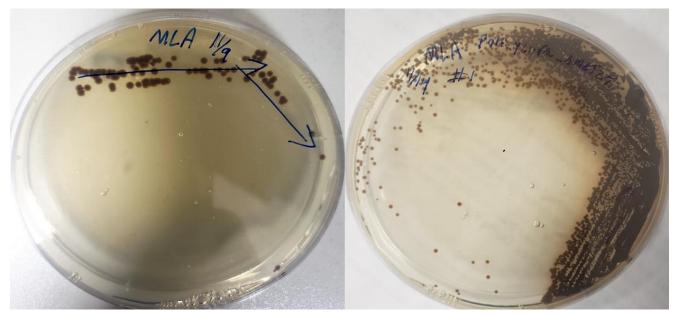
^{*} Corresponding author Tel: +1(410)-455-2474; fax: +1(410)-455-1049.

E-mail address: pengxu@umbc.edu (Peng Xu);

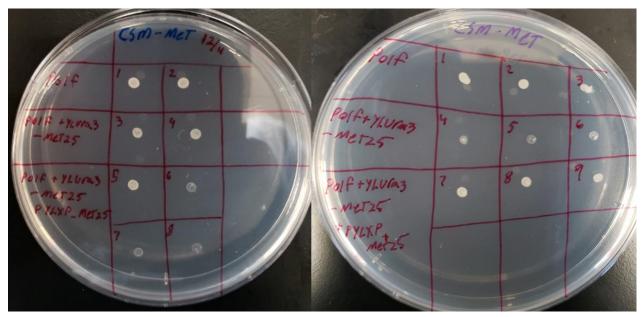
Supplementary Table 1

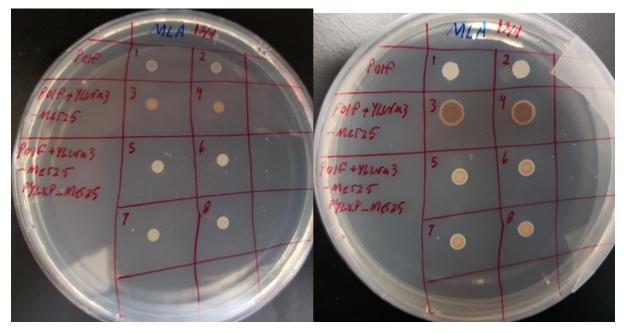

Primers used in this study

Duine en	$(5^2, 2^2)$			
Primers	Sequence (5'-3')			
MET25upfw	ggaattctcatgtttgacagcttatcCTAGCTTCTGAATCGCTACACAGTTC			
MET25uprv	gtattccattatctacgaaaagcatcgatTGTGGATGTTAGTCTGAGGTGAGGTGG			
MET25dwfw	ctagcgagacaataacggaggagtcgacTATCTTCATAACCACAACAGAGGACG			
MET25dwrv	ctatgttacatccttttatcagacataGAGAGTGCTCACTGCGCTCTACAAG			
MET25upchk	GTCACTATCCACGTGACCTAGCCACGC			
MET25dwchk	GTTCCTAGACGCTACACGAAAGTAC			
MET25cassfw	GCTTCTGAATCGCTACACAGTTCC			
MET25cassrv	GAGTGCTCACTGCGCTCTACAAGG			
MET25fw	cagcactttttgcagtactaaccgcagCCCTCGCACTTTGACACTCTGCAGCTC			
MET25rv	ggggacaggccatggaactagtcggtaccCTAGTACACCGCCTTGAAAGCCTGC			
yIMET25-crRR	GACGTTGATGCCGTAGGTCTTatctacaagagtagaaatta			
Avr2_fw	gcatccctaaatttgatgaaagc			
yIMET25-crRF	gtagatAAGACCTACGGCATCAACGTCggccggcatggtcccagcctc			
Sal1_rv	GTTACATCCTTTTATCAGACATAGTC			
Tef_fw	GGGTATAAAAGACCACCGTCCCC			
Xpr2_rv	CCGTTGTAGGCAACAGCGTTGGG			
MetC_Upfw	ggcgacgacggaattctcatgtttgacagcttatcACACCGAAATATCACTCTACAAG			


MetC_UpRv	${\tt gtattccattatctacgaaaagcatcgatTTTTGTAGGGATCGCTCGTACTGTAG}$
MetC_DwFw	gctagcgagacaataacggaggagtcgacACCAATCCACAAAAATCCAATAAATT
MetC_DwRv	cttgcctatgttacatccttttatcagacataGTATATATGGGACCTCTCCCCCG
MetC_CassFw	CACCGAAATATCACTCTACAAGTATAG
MetC_CassRv	ATATATGGGACCTCTCCCCGTTC
MetC_upChk	CCATTCACATTGAACAGTGTACAG
MetC_DwChk	СААТССТСААТССТАААСАААСС
ylMET2(A)-crRF	
yinter 2(rty citta	gtagatCTGGTCCGAGACCAGTCCCGAggccggcatggtcccagcctc
yIMET2(A)-crRR	GACGTTGATGCCGTAGGTCTTatctacaagagtagaaatta
ylMET2(B)-crRF	
YIIVIE I Z(B)-CI KF	gtagatCCACGCTCTTACCGGTTCCGCggccggcatggtcccagcctc
ylMET2(B)-crRR	TCGGGACTGGTCTCGGACCAGatctacaagagtagaaatta
ylMET2_checkFW	GCAAGGAGAAGCCGAACCGTAGGG
yIMET2_checkRV	CACATCTTTTCATCTTCTACAACCA

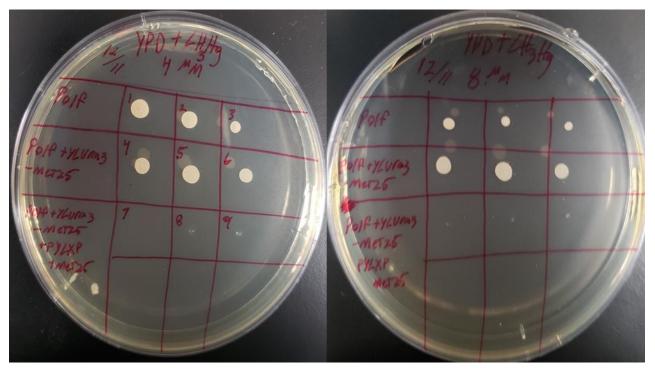
Strains or plasmids	Description	Reference
Strains		
<i>E. coli</i> NEB 5α	fhuA2 $\Delta(argF-lacZ)U169$ phoA glnV44 $\Phi 80 \Delta(lacZ)M15$ gyrA96 recA1 relA1 endA1 thi-1 hsdR17	New England Biolabs
Y. lipolytica polg	MATa, <i>leu2-270</i> , <i>ura3-302</i> ::URA3, <i>xpr2-3</i>	Lab stock
Y. lipolytica polf	MATa ura3-302 leu2-270 xpr2-322 axp2-deltaNU49 XPR2::SUC2	Lab stock
Y. lipolytica	po1f+ylUra3-Met25	This work
Y. lipolytica	po1f+ylUra3-MetC	This work
Y. lipolytica	po1f Δ Met25+ylUra3-MetC	This work
Y. lipolytica	polf $\Delta Met25$	This work
Y. lipolytica	po1f∆ <i>Met6</i>	This work
Y. lipolytica	polf $\Delta Met2$	This work
Plasmids		
pYLXP'	Cloning vector	Lab stock
pYLXP'+ - <i>Met25</i>	MET25 restoration plasmid	This work
pYLXP'+ylUra3- Met25	Homologous recombination MET25 knockout cassette construction plasmid	This work
pYLXP'-ylUra3- MetC	Homologous recombination METC knockout cassette construction plasmid	This work
pYLXP'-AsCpfl- AsCrRNA-Met25-	CRISPR/Cas12 nuclease expression plasmid with gRNA targeting MET25 for indel knockout	This work
pYLXP'-AsCpf1- AsCrRNA-Met2-	CRISPR/Cas12 nuclease expression plasmid with gRNA targeting MET2 for indel knockout	This work
pYLXP'-AsCpf1- AsCrRNA-Met6-	CRISPR/Cas12 nuclease expression plasmid with gRNA targeting MET6 for indel knockout	This work


Supplementary Table S2. Plasmids and Strain genotype used in this study.


Supplementary Figure 1. Preliminarily positive transformants on MLA media, selected immediately after cassette transformation and growth on CSM-Ura plates.

Supplementary Figure 2. 2.A On the left is the result of growth from a culture of positive Δ MET25 mutants from Figure 1, after MLA and subsequent 24 hour incubation in CSM-Ura liquid media. Two white colonies can be observed indicating cells with functional copies of MET25. 2.B was the result of a single colony from the plate in 2.A, inoculated into CSM-Ura, cultured for 24 hours, diluted, and re-plated on MLA.

Supplementary Figure 3. Top to bottom there is the wildtype, Δ MET25 mutant, and the mutant with the restorative plasmid. On the left are cells spotted directly from culture solution. On the right, the cells were first pelleted, and resuspended in PBS, twice.



Supplementary Figure 4. Here are two images of growth on rich media containing divalent lead. In the top section the wildtype is white. In the second row, the MET25 mutant, and on the third and fourth row, the plasmid restoration of MET25 activity. On the left is 24 hours after spotting on the plate, on the right 48 hours.

Supplementary Figure 5

	41 -5 pr-Le	ev-Ura	
For + 140023 - MET 25	3	4	
Polf +4(1)(23) -MET 2 5 + PYLX R-MET26	S •	4	
	7	8	

Supplementary Figure 5. This is the control plate to ensure both markers were functionally expressed in our testing. The first row is the wildtype, second is the MET25 mutant, third is the mutant with the restorative plasmid.

Supplementary Figure 6. On the left, the concentration is 4μ M methyl mercury in YPD, on the right, 8μ M. Under 8μ M, we can see a slight advantage afforded to the MET25 mutant cells.