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Abstract

The identification and quantification of microbial abundance at the species or strain level from se-
quencing data is crucial for our understanding of human health and disease. Existing approaches for
microbial abundance estimation either use accurate but computationally expensive alignment-based ap-
proaches for species-level estimation or less accurate but computationally fast alignment-free approaches
that fail to classify many reads accurately at the species or strain-level.

Here we introduce CAMMiQ, a novel combinatorial solution to the microbial identification and abun-
dance estimation problem, which performs better than the best used tools on simulated and real datasets
with respect to the number of correctly classified reads (i.e., specificity) by an order of magnitude and
resolves possible mixtures of similar genomes.

As we demonstrate, CAMMiQ can better distinguish between single cells deliberately infected with
distinct Salmonella strains and sequenced using scRNA-seq reads than alternative approaches. We also
demonstrate that CAMMiQ is also more accurate than the best used approaches on a variety of synthetic
genomic read data involving some of the most challenging bacterial genomes derived from NCBI RefSeq
database; it can distinguish not only distinct species but also closely related strains of bacteria.

The key methodological innovation of CAMMiQ is its use of arbitrary length, doubly-unique substrings,
i.e. substrings that appear in (exactly) two genomes in the input database, instead of fixed-length,
unique substrings. To resolve the ambiguity in the genomic origin of doubly-unique substrings, CAMMiQ
employs a combinatorial optimization formulation, which can be solved surprisingly quickly. CAMMiQ’s
index consists of a sparsified subset of the shortest unique and doubly-unique substrings of each genome
in the database, within a user specified length range and as such it is fairly compact. In short, CAMMiQ
offers more accurate genomic identification and abundance estimation than the best used alternatives
while using similar computational resources.

Availability: https://github.com/algo-cancer/CAMMiQ

1 Introduction

Advances in high throughput sequencing (HTS) have made it possible to generate millions of short reads
in a few hours. An increased appreciation for the importance of microbes in human health and disease
has prompted the generation of many metagenomic HTS datasets. For example, whole genome shotgun
sequencing of the gut microbiome by the Human Microbiome Project provided important insight into the
function and diversity of the human gut microbiome [1]. Similarly, the increase in HTS of human tissues
represents another enormous source of metagenomic data because many of these human HTS datasets include
reads from tissue-resident microbes, which have been shown to play an important role in many aspects of
human disease, including tumorogenesis and the tumor response to therapy [2, 3, 4, 5, 6, 7].

Early approaches for analyzing metagenomic sequencing data were alignment based; reads were primarily
searched in GenBank [8] through BLASTN [9] or custom built aligners such as GATK PathSeq (which, in
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return, is based on popular alignment tools) [10]. Unfortunately, the recent growth of HTS data and reference
databases has made read search and alignment using BLASTN or PathSeq computationally infeasible. For
example, a recent study which reported that microbial reads from tumors sequenced by The Cancer Genome
Atlas (TCGA) can be used to build a classifier for cancer type [11] needed an “alignment-free” approach
(Kraken [12]) due to the large number of samples analyzed. Kraken and other recent computational methods
aim to identify and quantify specific genus in a metagenomic sample faster through a number of algorithmic
techniques are summarized in [13]. Even though these methods address the problem of computational
scalability, available alignment-free tools do not match the accuracy of alignment-based tools. For example,
another recent paper on microbial reads from single cell RNA-seq (scRNA-seq) datasets to distinguish cell
type specific intracellular microbes from extracellular and contaminating microbes [14] had to use PathSeq.
This was because of the relatively small number of microbial reads per cell, to classify as many reads as
possible at the genus and species levels - the resolution of available alignment-free methods were too limited
for this task. The distinct approaches taken by these two studies illustrate the trade-offs inherent in the
alignment-based and alignment-free methods to metagenomic identification and quantification.

One additional way to achieve speedup is through the reduction of the size of the sequence database used.
Methods in this direction may align reads only to marker genes, a relatively small collection of clade-specific,
single-copy genes, instead of the full reference genomes [15, 16], through the use of available read mapping
techniques. Such methods need to obtain the collection of marker genes by employing information beyond
what is offered by the database itself - which is not always possible. Furthermore, since these methods
identify and use only a handful of marker genes on each genome, many of the reads in the HTS data can not
be utilized, implying low specificity. As a consequence, species with low abundance within the sample may
be difficult to identify (let alone correctly quantify) because variation in HTS coverage may result in a few
or no reads originating from the marker genes.

Alignment-free methods have been available in the context of string comparison for a long time [17, 18,
19] and they have found applications in bioinformatics workflows before the emergence of HTS [20, 21].
Applications of alignment-free methods to metagenomic HTS data typically rely on k-mer “matches” to
return a taxonomic assignment for every read. These applications either assign a read to the lowest taxonomic
rank possible (determined by the specificity of the read’s k-mers) [22, 12, 23, 24], or to a pre-determined
genus, species, or strain taxonomic level [25, 26]. In contrast to marker gene based methods, k-mer based
applications can usually assign each given read to the correct genus. As the value of k becomes larger, more
reads can be assigned a unique label at the desired taxonomic rank, however, with growing k, the space
requirement of these methods grows very quickly - which, in the worst case, can imply a factor k increase on
the space requirements of the original database. The large memory footprint to maintain the entire k-mer
profile of each species can be reduced through hashing or subsampling the k-mers [27, 28]; however this would
result in loss of accuracy. In addition to methods based on exact k-mer counts, it is also possible to assign
metagenomic reads to bacterial genomes by employing species-specific sequence features (e.g. short k-mer
distribution or GC content) [29, 30, 31, 32, 33], although methods that employ this approach are typically
not very accurate at species level or (especially) at strain level assignment.

The ability to identify and quantify distinct pathogenic strains in a microbial sample has many applica-
tions in diagnosing and treating infectious diseases [34]. In particular, mixed infections that are caused by
multiple strains of a bacterial species [35, 36], have been described for tens of bacterial species [37]. It is
estimated that a high fraction of M. tuberculosis and Staphylococcus aureus patients are infected with mul-
tiple strains [34], each with distinct different drug susceptibility and antibiotic resistance profiles. Clearly
accurate analysis of microbial sequence data at the strain level would be highly helpful for identifying mixed
infections. Additionally, strain-level analysis can be important for distinguishing pathogenic strains from
non-pathogenic strains [38] and for tracking food-borne pathogens [39].

As have been summarized above, neither the alignment free, k-mer based methods, nor the marker-gene
based tools take into consideration the distribution of the reads over the genome of the species they are
assigned. In fact, the alignment-free methods do not even take into account the length of the genomes,
but are based on (unnormalized) read counts. In reality, provided that the sequence data to be analyzed is
genomic, the distribution of reads generated by high throughput sequencing from a given species or strain
should be roughly uniform. This principle is fundamental to a number of isoform abundance estimation
methods, which aim to solve a very similar problem [40, 41, 42]. Interestingly, this constraint is under-
utilized in the context of metagenomic analysis. One exception is the network flow based approach utilized
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by, e.g. [43], which (implicitly) establishes a reference guided assembly of the reads into the genomes of the
species involved. As such it is quite accurate but is very slow. Another method in this direction considers
the uniformity of coverage across k-mers with each genome to reduce false positive calls [44], which improves
the running time at a moderate loss of accuracy.

In contrast to the metagenomic species identification and quantification methods summarized above,
there are also tools to determine the likely presence of a long genomic sequence (e.g. the complete or partial
genome of a bacterial species) in a given metagenomic sample [45, 46, 47, 48]. Even though these tools solve
an entirely different problem, methodologically they are similar to the k-mer based species identification and
quantification tools such as [12, 26] in the sense that they build a succinct index on the database (this time
comprised of the the metagenomic read collection) and query this index without explicit alignment. And
because of their design parameters, these tools can not perform abundance estimation for a given species.

Our Contributions. In this paper we describe CAMMiQ (Combinatorial Algorithms for Metagenomic Mi-
crobial Quantification), a new computational method to maintain/manage a collection of m (bacterial)
genomes S = {s1, . . . , sm}, each assembled into one or more strings/contigs, representing a species, a par-
ticular strain of a species, or any other taxonomic rank. CAMMiQ’s data structure can answer queries of the
following form: given a query set Q of HTS reads obtained from a mixture of genomes or transcriptomes,
each from S, identify the genomes in Q, and, in case the reads are genomic, compute their relative abun-
dances. Our data structure is not only very efficient in terms of its querying time, but is also shown to be
very accurate, through simulations. The key novel feature of our data structure is its utilization of substrings
that are present in at most c genomes (c > 1) in S. There are alignment free methods that utilize unique
k-mers in genomes for metagenomic analysis [12, 26, 44] already. However, our data structure is the first to
consider those substrings that are present in two or possibly more genomes, for increasing the proportion
of reads it can utilize and thus improving sensitivity. Because of this novel feature, our data structure can
accurately identify genomes at subspecies/strain level.

In order to assign each read in Q that includes an “almost-unique” substring (i.e. present in at most
c genomes) to a genome, our data structure solves an integer linear program (ILP) - that simultaneously
infers which genomes are present in Q and, (if the reads are genomic) their relative abundances. Specifically,
the objective of the ILP is to identify a set of genomes, in each of which the coverage of the almost-unique
genomic substrings is (approximately) uniform.

One novel feature of our data structure is its use of shortest substrings (present in at most c genomes)
- rather than fixed length “k-mers”.1 This feature also increases the number of reads utilized by our data
structure since some reads may include no almost-unique k-mer but instead longer substrings that are
almost-unique. It also reduces the number of substrings and thus features (not to be confused with the
number of reads) to be handled by the ILP: this is because, rather than considering multiple overlapping
(almost-)unique k-mers, our data structure uses a single shorter substring shared by all of them. The ILP
formulation further reduces the number of almost-unique substrings it considers by maintaining a maximally
sparsified set of substrings that guarantee any potential read from a genome in S that is almost-unique
includes one such substring. In the remainder of the paper, we set the value of c to 2, so as to consider not
only unique but also “doubly-unique” substrings of the genomes in S. Even though this choice turned out
to be sufficiently powerful for the datasets we experimented with, it is easy to generalize our approach to
c > 2 (i.e. to triply-unique, etc. substrings).

As a final contribution, we provide sufficient conditions to identify and quantify genomes in a query
correctly, through the use of unique substrings/k-mers, provided the reads are error-free. Although this is a
purely theoretical result, to the best of our knowledge it is the first of its kind for metagenomic data analysis,
and is valid for CAMMiQ for the case c = 1 and other unique substring based methods such as CLARK and
KrakenUniq. CAMMiQ’s use with c = 2 is primarily advised for cases where these conditions are not satisfied.

We show that CAMMiQ is not only faster but also more accurate than GATK PathSeq on scRNA-seq
data obtained from monocyte-derived dendritic cells (moDCs) infected with distinct Salmonella strains
analyzed in [14]. Then we demonstrate the comparative advantage of CAMMiQ against some of the best used

1There are also the so-called “gapped” k-mers used in a variety of applications such as functional classification of metagenomic
reads [49]; however not only these applications are different from that of CAMMiQ, but also, they use fixed length substrings.
Finally, there are alternative approaches using, e.g. linked-reads [50]; CAMMiQ focuses on standard Illumina reads to be able to
analyze a wealth of readily available sequencing data sets.
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metagenomic tools on synthetic genomic HTS data from “challenging” microbial strains we derived from the
NCBI RefSeq database.

2 Algorithmic Formulation

The input to CAMMiQ is a set of m genomes S = {si}mi=1, not necessarily all from the same taxonomic level
(each genome here may be associated with a genus, species, subspecies or strain) to be indexed. Although
we describe CAMMiQ for the case where each si ∈ S is a single string, we do not assume that the genomes are
fully assembled into a single contig; rather the string representing a genome could simply be a concatenation
of all contigs from species i and their reverse complements with a special symbol $i between each contig. We
call S the input database and i ∈ {1, · · · ,m} the genome ID of string si.

A query for CAMMiQ involves a set of reads Q = {rj}nj=1 representing a metagenomic mixture. For
simplicity we describe CAMMiQ for reads of length L, however our data structure can handle reads of varying
length. Given Q, the goal of CAMMiQ is to identify a set of genomes A = {s1, · · · , sa} ⊂ S and their respective
abundances p1, · · · , pa which “best explain” Q. This is achieved by assigning (select) reads rj to genomes
si such that the implied coverage of each genome si ∈ A is uniform across si, with pi as the mean.

In its simplest form, CAMMiQ builds a succinct index for input database S, so as to handle queries in the
following form. Given Q = {r1, . . . rn} find the smallest set of genomes A1 = {s1, · · · , sa1} ⊆ S, such that
the set of unique L-mers in A1 includes all reads in Q that are identical to a unique L-mer in S. For any
si ∈ S, call an L-mer in si unique in S if it does not appear in any other si′ . We denote by Ui,L, the set of
all unique L-mers in si. Then A1 = {si ∈ S | Q ∩ Ui,L 6= ∅}.

The above query type may not be powerful enough to identify in Q those genomes in S that are very
similar (with respect to sequence composition) to other genomes and thus do not include many unique L-
mers. Such a genome si would be especially problematic if it is low in abundance, since the chances of Q to
include any unique L-mer from Ui,L will be low. As a solution to this problem, CAMMiQ also features a second
type of query, which is more general since it involves both unique and doubly-unique L-mers of genomes si.
We call an L-mer doubly-unique in S if it appears in exactly two genomes si and si′ and denote the set
of doubly-unique L-mers in si by Di,L. Given query set Q, CAMMiQ’s more general query asks to compute
A2, the smallest subset of S which include all reads in Q identical to unique and doubly-unique L-mers in
S. Note that, necessarily A1 ⊆ A2. Also note that, by involving doubly-unique L-mers, this more general
query may have a chance to capture those genomes in Q which have low abundance and have a few unique
L-mers.

Unfortunately, the index structure necessary to support the second type of queries is larger than that for
the first type of queries. Furthermore, this query type could still produce inaccurate results in the presence
of read errors. For handling read errors (at noise rates commonly observed in Illumina data) CAMMiQ finally
features a third type of query, which is even more general since it involves the “shortest” unique and doubly-
unique substrings of reads in Q. We call a substring of a genome si ∈ S a shortest unique substring, if it is
unique to si, has length in the range [Lmin, Lmax], and has no substring that is a shortest unique substring;
this definition can be extended to shortest doubly-unique substrings as well. This query thus asks to compute
the smallest subset A3 of S which include these substrings, with the constraint that the “coverage” of these
substrings in each genome si ∈ A3 is “uniform”. The query also asks to compute the relative abundance of
each genome in A3 as will be described later.

By considering shorter unique substrings, our most general query has a higher chance of observing them
within Q (since a substring of length L′ < L is included in L − L′ + 1 L-mers in the genome). This query
may also imply that a smaller fraction of unique or doubly-unique substrings in Q would be subject to read
errors (since it is likely that each read may include more than one such unique substring and it is likely that
at least one such unique substring will be error free). Furthermore the index structure necessary to maintain
the entire set of shortest unique and doubly-unique substrings of genomes in S is fairly large. As a result
of this, we build the index on a maximally sparsified set of shortest unique and doubly-unique substrings of
each si ∈ S which ensure that each read in Q that can be attributed to at most two genomes includes at
least one such substring (see the Supplementary Methods for more details).

An index on this sparsified set of shortest unique and doubly-unique substrings is sufficiently powerful
for CAMMiQ to answer all three types of queries, i.e. it can efficiently compute the sets A1, A2 and A3. For all
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three query types CAMMiQ first identifies for each read rj all unique and doubly-unique substrings it includes;
it then assigns rj to the one or two genomes from which these substrings can originate.2 To compute A1

CAMMiQ can simply return the collection of genomes which receive at least one read assignment. To compute
A2 CAMMiQ needs to solve the “set cover” problem, or more precisely, its dual, the “hitting set” problem
where genomes form sets and indexed strings that appear in query reads form the items to be covered.
To compute A3 CAMMiQ solves the combinatorial optimization problem that asks to minimize the variance
among the number of reads assigned to each indexed substring of each genome - the solution indicates the
set of genomes in A3 along with their respective abundances.

Details on the composition as well as the construction process for CAMMiQ’s index are discussed in Section
2.1. The query processing of CAMMiQ, which proceeds in two stages are discussed in Sections 2.2 and 2.3: The
first stage assigns reads to specific genomes - which is sufficient for computing sets A1 and A2. See Section
2.2 for the criteria we use for assigning a read to a genome, based on the indexed substrings it includes.
The second stage introduces the combinatorial optimization formulation to compute A3 as a response to the
most general query type. See Section Section 2.3 for details.

2.1 Index Construction

In order to respond to the three types of queries described above, we preprocess unique and doubly-unique
substrings of genomes in S to form an index structure as follows. Let U = ∪mi=1Ui and D = ∪mi=1Di where Ui
and Di are the substrings from genome si whose lengths are within the range than [Lmin, Lmax ≤ L], such
that each u ∈ U is present in at most one genome and each d ∈ D is present in at most two genomes in S.
See below for a detailed definition for the uniqueness of a substring. If our goal is to compute A1 or A2 only
(i.e. respond to the first and second type of queries), we can simply set Lmin = 0, Lmax = L and maintain
the corresponding substring collections U and D in our index. For computing A3 (i.e. responding to the
third type of queries - in addition to the first and second types), we actually use the length constrained
definitions of substrings for computing U and D. As mentioned earlier, we then sparsify U and D as much
as possible by maintaining only one representative substring among those that are in close proximity within
a genome, and discarding the rest (see “Subsampling unique substrings” below for details). We start with
formal definitions and some notation.

Notation and definitions. Let s = s1$1 ◦ · · · ◦ sm$m denote the string obtained by concatenating the
input reference genomes si ∈ S and let M = |s| =

∑
i |si| denote its length. A substring of s is a string in

the form s[l : r] = s[l]s[l + 1] · · · s[r]. With a slight abuse of notation we denote by si[l : r] not the actual
substring of si including its lth to rth symbols, but rather the substring of s including its lth to rth symbols,
with the provision that all these symbols are within the representation of si in s. We denote by an `-mer a
string of length `. The suffix of s that starts at position i is denoted suf[i] = s[i, · · · ,M ]. In what follows,
we use the generalized enhanced suffix array of s which is composed of three parts. (i) The suffix array
SA of s, which is comprised of the positions 1, 2, · · · ,M , sorted in increasing lexicographical order of the
corresponding suffixes suf[i], i = 1, 2, · · · ,M . That is, SA[i] = j indicates that suf[j] is the i-th smallest
suffix in lexicographical order. In addition, we denote SA−1[j] = i if SA[i] = j. (ii) The longest common prefix
array, LCP, contains in its i-th position the length of the longest common prefix of suf[SA[i]] and suf[SA[i−1]],
for 2 ≤ i ≤ M (and LCP[1] = 0). (iii) Finally, the generalized suffix array GSA contains the genome ID of
each suffix suf[SA[i]]. All of the above arrays can be constructed in linear time: the first data structure that
can be constructed in linear time, with the ability to determine whether a given substring is unique to a
“document” (i.e. a genome in our context) in a collection of documents, and compute the shortest unique
substring of a document that ends in a particular position, in time proportional to the substring length is the
augmented suffix tree of Matias et al. [51]. Once an augmented suffix tree is computed, it can be trivially
reduced to the above described enhanced suffix array in O(M) time - which can also be constructed without
the use of suffix trees to achieve a constant factor improvement in memory [52, 53].

We denote by ui(l, r) the substring si[l : r] that is unique to genome si; formally, this indicates that there
exists no substring uj(l

′, r′) on any genome sj 6= si such that ui(l, r) = uj(l
′, r′). We call ui(l, r) a shortest

unconstrained unique substring, if none of its substrings are unique. Similarly, we denote by di(l, r) the

2We explain how CAMMiQ resolves ambiguity on reads that include substrings which suggest conflicting assignments later in
the paper.
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substring si[l : r] that is doubly-unique to genome si and one other genome, say sj ; formally, this indicates
that there is exactly one genome sj which includes the substring dj(l

′, r′), i.e., si[l : r] = sj [l
′ : r′] for some

l′, r′. Clearly, any superstring of a unique substring is still unique and any superstring of a doubly-unique
substring is either unique or doubly-unique. We call di(l, r) a shortest unconstrained doubly-unique substring
of si and some other genome sj , if none of its substrings are doubly-unique.

For our purposes, we need to constrain the shortest unique and doubly-unique substrings with length
upper bound Lmax and lower bound Lmin. Under these constraints, we call any shortest unconstrained unique
substring ui(l, r) a shortest unique substring if Lmax ≥ r − l + 1 > Lmin. We also call a unique substring
ui(l, r) a shortest unique substring if r− l+ 1 = Lmin. Similarly, we call any shortest unconstrained doubly-
unique substring di(l, r) a shortest doubly-unique substring if Lmax ≥ r − l + 1 > Lmin. Again, we call a
doubly-unique substring ui(l, r) a shortest doubly-unique substring if r − l + 1 = Lmin as well. We say an
L-mer si[l : l+L− 1] includes a unique substring si[l

′ : r′], or, conversely, a unique substring si[l
′ : r′] covers

an L-mer si[l : l + L − 1] if l′ ≥ l and r′ ≤ l + L − 1. As such, we call an L-mer unique if it includes a
unique substring. We can generalize these definitions to the notion of an L-mer including a doubly-unique
substring, or conversely, a doubly-unique substring covering an L-mer, and thus making the L-mer itself
doubly-unique - provided that it is not unique.

Algorithmic framework to compute shortest unique substrings. It is quite simple to compute the
shortest unique and doubly-unique substrings in S in O(M) time by using the augmented suffix tree described
in [51]. A similar running time can also be achieved through the use of a suffix array, as discussed by [54]
for a single document (i.e. genome). We slightly generalize this to handle multiple genomes as follows. The
key observation we use is that given a position l, the shortest unique or doubly-unique substring of si that
starts at l (i.e. ui(l, r) or di(l, r)) is the shortest unique, or respectively doubly-unique prefix of suf[l]. In
this way the problem can be reduced to searching for the longest common prefix of suf[l] with any other
suffix from another genome (i.e., any genome with ID 6= GSA[SA−1[l]]) for each 1 ≤ l ≤ M . Let lcp(x, y)
denote the longest common prefix of two suffices x and y; then we define:

LCPu[i] = max
1≤j≤M ;GSA[j] 6=GSA[i]

lcp(suf[SA[i]], suf[SA[j]]) (1)

and
LCPd[i] = max

1≤j≤M ;GSA[j] 6=GSA[i],GSA[j′]
lcp(suf[SA[i]], suf[SA[j]]) (2)

where j′ indicates a suffix suf[j′] with GSA[j′] 6= GSA[i], which maximizes lcp(suf[SA[i]], suf[SA[j′]]); note
that any value of j′ that maximizes lcp(suf[SA[i]], suf[SA[j′]]) will imply the same value for LCPd[i]. CAMMiQ
maintains an array SU (of length M) such that SU[r] = l if ui(l, r) is a shortest unique substring. In order to
compute SU, each of its entries is initially set to 0 and for each i = 1, . . .M , one entry of SU is updated as

SU[SA[i] + LCPu[i]]← max{SU[SA[i] + LCPu[i]], SA[i]} (3)

Similarly, CAMMiQ maintains an array SD (again of length M) such that SD[r] = l if di(l, r) is a shortest
doubly-unique substring. Again each entry of SD is initially set to 0 and then for each i = 1, . . .M , one entry
of SD is updated as

SD[SA[i] + LCPd[i]]← max{SD[SA[i] + LCPd[i]], SA[i]}. (4)

See Supplementary Section 5.1 for further details.

Computing LCPu and LCPd. Given GSA[i1, · · · , i2], a subarray of GSA, let dGSA(i1, i2) be the number of
distinct genomes the entries in this subarray belong to, i.e. dGSA(i1, i2) = |{GSA[i1], · · · , GSA[i2]}|. We can
now compute LCPu and LCPd in linear time as follows.

LCPu[i] = max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(5)
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LCPd[i] = min



max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i2+

LCP[x], where i2+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 3

max


min

i2−<x≤i
LCP[x], where i2− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 3

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(6)

Note that to introduce a minimum length constraint Lmin on unique and doubly-unique substrings, each
LCPu[i] is (re)set to max{Lmin−1, LCPu[i]} and respectively each LCPd[i] is (re)set to max{Lmin−1, LCPd[i]}.
Then, to ensure that each shortest doubly-unique substring occurs in exactly two genomes (and not one),
we set LCPd[i] =∞ in case the above procedure ends up with LCPd[i] = LCPu[i]. See Supplementary Section
5.2 for the proof of correctness and a running time analysis for the computation of LCPu and LCPd.

Subsampling unique substrings. As defined above, the array SU maintains the indices of all shortest
unique substrings; some of these substrings may have large overlaps with others and thus are redundant
in assessing the uniqueness of a read in the query. Let Ui be the collection of all unique substrings on
genome si. Then, in order to reduce the index size, CAMMiQ aims to compute a subset U ′i of Ui, consisting
of the minimum number of shortest unique substrings that cover every unique L-mer on si. CAMMiQ also
aims to compute a subset D′i of Di, consisting of the minimum number of shortest doubly-unique substrings
that cover every doubly-unique L-mer on si. This is all done by greedily maintaining only the rightmost
shortest unique or doubly-unique substring in any L-mer of a genome in S. In the remainder of the paper
we denote the number of unique substrings in subset U ′i by nui (= |U ′i |) and respectively the number of
doubly-unique substrings in subset D′i by ndi (= |D′i|); we denote the number of unique L-mers on si by nuLi
and respectively the number of doubly-unique L-mers on si by ndLi . As we prove in Supplementary Section
5.3, this greedy strategy we employ can indeed obtain the minimum number of shortest unique substrings
to cover each unique L-mer, provided that each substring in Ui occurs only once si.

Index Organization. Consider the set of unique substrings Let h = minui∈U |ui| be the minimum length
of all shortest unique substrings (h is automatically set to Lmin if the minimum length constraint is imposed).
CAMMiQ maintains a hash table which maps a distinct h-mer w to a bucket containing all unique substrings
ui which have w as a prefix. Within each bucket, the remaining suffices of all unique substrings ui, i.e.
ui[h + 1 : |ui|], are maintained in a trie so that each leaf contains the corresponding genome ID. For each
read rj in the query, CAMMiQ considers each substring of length h and its reverse complement and computes
its hash value (in time linear with L through Karp-Rabin fingerprinting [55]). If the substring has a match
in the hash table, then CAMMiQ tries to extend the match until a matching unique substring is found, or finds
no match. (Note that the processing for doubly-unique substrings is identical to that for unique substrings.)
See Figure 1 for an overview of the index structure. Also see Section 2.2 below for the use of unique and
doubly-unique substrings identified for each read to answer the query.

2.2 Query Processing Stage 1: Preprocessing the Reads

Given the index structure on the sparsified set of shortest unique and doubly-unique substrings of genomes
in S, we handle each query Q in two stages. In Stage 1, we preprocess each read rj ∈ Q as follows. Consider
the collection of genome sets associated with each unique and doubly-unique substring in the read rj . If the
intersection of these sets is empty, we discard the read since these substrings are “conflicting” (see below
for a short discussion on these conflicts). If the intersection is non-empty, for each unique substring ui and
each doubly-unique substring di in rj , we increase by 1 the associated counter c(ui) and respectively c(di)
we maintain. These counters indicate the number of “conflict-free” reads that include each such substring
in Q. As described below, these counters will be essential to actual query processing in Stage 2.

1. Identify the set Uj = {uj,1, . . . uj,`} ⊂ U of unique substrings in rj ; similarly identify the set Dj =
{dj,1, . . . dj,`′} ⊂ D of doubly-unique substrings in rj .

2. (a) If Uj = Dj = ∅ then discard rj .
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Figure 1: Overview of CAMMiQ’s index structure. Strings in blue are unique substrings and those in green
are doubly-unique substrings.

(b) If Uj 6= ∅ but it includes a pair of unique substrings uj,i and uj,i′ which originate from different
genomes, then discard rj .

(c) If Uj 6= ∅ and all its unique substrings originate from the same genome sk, however Dj includes
a substring dj,i which can not originate from sk, then again discard rj .

(d) If Uj = ∅ and the intersection of the set of genomes from where the substrings in Dj can originate
is empty, then also discard rj .

(e) If on the other hand,

i. Uj 6= ∅, all its unique substrings originate from the same genome sk, and each doubly-unique
substring dj,i′ ∈ Dj can originate from sk, or

ii. Uj = ∅, however the intersection between the genomes where the doubly-unique substrings of
rj can originate from is comprised of only one genome, sk, or

iii. Uj = ∅ and dj is comprised of doubly-unique substrings that can only originate from the same
pair of genomes sk and sk′ , then

then increase c(uj,i) by 1 for each uj,i ∈ Uj and c(dj,i) by 1 for each dj,i ∈ Dj .

The above counters are sufficient to compute the set A1 as well as A3, the answer to our most general
query type. For computing A2, CAMMiQ additionally maintains a counter d(sk, sk′) for each pair of genomes
sk, sk′ , indicating the number of reads in Q that can originate both from sk and sk′ ; the value of this counter
needs to be increased for each pair of involved genomes by 1 in case (iii) above.

The preprocessing stage described above eliminates those reads that include conflicting unique or doubly-
unique substrings - conflicting in the sense that they are associated with different genomes. There are two
main reasons for observing such conflicts: (i) sequencing errors, (ii) the presence of reads in the query from
genomes that are not in S. By eliminating these conflicting reads, we reduce the chances of mis-identifying
the genomes from which they may originate.

In short, the read preprocessing stage produces two vectors cui = (c(ui,1), · · · , c(ui,nui)) and cdi =
(c(di,1), · · · , c(di,ndi)) that indicate the number of (conflict-free) reads that include each unique and doubly-
unique substring on each genome si. One can use these vectors to compute A1 = {si :

∑nui
l=1 c(ui,l) > 0}.

Additionally, through the use of the counter d(sk, sk′) maintained for each pair of genomes sk, sk′ one can
compute A2 = arg min |A′ ⊂ S| such that (i) si ∈ A′ if

∑nui
l=1 c(ui,l) > 0 and (ii) ∃si ∈ A′, if d(sk, sk′) > 0

then either i = k or i = k′. This is basically the solution to the hitting set problem we mentioned earlier,
whose formulation as an integer linear program (ILP) is well known [56]. From this point on, our main focus
will be computing A3 (as well as the relative abundances of the genomes in A3) for which we introduce an
ILP formulation described below.
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2.3 Query Processing Stage 2: ILP Formulation

CAMMiQ computes the list of genomes in the query as well as their abundances through an integer linear
program (ILP) described below. Let δi = 0/1 be the indicator for the absence or presence of the genome si
in Q. The ILP formulation assigns a value to each δi and also computes for each si its abundance pi in the
range [pmin, pmax].

Minimize
∑
i

(
1

nui

nui∑
l=1

|c(ui,l)− e(ui,l)|+
1

ndi

ndi∑
l=1

|c(di,l)− e(di,l)|)

Subject to e(ui,l) = (L− |ui,l|) · pi ·
1

L
· (1− êrr)|ui,l| ∀i, l, s.t. 1 ≤ l ≤ nui

(7)

e(di,l) = (L− |di,l|) · (pi + pj) ·
1

L
· (1− êrr)|di,l| ∀i, l s.t. 1 ≤ l ≤ ndi

(8)

pi ≤ δi · pmax ∀i (9)

δi = 0 ∀i, s.t. si /∈ E(Q)
(10)

pi ≥ δi ·min{L ·
nui∑
l=1

c(ui,l) ·
1

nuLi
, L ·

ndi∑
l=1

c(di,l) ·
1

ndLi
} · (1− ε) ∀i, s.t. si ∈ E(Q)

(11)∑
i

|si| · pi ≤ n · L (12)

The objective of the ILP is to minimize the sum of absolute difference between the expected and the actual
number of reads to cover a unique or doubly-unique substring. Since each genome may have different number
of unique and doubly-unique substrings, this difference is normalized w.r.t. nui or ndi. Constraints (7) and
(8) define the expected number of reads to cover a particular unique substring ui,l or doubly-unique substring
di,l - here pj is the abundance of genome sj which also includes di,l. Here we denote by êrr the estimated read
error (specifically substitution) rate per nucleotide, and denote by |w| the length of a substring w. Constraint
(9) ensures that the abundance pi of a genome is 0 if δi = 0. Constraint (10) ensures that the solution to
the above ILP excludes those genomes whose counters for unique and doubly-unique substrings add up to a
value below a threshold - so as to reduce the size of the solution space. More specifically, given a threshold
value α, the constraint excludes those genomes si that are not in the set of genomes E(Q) whose counters
for its unique substrings add up to a value above α · nuLi , and doubly unique substrings add up to a value

above α · ndLi . More formally, E(Q) = {si ∈ S |
∑nui
l=1 c(ui,l) ≥ α · nuLi } ∩ {si ∈ S |

∑ndi
l=1 c(di,l) ≥ α · ndLi }.

Constraint (11) enforces a lower bound on the coverage (and thus the abundance) of each genome si in the
solution to the above ILP (namely, with δi = 1), which must match the coverage (L ·

∑nui
l=1 c(ui,l) ·

1
nuLi

and
∑ndi
l=1 c(di,l) ·

1
ndLi

) resulting from the number of reads in Q that include a unique and doubly-unique

substring respectively, i.e., it must be at least (1 − ε) times the smaller one above for a user defined ε.
Constraint (12) enforces an upper bound on the coverage (and thus the abundance) of each genome si in
the solution to the above ILP, through making the sum (over each si) of the number of reads produced
on si based on pi not exceed the total number of reads n. Collectively, the last two constraints ensure
that the abundance pi computed from the ILP matches what is (i.e., the coverage based on read counts)
given by Q. Note that the absolute values in the objective can be removed by introducing a new variable
γ(ui,l) ≥ max{c(ui,l)− e(ui,l), e(ui,l)− c(ui,l)}.

2.4 When to Use Unique Substrings - the Error Free Case

We now provide a set of sufficient conditions to guarantee the (approximate) performance that can be
obtained (with high probability) in metagenomic identification and quantification by the use of unique
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substrings only. These conditions apply to CAMMiQ when c = 1, as well as CLARK, KrakenUniq and other
similar approaches. In case these conditions are not met, it is advisable to use CAMMiQ with c ≥ 2.

Suppose that we are given a query Q composed of n error-free reads of length L, sampled independently
and uniformly at random from a collection of genomes A = {s1, · · · , sa} according to their abundances
p1, · · · , pa. More specifically, suppose that our goal is to answer query Q by computing A1, along with an
estimate for the abundance value pi for each si ∈ A1, calculated as the weighted number of reads assigned to
si according to the procedure described in Section 2.2. Then, the L1 distance between the true abundance
values and this estimate will not exceed a value determined by n (number of reads), a, and qmin, the minimum
(normalized) proportion of unique L-mers among these genomes. For a given failure probability δ and an
upper bound on L1 distance ε, this translates into sufficient conditions on the values of n, a and qmin to
ensure acceptable performance by the computational method in use.

Theorem 1. Let Q = {r1, · · · , rn} be a set of n error-free reads of length L, each sampled independently and
uniformly at random from all positions on a genome si ∈ A = {s1, · · · , sa}, where s1, · · · , sa is distributed

according to their abundances p1, · · · , pa > 0. Let p′i =
pi·nLi∑a

i′=1
p′
i′ ·n

L
i′

be the corresponding “unnormalized”

abundance of pi for i = 1, · · · , a, where nLi denotes the total number of L-mers on si. Let q1, · · · , qa > 0 be
the proportion of unique L-mers on s1, · · · , sa respectively; pmin = min{p1, · · · , pa}; qmin = min{q1, · · · , qa}.
Then,

• (i) With probability at least 1− δ, each si can be identified through querying Q if n ≥ 2(a+1)+ln(1/δ)
(pminqmin)2

• (ii) With probability at least 1 − δ, the L1 distance between the predicted abundances p̂1, · · · , p̂a by

setting p̂i = ci/qi
n and the true (unnormalized) abundances p′1, · · · , p′a is at most ε if n ≥ 2(a+1)+ln(1/δ)

(εqmin)2 .

• (iii) Given n such reads in a query, with probability at least 1−δ, the L1 distance between the predicted

abundances p̂1, · · · , p̂a by setting p̂i = ci/qi
n and the true (unnormalized) abundances p′1, · · · , p′a is

bounded by
√

2[ln(1/δ)+(a+1)]
nq2min

.

where ci denotes the number of reads assigned to si.

See Supplementary Methods for a proof.

3 Results

In order to evaluate the overall running time, memory utilization and accuracy of CAMMiQ, we have established
three datasets to be indexed, all based on NCBI’s RefSeq database [57]. The first dataset aims to evaluate
the species level performance of CAMMiQ and thus includes one representative genome from each bacterial
species. The next dataset aims to evaluate CAMMiQ’s strain level performance by including all strain level
genome data from RefSeq. Since RefSeq database is biased towards a handful of genera (e.g. Salmonella
genus is represented by more than 300 strains) we also generated a subspecies level dataset where each
species is represented by only a handful of strains as described in detail below.

On the three index datasets, we evaluated CAMMiQ on both simulated and real bacterial read sets. The
simulated query sets aimed to measure the comparative performance of CAMMiQ against some of the best used
methods available. The real query sets aimed to evaluate the accuracy of CAMMiQ on metatranscriptomic
reads from single human immune cells deliberately infected with two distinct strains of the intracellular
bacterium Salmonella enterica [58].

For each dataset to be indexed and each corresponding query set we compared CAMMiQ’s performance
with some of the best computational methods available. As will be demonstrated, CAMMIQ’s performance is
superior to all alternatives in almost all scenarios we tested.

Below, in Section 3.1 we give a detailed description of the index data sets, simulated and real query sets we
used, as well as the alternative computational methods we tested to benchmark CAMMiQ’s performance. Then
in Section 3.2, we demonstrate the advantage offered by CAMMiQ’s (i) utilization of doubly-unique substrings
- in addition to unique substrings, and (ii) consideration of shortest such substrings instead of fixed length
k-mers as per CLARK. In Sections 3.3 and 3.4 we demonstrate CAMMiQ’s comparative accuracy against
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Figure 2: (A) Proportion of L-mers (for L = 100) that include a unique substring (plotted in red), a doubly-
unique substring (plotted in green), or either a unique or a doubly-unique substring (plotted in yellow) in
the large dataset of 4122 bacterial genomes from NCBI RefSeq database; these L-mers, when presented as
reads are utilizable by CAMMiQ (when Lmax = 100). Also included are the proportion of L-mers that include
a unique k-mer (k = 30) and thus are utilized by CLARK. For each plot, the genomes are independently
sorted with respect to the corresponding proportions in ascending order. (B) The expected number of reads
(of length L = 100) needed to capture one read containing a unique substring (in blue) as well as one read
containing a doubly-unique substring (in green) in the 50 genomes with the lowest proportion of unique
L-mers. Also included are the range for each value within the corresponding standard deviation. Note that
for this figure Lmax = 50.

alternative metagenomic analysis methods on simulated query sets through the use of our species-level and
strain-level datasets. CAMMiQ’s comparative performance on computational resources is then demonstrated in
Section 3.5. Finally in Section 3.6 we demonstrate CAMMiQ’s performance on real metatranscriptomic query
sets through its use of our the subspecies-level dataset. The results of CAMMiQ in this setup was compared
against that of GATK PathSeq which was used for the same purpose earlier [14], as well as BLASTN [9].

3.1 The Experimental Setup: Index Datasets, Queries, Benchmarked Methods,
Hardware

Our “species-level” index dataset consists of all complete bacterial genomes in NCBI’s RefSeq [57] Database
(downloaded on 06/16/2019). We (randomly) selected one representative genome per species out of 13737
reference genomes representing 4122 distinct species. This resulted in a total of m = 4122 genomes with a
total length of M = 3.4 ∗ 1010 (including the reverse complement contigs). On this index dataset we used
simulated queries only - as will be described below. Since our goal here is to measure CAMMIQ’s relative
performance against available methods, we also benchmarked state of the art k-mer based and marker-gene
based metagenomics profiling tools on this index dataset. Specifically we used Kraken2 [59] (the latest
version of Kraken [12]), KrakenUniq [44], CLARK [26] and MetaPhlAn2 [60]; these four tools provide very
similar functionality to CAMMiQ such as read level classification and abundance estimation.

Our “strain-level” index dataset is smaller: it is restricted to 614 Human Gut related genomes (according
to [61]) and is designed to evaluate CAMMiQ’s strain level identification and quantification performance against
the available tools mentioned above. Again, we used simulated query sets for this index dataset. Note that
on both the strain-level and species-level index datasets, we evaluated CAMMIQ on the most general A3 type
queries.

Perhaps our most interesting results are on the “subspecies-level” index dataset, which consists of 3395
selected genomes from the 13737 complete bacterial genomes; this dataset was primarily designed to evaluate
CAMMiQ’s accuracy on query sets involving real metatranscriptomic samples obtained from 262 single human
immune cells [58], each exposed to or infected with one of the two distinct Salmonella strains. In addition
there are 80 uninfected cells used as negative controls. The reads from each cell forms a natural query set for
this index dataset. A recent study [14] used the GATK PathSeq tool [10] in order to validate the Salmonella
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Query Set Index Dataset Read Length (L) Num. Reads (n) Err Rate

Least-20-uniform-e.f. 100 4.8M 0
Least-20-uniform 100 4.8M 0.01

Least-quantifiable-20-uniform-e.f. 100 5.0M 0
Least-quantifiable-20-uniform 100 5.0M 0.01
Least-20-genera-uniform-e.f. Species 100 4.0M 0

Least-20-genera-uniform level 100 4.0M 0.01
Least-20-genera-lognormal dataset 100 4.0M 0.01

Random-20-uniform 100 4.4M 0.01
Random-20-lognormal 100 5.0M 0.01

Random-20-lognormal-a.g. 100 1.1M 0.01
Random-100-uniform 100 21.5M 0.006

HumanGut-least-25 Strain 100 2.0M 0.01
HumanGut-random-100-1 level 100 8.0M 0.01
HumanGut-random-100-2 dataset 125 8.0M 0.01

HumanGut-all 100 20.0M 0.01

Filtered-scRNA-seq
Subspecies

66.4(13.6) 8.5M Unknownlevel
dataset

Table 1: Synthetic and real bacterial read sets used to benchmark CAMMiQ’s performance against the best
available metagenomic classification and abundance estimation tools. The top collection of queries involve
genomes from our species-level index dataset consisting of 4122 distinct bacterial species. The middle col-
lection were sampled from our strain-level index dataset of 617 gastrointestinal associated bacteria (possibly
incompletely assembled) provided in [61]. The bottom collection were real single cell RNA-seq reads se-
quenced from 342 immune cells infected with Salmonella enterica [58]; the corresponding subspecies-level
index dataset consists a selection of 3395 bacterial genomes from 2753 distinct species.

strains associated with each cell with limited success. Unlike the tools benchmarked above, GATK PathSeq
is alignment based; as a consequence it is slower than the above alternatives but is expected to be more
accurate. Interestingly CAMMiQ’s ability to distinguish cells exposed to or infected with specific strains of
Salmonella was better than PathSeq’s ability to do the same - with the added bonus that it is much faster.
Note that on metatranscriptomic query sets we used query types A1 and A2 rather than the most general
query type A3.

In order to systematically compare the performance of CAMMiQ and other metagenomic profiling tools,
we generated several simulated metagenomes as query sets, summarized in Table 1. The upper part of the
table corresponds to simulated data from our species-level dataset and the middle part corresponds to our
strain-level dataset.

The first set of simulated metagenomes aim to assess how well CAMMiQ identifies species in a query. For
that we simulated a metagenome consisting of the 20 genomes that have the lowest number of unique L-mers
in our species-level dataset. Each genome in the mixture was simulated to have similar read coverage. The
very first query we generated from this mixture (denoted Least-20-uniform-e.f.) had no read errors. The
second query (denoted Least-20-uniform) had i.i.d. substitution errors occurring at a rate of 1%. Note that
the 20 genomes we used in this mixture are intrinsically difficult to be identified by CLARK and other tools
we compared. However since these genomes have many doubly-unique L-mers - which are sometimes shared
with multiple other genomes, they could be identified by CAMMiQ (see Supplementary Methods and Figure 5
for a more detailed explanation).

The second set of metagenomes we simulated aim to assess the species-level quantification performance
of CAMMiQ. This simulated metagenome consisted of the 20 genomes which are among the 50 genomes in our
species-level dataset with the lowest proportion of unique L-mers, but had the highest proportion of doubly-
unique L-mers, making them somewhat easier to identify in comparison to the simulated metagenome above,
but difficult to quantify by tools other than CAMMiQ. We again generated two simulated read collections
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from this mixture, one with no sequencing errors (denoted Least-quantifiable-20-uniform-e.f.) and another
with i.i.d. substitution rate of 1% (denoted Least-quantifiable-20-uniform). The ability of CAMMiQ’s ILP
formulation to simultaneously determine the presence and abundance of genomes in these queries help it
outperform the alternatives. (See Supplementary Methods and Figure 5 for a more detailed explanation.)

Even though RefSeq identifies each genome in our species-level dataset to represent a distinct species,
a few of them have “unclassified” lineages at the species level. (Some of the genomes in the above queries
are among them; see Figure 5 in the Supplementary Methods.) For example, Rhizobium sp. N1314 with
Taxonomy ID: 1703961 has Rank: species; however its Lineage is noted as unclassified Rhizobium. Because
of this ambiguity, we generated a third set of metagenomes, again consisting 20 of those 50 genomes with the
lowest proportion of unique L-mers, this time making sure that each of these 20 genomes represent a distinct
genus. We generated 3 queries from this set of genomes. The first one had uniform coverage and had no
sequencing errors (denoted Least-20-genera-uniform-e.f.). The second and third both had i.i.d. substitutions
at a rate of 1%; the second had a uniform read coverage (denoted Least-20-genera-uniform), while the third
had lognormal distribution (denoted Least-20-genera-lognormal).

In addition to the above particularly challenging queries, we simulated a number of additional read
collections from 20 to 100 randomly chosen genomes from our species-level dataset. Unlike the above queries,
all these read collections had i.i.d. substitution errors; the first three queries at a rate of 1% and the last query
at a rate of 0.6%. Among them, the first simulated query (denoted Random-20-uniform) included reads from
20 genomes, each with similar read coverage. The second (denoted Random-20-lognormal) again included
reads from 20 genomes, this time with coverages obeying a log-normal distribution. The third (denoted
Random-20-lognormal-a.g.) included reads from 20 genomes, again with log-normal coverage distribution;
what makes this query unique is that 10% of the reads were from an additional genome (denoted in the
dataset name as a.g.) not included in our species-level dataset and thus is not part of CAMMiQ’s index.
The fourth (denoted Random-100-uniform) included reads from 100 randomly chosen genomes from our
species-level dataset, all with similar coverage.

In order to assess CAMMiQ’s performance in strain level identification and quantification, we simulated
queries involving genomes from a database of 614 strains of human gastrointestinal bacteria [61]3 from 409
species. We again simulated multiple queries, the first one involving reads from 25 strains with the smallest
number of unique L-mers (denoted HumanGut-least-25), next two involving reads from randomly selected
100 strains, the first with L = 100 as per the remainder of the queries (denoted HumanGut-random-100-1),
and the second with L = 125 (denoted HumanGut-random-100-2), and the final involving reads sampled
from 409 randomly picked strain level genomes (denoted HumanGut-all), each representing a distinct species
in the dataset. Note that none of these queries included more than one strain per species since two distinct
strains from a species are not likely to be simultaneously present in a metagenomic sample.

As mentioned earlier, the index we built to respond to these queries consisted of all the 614 strain level
genomes described above. The majority of these genomes are not complete and is comprised of multiple
contigs; we filtered out any contig with length < 10KB and built the index on the remaining contigs. This
resulted in seven strains without a single unique 100-mer and one strain without a single unique or doubly
unique 100-mer. This last genome of Bacillus andreraoultii was excluded from our queries since it contains
no indexable substring.

In our final experiment, we applied CAMMiQ to a “gold-standard” query set consisting of immune cells
infected ex vivo with an intracellular bacteria Salmonella enterica and subsequently sequenced using single-
cell RNAseq (scRNA-seq) [58] to validate its feasibility of identifying microbial reads from real datasets.
Specifically, this query, denoted as Filtered-scRNA-seq and also summarized in Table 1, consists of 342
monocyte-derived dendritic cells (moDCs) infected with either the D23580 (STM-D23580) or the LT2 (STM-
LT2) strain of Salmonella enterica and sequenced using Smart-seq2 platform. The corresponding index we
built to respond to this query consisted of the sparsified set of unique and doubly unique substring (with
L = 75, Lmin = 26 and Lmax = 50) from the subspecies-level dataset of 3395 selected complete bacterial
genomes in NCBI’s RefSeq Database. To create this subspecies-level dataset, we first identified 2753 out
of the total 4122 species to which at least 10 reads were mapped using GATK PathSeq [10] - and then
we subsampled the 4325 (out of the total 13737) genomes from these 2753 species by only keeping one
representative for each child of a species level taxonomic ID in NCBI’s Taxonomy Database; The only

3The complete set of genomes in this database is 617 but only 614 can be downloaded from RefSeq.
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exception is we replaced the sampled genome of Salmonella enterica subsp. enterica (Taxonomy ID: 59201)
with the genome of the two related strains D23580 (Taxonomy ID: 568708) and LT2 (Taxonomy ID: 99287),
which results in the final 3395 subspecies level representatives. Note that as a final step (which is in contrast
to the index used in the above simulated queries), we removed all plasmids contained in these genomes,
since the plasmids in many genomes downloaded from RefSeq were missing, which may cause potential false
positive “unique” or “doubly unique” substrings.

All of our experiments were run on a Linux server equipped with 40 Intel Xeon E7-8891 2.80 GHz
processors, with 2.5 TB of physical memory and 30 TB of disk space. The ILP solver used by CAMMiQ is
IBM ILOG CPLEX 12.9.0.

3.2 Comparative Utility of Variable-Length and Doubly-Unique Substrings

In this section we demonstrate the theoretical advantage offered by CAMMiQ in comparison to other tools,
due to its utilization of not only unique k-mers (as per CLARK), but substrings of any length, which could
be either unique or doubly-unique - within the species-level dataset we constructed. For that we compared
the proportion of L-mers from each genome si in this dataset (for read length L = 100) that are unique or
doubly-unique (and thus can be utilized by CAMMiQ) with the proportion of L-mers that include a unique
k-mer (that can be utilized by CLARK) for k = 30.

Figure 2A summarizes our findings: on the horizontal axis, the genomes are sorted with respect to the
proportion of unique and doubly-unique L-mers they have; the vertical axis depicts this proportionality
(from 0.0 to 1.0). The four plots we have are for the proportion of unique L-mers, doubly-unique L-mers,
the combination of unique and doubly-unique L-mers (all utilized by CAMMiQ), and the L-mers that include
a unique k-mer (utilized by CLARK). As can be seen, roughly three quarters of all genomes in this dataset
(and thus many of the bacterial species) are easily distinguishable since a large fraction of their L-mers
include a unique k-mer. However, roughly a quarter of the genomes in this dataset can benefit from the
consideration of doubly-unique substrings, especially when their abundances are low. In particular, 66 of
these 4122 genomes/species have extremely low proportion of (≤ 1%) unique 100-mers. In fact, the species
Francisella sp. MA06-7296 does not have a single unique 100-mer and the species Rhizobium sp. N6212
does not have any 100-mer that include a unique 30-mer (in fact any substring of length ≤ Lmax = 50).
These two species cannot be identified by CLARK in any microbial mixture, independent of the abundance
values.

Figure 2B depicts the inverse proportionality of doubly-unique L-mers in comparison to unique L-
mers among 50 genomes that have the lowest proportion of unique L-mers - for L = 100. The inverse-
proportionality of unique or doubly-unique L-mers for a genome corresponds to the number of reads to be
sampled (on average) from that genome to guarantee that the sample includes one read that is guaranteed to
be assigned to the correct genome. In the absence of read errors, this guarantees the correct identification of
the corresponding genome in the query. Note that, in half of these 50 genomes, almost all L-mers are doubly-
unique. This implies that any query involving one or more of these genomes would unlikely to be resolved
with CLARK. Yet this query could be handled by CAMMiQ since if a read contains a unique or doubly-unique
substring, then it can be correctly assigned to the corresponding species as described in Section 2.2.

Note that 3296 of the 4122 species in our species-level dataset have ≥ 90% of their 100-mers as unique.
Only a few of these unique substrings do not include a unique 30-mer and thus will be missed by CLARK.
This implies that from the accuracy point of view on these genomes, CLARK’s use of k-mers instead of
the shortest substrings does not put it at a disadvantage on these genomes - when k = 30 and L = 100.
However, as it will become clear later (see Table 5) CAMMiQ’s use of shortest substrings, combined with its
subsampling strategy gives it an advantage over CLARK (as well as KrakenUniq) with respect to the size
of the index structure - despite the fact that CAMMiQ needs to index not only unique but also doubly-unique
substrings from each genome.

3.3 Classification and Quantification Performance at the Species Level

We tested CAMMiQ on read collections sampled from the species-level dataset and compared its practical per-
formance with the select metagenomic profiling tools. Perhaps the most widely-used performance measures
to benchmark metagenomic classifiers are the proportion of reads correctly assigned to a genome among
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Performance
Query Set CAMMiQ Kraken2 KrakenUniq CLARK MetaPhlAn2

Measure

A. Precision

Least-20-uniform-e.f. 1.0 0.014 0.952 1.0 -
Least-20-uniform 0.974 0.001 0.009 0.006 -

Least-quantifiable-20-uniform-e.f. 1.0 0.043 0.936 1.0 -
Least-quantifiable-20-uniform 0.989 0.012 0.086 0.064 -
Least-20-genera-uniform-e.f. 1.0 0.027 0.978 1.0 -

Least-20-genera-uniform 0.993 0.005 0.047 0.028 -
Least-20-genera-lognormal 0.993 0.005 0.049 0.033 -

Random-20-uniform 0.997 0.783 0.981 0.994 -
Random-20-lognormal 0.998 0.933 0.991 0.995 -

Random-20-lognormal-a.g.* 0.998 0.900 0.998 0.997 -
Random-100-uniform 0.998 0.968 0.965 0.997 -

Least-20-uniform-e.f. 1.72M 25226 664 675 76483
Least-20-uniform 1.57M 220721 62189 94632 70605

Least-quantifiable-20-uniform-e.f. 3.18M 79408 6307 5844 120199
Least-quantifiable-20-uniform 2.81M 246877 62617 81575 115959

B. Num. Least-20-genera-uniform-e.f. 2.89M 33523 1844 1763 67625
Assigned Least-20-genera-uniform 2.58M 170506 36286 57764 64204

Reads Least-20-genera-lognormal 2.53M 183709 41681 59679 73433
Random-20-uniform 3.84M 3.33M 3.88M 3.81M 80633

Random-20-lognormal 4.48M 3.84M 4.43M 4.39M 19484
Random-20-lognormal-a.g. 0.91M 0.93M 0.97M 0.97M 28328

Random-100-uniform 19.5M 17.0M 19.4M 18.7M 0.4M

Least-20-uniform-e.f. 20/20 16 17 18 13
Least-20-uniform 20/28 16 17 18 13

Least-quantifiable-20-uniform-e.f. 20/20 19 19 20 18
C. Num. Least-quantifiable-20-uniform 20/27 19 19 20 18
Correctly Least-20-genera-uniform-e.f. 20/20 18 18 18 12
Identified Least-20-genera-uniform 20/24 18 18 18 12
Genomes Least-20-genera-lognormal 20/33 17 17 18 12

Random-20-uniform 20/20 18 20 20 11
Random-20-lognormal 20/21 20 20 20 9

Random-20-lognormal-a.g.* 20/20 19 20 20 13
Random-100-uniform 100/100 100 100 100 76

D. L1 Err.

Least-20-uniform-e.f. 0.0790 - - 0.8846 0.8171
Least-20-uniform 0.0929 - - 0.9124 0.8180

Least-quantifiable-20-uniform-e.f. 0.0375 - - 0.5774 0.5722
Least-quantifiable-20-uniform 0.0278 - - 0.5659 0.5956
Least-20-genera-uniform-e.f. 0.0626 - - 0.7156 0.9153

Least-20-genera-uniform 0.0591 - - 0.7067 0.9533
Least-20-genera-lognormal 0.0439 - - 0.5701 1.0083

Random-20-uniform 0.0113 0.4139 0.1446 0.2042 0.8257
Random-20-lognormal 0.0038 0.2843 0.1217 0.1496 1.7367

Random-20-lognormal-a.g.* 0.1262 0.2412 0.1173 0.1861 0.5578
Random-100-uniform 0.0096 0.2364 0.1327 0.2063 0.7801

Table 2: Performance evaluation of CAMMiQ, Kraken2, KrakenUniq, CLARK and MetaPhlAn2 on queries from the
species level dataset. Precision: the proportion of reads correctly assigned to a genome among the set of reads
assigned to some genome (correctly or incorrectly). Number of assigned reads: the total number of reads assigned to
some genome. Number of correctly identified genomes: for CAMMiQ we report both the number of correctly identified
genomes (true positives) and the total number of genomes returned by its ILP formulation (false positive); for
Kraken2, KrakenUniq, CLARK and MetaPhlAn2 we only report the number of correctly identified genomes (true
positives). Note that we consider MetaPhlAn2 to have a correct identification even if it reports the genus that this
genome belongs to. L1 error: the L1 distance between the true relative abundance values (between 0 and 1) and the
predicted abundance values for each genome in the query (i.e. positives). We made an exception for MetaPhlAn2,
where we measured the genus level L1 distance. Note that we converted the true abundance values reported by
Kraken2, KrakenUniq and CLARK by dividing the predicted abundance value for each genome by its length and
then normalizing these values by the total abundance value of all genomes. In each of the four measures, the best
performing tool’s results are highlighted.
*: 10% reads in the query Random-20-lognormal-a.g. are from a genome not in the index; any assignment of these
reads are necessarily incorrect by all tools except MetaPhlAn2 - which uses its own index, that happens to include
this genome.
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(i) the set of reads assigned to some genome, i.e. precision, and (ii) the full set of reads in the query, i.e.
sensitivity [26]. In Table 2A we report the precision values for all tools we benchmarked with the exception
of MetaPhlAn2, since it does not report individual read assignments. In Table 2B, instead of reporting sensi-
tivity, we report the total number of reads assigned to a genome, since the main goal of Kraken2, KrakenUniq
and CLARK is to classify as many reads as possible correctly. The number of reads assigned to a genome
(part B of the Table) multiplied by precision (part A of the table) indeed gives this number, i.e. that of
correctly classified reads. Note that any read assigned to a taxonomic level higher than (and not including)
species level by Kraken2 or KrakenUniq are considered to be not assigned. (In a way, this increases their
reported precision but decreases their number of assigned reads.) Also note that CAMMiQ’s primary goal is
not to classify each read but rather identify and quantify genomes in a query. Nonetheless, we still report
its intermediate output as follows. CAMMiQ considers certain reads as conflicting; here we consider them as
not assigned. It assigns certain reads to a single genome; we consider each such read assigned, and if the
assignment is correct, also correctly assigned. CAMMiQ then assigns each remaining read ambiguously to two
potential genomes.4 We consider this read assigned, and in case one of these two genomes is correct, also
correctly assigned. Finally since MetaPhlAn2 has an index based on a predetermined database, it is not
easy to evaluate this tool’s precision, since the IDs of the genomes indexed by the other four tools do not
always correspond to MetaPhlAn2’s genome IDs. As a result we only report its number of assigned reads
but not its precision.

We benchmarked CAMMiQ using its default parameter settings of Lmin = 26 and Lmax = 50, against
Kraken2, KrakenUniq and CLARK, with all three using k-mer length of 26. All four of these tools used the
same genomes for establishing their index. As can be seen in Table 2, CAMMiQ demonstrated the best precision
for read classification in all of the 11 simulated query sets. With respect to the total number of assigned reads
(correctly or incorrectly) on the first 7 queries, i.e. those involving the 20 genomes with the least number of
unique L-mers (Least-20-uniform-e.f. and Least-20-uniform), those that are the least quantifiable ( Least-
quantifiable-20-uniform-e.f. and and Least-quantifiable-20-uniform), and those are composed of genomes
each from a distinct genus ( Least-20-genera-uniform-e.f., Least-20-genera-uniform and Least-20-genera-
lognormal), CAMMiQ improves over the alternatives not only in terms of precision but also the number of reads
assigned, sometimes by an order of magnitude or more. The only exceptions are on those “hypothetical”
error-free queries, on which not only CAMMiQ and but also CLARK achieves 100% precision. For the above 7
queries Kraken2 has the lowest precision; KrakenUniq has better precision but only to a degree. Furthermore,
the number of assigned reads by KrakenUniq is typically the lowest.

On the next four queries, which are easier to identify and quantify, CAMMiQ’s peformance is still the
best overall. Its precision is the best for all four of these queries while the number of assigned reads are
slightly worse than KrakenUniq in two queries. This is likely due to the fact that KrakenUniq produces
some incorrect assignments, especially for the Random-20-uniform query on which KrakenUniq has a lower
precision. The precision of CAMMiQ is identical to KrakenUniq on Random-20-lognormal-a.g. query, where
10% of the reads are sampled from an additional genome not indexed. This is despite that the number of
assigned reads from this query is higher for KrakenUniq and CLARK, demonstrating that the introduction
of un-indexed species impacts the performance of CAMMiQ similarly to the other tools.

We next evaluated the number of correctly identified genomes (for MetaPhlAn2, correctly identified
species) in each query, as well as the L1 distance between the true abundance profile and the predicted
abundance profile by all five tools on the 11 queries involving our species level dataset. The results can be
found in Table 2, parts C and D and Figure 3. Note that CAMMiQ and MetaPhlAn2 automatically incorporate
a normalization with respect to genome lengths, while Kraken2, KrakenUniq and CLARK simply report the
number of reads assigned to each taxonomy rank (for our queries, species) as their abundance profile. In
order to compute L1 distances correctly, we converted the true abundance profiles of Kraken2, KrakenUniq
and CLARK by dividing the predicted abundance value of each genome by its length and then normalizing
these values by the total abundance value of all genomes.

As can be seen in Table 2 panels C and D, as well as Figure 3, CAMMiQ clearly offers the best performance
in both identification and quantification. It correctly identified all genomes present in each one of the 11
queries and was not impacted by the additional genome we introduced in the Random-20-lognormal-a.g.
query. As importantly, it only returned very few false positive genomes for the most challenging Least-20-

4This happens if the read includes one or more doubly unique substrings from the same pair of genomes but no unique
substring.
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Query Set Lmin Precision
Num.
Assi-

Num. Identified Species L1 Err.

gned
Reads

α = 0.001 α = 0.0001 α = 0.001 α = 0.0001

Least-20-uniform
21 0.887 1.69M 20/21 31/32 0.0835 0.0836
26 0.974 1.57M 20/21 28/29 0.0929 0.0929
31 0.980 1.49M 20/20 22/23 0.1064 0.1060

Least- 21 0.967 2.85M 20/20 29/31 0.0423 0.0400
quantifiable 26 0.989 2.81M 20/20 27/29 0.0294 0.0278
-20-uniform 31 0.992 2.70M 20/20 24/26 0.0344 0.0326
Least-20- 21 0.974 2.61M 20/20 25/26 0.0706 0.0715
genera- 26 0.993 2.58M 20/20 24/26 0.0585 0.0591
uniform 31 0.995 2.48M 20/20 23/24 0.0688 0.0683
Least-20 21 0.974 2.56M 19/19 34/35 0.0394 0.0418
genera- 26 0.993 2.53M 19/19 33/34 0.0416 0.0439
lognormal 31 0.995 2.43M 19/19 32/33 0.0355 0.0374
Random-20- 21 0.993 3.83M 20/20 20/20 0.0220 0.0220
uniform 26 0.997 3.84M 20/20 20/20 0.0113 0.0113

31 0.998 3.69M 20/20 20/20 0.0294 0.0294
Random-20- 21 0.996 4.50M 20/20 21/21 0.0432 0.0431
lognormal 26 0.998 4.48M 20/20 21/21 0.0039 0.0038

31 0.998 4.32M 20/20 21/21 0.0062 0.0058
Random-20- 21 0.989 0.92M 17/17 20/20 0.1492 0.1268
lognormal- 26 0.998 0.91M 16/16 20/20 0.1631 0.1262
a.g.* 31 0.999 0.87M 16/16 20/20 0.1658 0.1298
Random-100- 21 0.996 19.5M 100/100 100/100 0.0176 0.0176
uniform 26 0.998 19.5M 100/100 100/100 0.0096 0.0096

31 0.999 19.0M 100/100 100/100 0.0104 0.0104

Table 3: Performance of CAMMiQ as a function of minimum unique/doubly-unique substring length Lmin =
21, 26, 31, and minimum relative read count threshold α = 0.001, 0.0001 to report a genome. Precision:
the proportion of reads correctly assigned to a genome among the set of reads assigned to some genome,
correctly or incorrectly. Number of assigned reads: the total number of reads assigned to some genome.
Number of identified genomes: the number of genomes returned by CAMMiQ’s ILP formulation v.s. the
number of genomes that have sufficient read assignments (determined by α). L1 error: the L1 distance
between the true relative abundance values (between 0 and 1) and the predicted abundance values for each
genome in the corresponding query.
*: 10% reads in the query Random-20-lognormal-a.g. are from a genome not in the index; any assignment
of such a read to a genome is necessarily incorrect.
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uniform, Least-quantifiable-20-uniform and Least-20-genera-uniform as well as Least-20-genera-lognormal
queries, and at most one false positive genome for the remaining 7 queries. Other tools had varying levels
of false negatives in these 11 queries. Among them CLARK offered the best false negative performance:
it only reported false negatives in the queries involving a genome without a single unique k-mer. As can
be expected, MetaPhlAn2 had the worst performance with respect to false negatives, very likely due to the
incompleteness of its marker gene list5. This also led to a larger L1 distance than the other tools, even for
the relatively easy queries. Kraken2 and KrakenUniq were also prone to have a few false negatives, though
less than MetaPhlAn2. Furthermore their predicted abundances are smaller than the true abundance values,
because they may assign reads to higher taxonomic ranks than the species level; see Figure 3. This is
especially evident in the in the first 7 (difficult) queries: even though Kraken2 and KrakenUniq identified
the majority of the genomes correctly, the abundance values they reported on these genomes were all close
to 0 and thus the L1 distances turned out to be very close to 1 (see Figure 3). As a result, these values
are not reported in Table 2D. Note that we do not report the number of false positive genomes returned by
each tool on these 11 queries. This is primarily because of the fact that CLARK, Kraken2 and KrakenUniq
are not designed to identify genomes in a query mixture and thus do not “care” whether the false positive
assignments are distributed across many genomes (which would result in a large number of false positives)
or are concentrated in a few genomes (resulting in a few false positives). MetaPhlAn2 aims to identify
genomes however it can do so in any taxonomic level. As such, all these four tools return a very large
number of false positives, especially for the first 7 queries, but since we felt that this could be unfair due to
the above reasons, we decided to report only the false positives reported by CAMMiQ, noting that its genome
identification performance is significantly better than the other tools. We ignore the false positive calls also
in the L1 measure since it is calculated only on the true positive genomes. This explains the single query
and measure for which CAMMiQ seems to have performed worse than an alternative, namely KrakenUniq: on
Random-20-lognormal-a.g. KrakenUniq’s L1 distance is slightly better than CAMMiQ. We remind that in this
query, 10% of the reads are sampled from a genome not in the index. Since these reads can not be assigned
through any means, the relative abundances of the other genomes will be overestimated by ∼ 10%, provided
that there are no false positive genomes as per CAMMiQ. However, KrakenUniq’s false positive calls (there are
several) reduces its relative abundance estimates for the true positive genomes, and gives a seemingly better
L1 distance. This can be observed in Figure 3, which depicts for each query, relative abundance estimate
for each genome by each one of the tools we benchmarked. As can be clearly seen, CAMMiQ’s individual
abundance estimates are just on the mark for each one of the genomes even for the most difficult queries.

We finally evaluated the impact of two important parameters for CAMMiQ: α, the minimum relative read
count threshold for reporting a genome, and Lmin, the minimum unique or double-unique substring length
(values larger than the default value of 50 for Lmax did not have a big impact and thus are not reported here).
In Table 3 we report the results for each possible combination of Lmin = 21, 26, 31 and α = 0.001, 0.0001,
on 8 of the 11 queries, omitting the 3 error free queries (on which the impact on precision is minimal).
As we increase Lmin, CAMMiQ’s precision improves, however its read assignment performance deteriorates.
Interestingly, its predicted abundance values did not change much with increasing Lmin. As a result we set
the default Lmin to 26 in CAMMiQ. On the other hand, increasing the value of α, decreased the number of
false positives in CAMMiQ’s output, particularly in the most difficult queries. However, as a result of this, for
the queries Least-20-genera-lognormal and Random-20-lognormal-a.g., those genomes with low abundance
values were disregarded by CAMMiQ, leading to false negatives. CAMMiQ allows the user to set the parameter α
with prior knowledge on the reads to be queried (e.g., the expected read coverage or the number of genomes
in the query); we set its default value to 0.0001.

3.4 Quantification Performance at the Strain Level

We finally evaluated CAMMiQ’s performance on queries composed from our strain-level dataset that consists of
614 Human Gut related genomes (strains) from 409 species [61] as described in Section 3.1. Three of the tools
we evaluated, namely CLARK, Kraken2 and KrakenUniq, simply aim to perform read classification, which
we evaluated in Section 3.3. They are not designed to identify or quantify genomes, especially at the strain
level. On the other hand MetaPhlAn2’s index have strain level information and through that it attempts to
identify and quantify strains. As a result we report on the performances of both CAMMiQ and MetaPhlAn2

5Here we used the latest set of marker genes mpa v20 m200 in MetaPhlAn2.
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Figure 3: Comparison of CAMMiQ’s relative abundance estimates to that of the existing methods for all 11
queries involving the species level dataset. The horizontal axis in the top 8 plots represent the species (i.e.,
genomes) in an arbitrary order and the vertical axis represent the relative abundance values. The bottom 3
plots are for the queries with log-normal distributions, where the horizontal axis represent the true abundance
values while the vertical axis represent the estimated abundance values, both in log-scale.
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in Table 4. As can be seen, CAMMiQ managed to identify and accurately quantify all strains in the queries
HumanGut-random-100-1 and HumanGut-random-100-2, and > 98% strains in the query HumanGut-all,
with almost no false positives. Here we only report the strain level calls made by MetaPhlAn2 (it made
additional calls at the species level or higher), based on our best attempt to match its calls to the strain IDs
available to us. It may be possible to slightly increase the true positive values (the first value) reported here.

3.5 Performance on Computational Resources

We compared the running time and memory use of CAMMiQ, Kraken2, KrakenUniq, CLARK and MetaPhlAn2
in responding to the queries; see Table 5. We do not report the time for building the index or loading it
into memory, since this is performed only once - all tools roughly need a couple hours to construct the index
on the species level dataset. When it comes to querying time, CAMMiQ is outperformed only by Kraken2,
typically by a factor of 3. This is primarily due to the fact that Kraken2’s index is much smaller than that
of CAMMiQ since it consists of a small subset of unique k-mers. This compact index structure substantially
impacts its performance, which is improved by KrakenUniq, through its consideration of all unique k-mers.
The resulting index size of KrakenUniq is comparable to that of CAMMiQ (CAMMiQ’s is slightly higher as it also
includes doubly-unique substrings), however its running time is almost twice as much, even though it does not
solve an ILP. CAMMiQ owes its superior identification and quantification performance to its ILP formulation,
however it is not time-wise penalized by it. The best memory footprint is achieved by MetaPhlAn2 through
the use of its own index, however both its run time and its identification/quantification performance is worse
than the others.

3.6 Identification Performance - Subspecies Level Dataset with Real scRNAseq
Queries

As mentioned earlier, for the “real” metatranscriptomic dataset, we employed query types A1 and A2 instead
of query type A3. We remind the reader that A1 simply requires the computation of all genomes in the
index dataset for which there is at least one unique substring observed in the query read set, and A2 requires
the computation of the smallest set of genomes in the index dataset to include all unique or doubly-unique
substrings observed in the query read set. Here each query corresponds to the Filtered set of non-human
scRNA-seq reads from the corresponding immune cells as described in [58]. More specifically we pre-filtered
all query scRNA-seq reads which (i) possibly originate from the human genome, (ii) have low sequence
quality and “complexity”, or (iii) map to 16S or 23S ribosomal RNAs on the two Salmonella genomes (to
avoid incorrect assignment of reads due to “barcode hopping”). When analyzing the resulting genomes, we
used annotations provided by [58] and categorized the cells into 5 groups: infected cells that were confirmed
to contain intracellular Salmonella (either the STM-LT2 or STM-D23580 strain); bystander cells that were
exposed to either the STM-LT2 or STM-D23580 strains but confirmed to not contain intracellular Salmonella;
and cells that were mock-infected and sequenced as controls. For each query, we compared the number of
reads CAMMiQ assigned uniquely to STM-LT2 or STM-D23580 genomes to those aligned (and assigned) by
GATK PathSeq [10] as well as BLASTN [9].

As expected, CAMMiQ reconfirmed that the abundance (measured by unique read counts) of Salmonella
was substantially higher in the infected cells compared to the mock-infected controls; and importantly,
the unique STM-LT2 (and STM-D23580) reads were differentially abundant between the cells exposed to or
infected with STM-LT2 strain (and STM-D23580 strain respectively; see Figure 4A). Interestingly, CAMMiQ
identified a small number of unique STM-LT2 reads in the cells exposed to or infected with STM-D23580
strain and vice versa; these were verified with BLASTN, indicating possible sequencing errors or incorrect
assignment of specific reads to cells. Compared with the alignment based approach GATK PathSeq with
the same index dataset, CAMMiQ was shown to be more sensitive: on average, it identified (roughly) an
order of magnitude higher number of unique STM-LT2 or STM-D23580 reads per corresponding cell. This
demonstrates CAMMiQ’s potential ability to better identify intracellular organisms at subspecies or strain level;
see Figure 4B. 6 When it comes to running time, CAMMiQ offers several orders of magnitude comparative

6As can be seen in Figure 4B, even though CAMMiQ’s A2 type queries generally improve over its A1 type queries with
respect to the number of cells correctly identified with STM-LT2 strain or STM-D23580 strains, it seems to also introduce some
potential false positive calls (e.g. the last panel in the figure corresponding to the controls). This could be due to additional

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.06.12.149245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.149245


Figure 4: A: Comparison of the distributions of filtered-scRNAseq reads uniquely assigned to the STM-LT2
(the left side in each panel) or STM-D23580 strain (the right side in each panel) by CAMMiQ (red), GATK
PathSeq (blue) and BLASTN (green) between the 5 groups of cells that were (i) exposed to STM-LT2; (ii)
exposed to STM-D23580; (iii) mock-infected as controls; (iv) infected with STM-LT2; and (v) infected with
STM-D23580. Solid lines indicate the strain which the cells have been exposed to or infected with. Ideally
the strain with which the cells have been exposed to or infected with should have higher read count values.
B: The number of cells with more than t reads uniquely assigned to the STM-LT2 strain (y-axis in each
panel) or STM-D23580 strain (x-axis in each panel) by CAMMiQ with query type A1 (red), GATK PathSeq
(blue) and BLASTN (green), for varying values of t. We also included the results of CAMMiQ with query type
A2 (purple) which uses doubly-unique substrings in addition to unique substrings and thus is not represented
in part (A) of the figure. When the threshold t is very high, neither strain could be detected by any method
in any of the cells - this corresponds to position (0, 0) in each plot. When the threshold is very low (as low
as 0), then both strains can be detected in all cells by all tools - this corresponds to position (c, c) where c
corresponds to the total number of cells in a given plot. The plot for an ideal tool should connect positions
(0, 0) with (c, c) following the axis that represents the particular strain with which the cells are exposed to
or infected with, as closely as possible (the mock control is the exception). The plots for CAMMiQ are closer
to this ideal than PathSeq or BLASTN.
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Query Set
CAMMiQ MetaPhlAn2

Num. Identified Strains L1 Err. Num. Identified Strains L1 Err.

HumanGut-least-25 24/26 0.1130 ≥ 18/19 0.2910
HumanGut-random-100-1 100/101 0.0209 ≥ 74/83 0.3260
HumanGut-random-100-2 100/102 0.0256 ≥ 67/72 0.5066

HumanGut-all 404/407 0.0517 ≥ 279/305 0.4439

Table 4: CAMMiQ’s quantification performance at strain level, compared to MetaPhlAn2. Number of identified
strains: the number of true positive strains/the total number of strains identified. L1 error: the L1 distance
between the true relative abundance values and the predicted abundance values, across all strains in the
query.

advantage on the filtered-scRNAseq queries. Specifically, CAMMiQ only took a total of 65.3s for computing
A1 type queries and an additional 2.5s for computing A2 type queries on the entire query set, outperforming
GATK PathSeq, which required 29628.1s.

4 Discussion

We have introduced CAMMiQ, a new computational approach to solve a computational problem that has
not been exactly addressed by any available method: given a set S of distinct genomic sequences (of any
taxonomic rank), build a data structure so as to identify and quantify genomes in a any query, composed of
a mixture of reads from a subset of genomes from S. CAMMiQ is particularly designed to handle genomes that
lack unique features; for that, it reduces the identification and quantification problems to a combinatorial
optimization problem that assigns substrings with limited ambiguity (i.e. doubly unique substrings) to
genomes so that (in its most general A3 type query), each genome is “uniformly covered”. Because each
such substring has limited ambiguity, the resulting combinatorial optimization problem can be very efficiently
solved through existing integer program solvers such as IBM CPLEX (and thus are branch-and-bound
based, whose run-time performance is determined by the “fan-out” at each decision point). Provided that
the doubly-unique substrings of a given genome are not all shared with one other genome, the use of
doubly-unique substrings increases CAMMiQ’s ability to identify and quantify this genome within a query.
As mentioned earlier, in case the dataset to be indexed involves several genomes with high level of similarity,
CAMMiQ’s data structure and its combinatorial optimization formulation can easily be generalized to include
triply or quadruply unique substrings, without much computational overhead.
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5 Supplementary Methods

5.1 Unique substrings from LCPu or LCPd

The pseudocode for the algorithm to compute arrays SU and SD according to equations (3) and (4) respec-
tively, given SA, LCPu and LCPd is given below. As can be seen, the algorithm runs in O(M) time.

Algorithm 1 ShortestUniqueFromLCP(SA, LCPu, LCPd, Lmax)

1: for i from 1 to M do //Initialize SU

2: SU[i]← 0
3: SD[i]← 0
4: end for
5: for i from 1 to M do //Update SU according to (3) and SD according to (4)
6: if LCPu[i] < Lmax then
7: SU[SA[i] + LCPu[i]]← max{SU[SA[i] + LCPu[i]], SA[i]}
8: end if
9: if LCPd[i] < Lmax then

10: SD[SA[i] + LCPd[i]]← max{SD[SA[i] + LCPd[i]], SA[i]}
11: end if
12: end for
13: return SU, SD

5.2 Computing LCPu and LCPd

In this section we show that SU and SD can be correctly constructed in O(M) time. We start by showing
that the definition of LCPu and LCPd in Equation (1) and Equation (2) can respectively lead to the shortest
substrings occurring in at most one genome or two genomes. Then we give CAMMiQ’s detailed implementation
of Equation (5) and Equation (6) to compute the LCPu and LCPd arrays. Finally we give a running time
analysis of this implementation.

First consider the content of SU at the end of procedure ShortestUniqueFromLCP. To see the substring
s[l : r] corresponds to the r-th entry SU[r] = l (where l 6= 0) in SU is unique, meaning it only occurs in genome
with ID GSA[SA−1[l]], assume that there is another genome si′ having the same substring s[l′, r′] = s[l : r] -
this leads to a contradiction, since it implies that lcp(suf[l], suf[l′]) ≥ r− l+ 1. However, due to the update
rule of SU and the definition of LCPu, lcp(suf[l], suf[l′]) ≤ r − l for any 1 ≤ l′ ≤ M satisfying suf[l] and
suf[l′] start on different genomes, namely GSA[SA−1[l]] 6= GSA[SA−1[l′]], which is a contradiction. Now, to see
s[l : r] is a shortest unique substring, i.e. no substring of s[l : r] is unique to genome GSA[SA−1[l]], we show
that any s[l : r′ < r] and s[l′ > l, r] occurs in one other genome si′ . The former case is due to the definition
of LCPu - there exists suf[l′] on genome i′ 6= GSA[SA−1[l]] such that lcp(suf[l], suf[l′]) ≥ r − l, implying a
substring s[l′ : l′ + (r − l) − 1] identical to s[l, r − 1]; the later case is due to the update rule of SU - if
s[l′ > l, r] is also unique to genome GSA[SA−1[l]], then SU[r] must be set to l′ instead of l. Therefore, s[l : r]
is a shortest unique substring (to genome with ID GSA[SA−1[l]]); on the other hand, if s[l : r] is a shortest
unique substring, then SU[r] will maintain l after SU is completely updated.

Now consider the content of SD at the end of procedure ShortestUniqueFromLCP. We follow the above
proof to show s[l : r] is a shortest doubly-unique substring (to genome ID GSA[SA−1[l]] and possibly another
genome i′). To see the substring s[l : r] corresponds to the r-th entry SD[r] = l (where l 6= 0) in SD occurs
in at most two genomes, with ID GSA[SA−1[l]] (and possibly i′, any genome that suf[l′] belongs to, giving
the largest lcp(suf[l], suf[l′])), we can assume there exists a thrid genome si′′ having the same substring
s[l′′, r′′] = s[l, r] = s[l′, r′] and similarly obtain a contradiction. Note that according to (2), it is possible
to have LCPd[SA

−1[l]] ≥ LCPu[SA−1[l]] and in this case s[l : r] is a unique substring which only occurs in
genome GSA[SA−1[l]]. If LCPd[SA

−1[l]] < LCPu[SA−1[l]] on the other hand, then s[l : r] must occur in exactly
two genomes, since SD is updated according to LCPd and we can find another suffix of s whose length-
(r − l + 1) (r − l + 1 ≤ LCPd[SA

−1[l]]) prefix is identical to s[l : r]. In addition, to see s[l : r] is a shortest
doubly-unique substring, meaning no substring of s[l : r] occurs only in genome GSA[SA−1[l]] and i′, we can
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similarly show that any s[l : r′ < r] and s[l′ > l, r] can be found in a third genome si′′ , regardless whether
LCPd[SA

−1[l]] = LCPu[SA−1[l]] or LCPd[SA
−1[l]] < LCPu[SA−1[l]].

As a result of the above observations we can now formally state the following lemma.

Lemma 2. (i)After updating SU according to (3), SU[r] = l 6= 0 implies that s[l : r] is a shortest unique
substring to genome GSA[SA−1[l]];
(ii)After updating SD according to (4) SD[r] = l 6= 0 implies that s[l : r] is a shortest doubly-unique substring
to genome GSA[SA−1[l]] and i′ = GSA[SA−1[l′]] where suf[l′] gives the largest lcp(suf[l], suf[l′])).

Furthermore, it’s also clear that all unique substrings s[l : r] are stored in SU and all doubly-unique
substrings s[l : r] are stored in SD, as we have considered the suffix of s starting with every possible l.

Both LCPu and LCPd can be modified to incorporate the minimum length constraint Lmin on unique/doubly-
unique substrings. By setting LCPu[i] to max{Lmin − 1, LCPu[i]} for each entry 1 ≤ i ≤ M , the corre-
sponding substrings maintained in SU should also be unique, and with minimum length Lmin. One should
be careful however when dealing with LCPd: if LCPu[i] ≤ Lmin − 1, then the corresponding substring
s[SA[i], SA[i] + LCPu[i]] occurs in only one genome. Therefore we set LCPd[i] to ∞ (meaning it’s not con-
sidered) if LCPu[i] ≤ Lmin − 1 or LCPd[i] ≥ LCPu[i]; and to max{Lmin − 1, LCPd[i]} otherwise (this can be
done by first set each LCPu[i] to max{Lmin − 1, LCPu[i]} and LCPd[i] to max{Lmin − 1, LCPd[i]}, and then set
each LCPd[i] to ∞ if LCPd[i] ≥ LCPu[i]), which ensures the corresponding substrings maintained in SD are
doubly-unique, and with minimum length Lmin.

With the correctness of (3) and (4) in mind, our next concern is how to actually compute LCPu and
LCPd based on their definitions. In the following we show that (5) and (6) correctly implement (1) and
(2), without considering the borderline cases (i.e., for i = 1 or i = M ; to handle these cases we can set
GSA[0] = GSA[M + 1] = 0 and ignore i2− when i = 1 and i2+ when i = M).

Lemma 3. For any 1 ≤ i ≤M ,

(i)LCPu[i] = max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(ii)LCPd[i] = min



max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i2+

LCP[x], where i2+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 3

max


min

i2−<x≤i
LCP[x], where i2− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 3

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

where dGSA(i1, i2) = |{GSA[i1], · · · , GSA[i2]}|.

Proof. Let lcp(i, j) denote lcp(suf[i], suf[j]) for short. We utilize the properties of SA and LCP array: (a)
the longest common prefix of two suffices suf[i] and suf[j] (assume suf[i] is lexicographically smaller than
suf[j]) is lcp(i, j) = min{LCP[x] | x ∈ [SA−1[i]+1, SA−1[j]]}; also we have (b) lcp(i, j) ≥ lcp(SA[SA−1[i]−1], j)
and lcp(i, j) ≥ lcp(i, SA[SA−1[j] + 1]). (i) follows immediately from these properties:

LCPu[i] = max{lcp(SA[i], SA[i+]), lcp(SA[i−], SA[i])}.

To see (ii), we consider three cases:

• If lcp(SA[i], SA[i+]) = lcp(SA[i−], SA[i]), then LCPd[i] = lcp(SA[i], SA[i+]) = lcp(SA[i−], SA[i]), due to (b).
(ii) holds in this case by applying (a).

• If lcp(SA[i], SA[i+]) < lcp(SA[i−], SA[i]), then LCPd[i] = max{lcp(SA[i], SA[i+]), lcp(SA[i2−], SA[i])} due to
(b). Also LCPd[i] ≤ lcp(SA[i−], SA[i]) = max{lcp(SA[i], SA[i2+]), lcp(SA[i−], SA[i])} since lcp(SA[i], SA[i2+])
≤ lcp(SA[i], SA[i+]) < lcp(SA[i−], SA[i]). (ii) therefore holds by applying (a).
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• If lcp(SA[i], SA[i+]) > lcp(SA[i−], SA[i]), then we have similarly LCPd[i] = max{lcp(SA[i], SA[i2+]), lcp(SA[i−],
SA[i])} due to (b) and LCPd[i] ≤ lcp(SA[i], SA[i+]) = max{lcp(SA[i], SA[i+]), lcp(SA[i2−], SA[i])} since
lcp(SA[i2−], SA[i]) ≤ lcp(SA[i−], SA[i]) < lcp(SA[i], SA[i+]). Again we can see (ii) by applying (a), which
complete the proof.

Next we give the pseudocode for the algorithm to update LCPu and LCPd based on (5) and (6) respectively,
and show that they actually run in linear time.

Algorithm 2 LCPuFromLCP(GSA, LCP, Lmin)

1: LCPu ← array of length M
2: i← 1, minlcp ←M , next ← 0
3: while i < M do
4: while i < M and GSA[i + next] = GSA[i +

next + 1] do
5: next← next + 1
6: end while
7: for j from next to 0 do
8: minlcp ← min{minlcp, LCP[i+ j + 1]}
9: LCPu[i+ j]← minlcp

10: end for
11: i← i+ next + 1
12: minlcp ←M , next ← 0
13: end while
14: i←M , minlcp ←M , next ← 0
15: while i > 1 do

16: while i > 1 and GSA[i−next] = GSA[i−next−
1] do

17: next← next + 1
18: end while
19: for j from next to 0 do
20: minlcp ← min{minlcp, LCP[i− j]}
21: LCPu[i− j]← max{LCPu[i− j],minlcp}
22: end for
23: i← i− next− 1
24: minlcp ←M , next ← 0
25: end while
26: for i from 1 to M do
27: LCPu[i]← max{LCPu[i], Lmin}
28: end for
29: return LCPu

Lemma 4. Both LCPuFromLCP and LCPdFromLCP run in O(M) time.

Proof. Through a simple aggregate analysis, we can see that LCPuFromLCP visits each entry of GSA, LCP
and LCPu 2 times; LCPdFromLCP* visits each entry of GSA, LCP 3 times and each entry of LCP∗d 2 times for
either focus = +/−.

Combining the above lemmata, we concluse that

Theorem 5. Both SU and SD can be computed in in O(M) time.

5.3 Sampling unique substrings

Recall that Ui = {ui,1(l1, r1), ui,nui(lnui , rnui)} defines either the collection of all shortest unique substrings
or unique substrings with minimum length Lmin on a given genome si (sorted by lx, namely l1 ≤ · · · ≤ lnui).
In fact, the list of left indices l1, · · · , lnui are stored in the corresponding r1, · · · , rnui entries in SU array.
Due to the minimum length constraint, no substring ui,x ∈ Ui can be a substring of any other ui,y ∈ Ui if
they are not identical (in fact, there could be some {ui,x(lx, rx) = {ui,y(ly, ry) ∈ Ui for x 6= y). This makes
l1 < · · · < lnui and r1 < · · · < rnui . The goal of sampling unique substrings from Ui is to identify and
maintain the smallest number of unique substrings such that they cover the same set of unique L-mers on
si as Ui (if Lmax = L then the sampled unique substrings should cover all unique L-mers).

Here we present the greedy sampling strategy implemented by CAMMiQ to sample unique substrings from
Ui. Denote by begini the beginning position of si in s and by U ′i the unique substrings already sampled
(initially U ′i is empty). Starting with begini, consider every L-mer of si from left to right; if it does not
include any unique substring, then ignore this L-mer; otherwise add its rightmost unique substring into U ′i
and move to the next L-mer which does not include this substring until reaching the L-mer that ends at
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Algorithm 3 LCPdFromLCP(GSA, LCP, Lmin)

1: LCPd ← array of length M
2: LCPu ← LCPuFromLCP(GSA, LCP, M , Lmin)
3: LCPd′ ← LCPdFromLCP*(GSA, LCP, +)
4: LCPd′′ ← LCPdFromLCP*(GSA, LCP, −)
5: for i from 1 to M do
6: LCPd[i]← max{min{LCPd′ [i], LCPd′′ [i]}, Lmin}
7: if LCPd[i] ≥ LCPu[i] then
8: LCPd[i]←∞
9: end if

10: end for
11: return LCPd
12: function LCPdFromLCP*(GSA, LCP, focus=
{+,−})

13: LCP∗d ← array of length M
14: i← 1, minlcp ←M , next1 ← 0
15: if focus = + then
16: next2 ← 1
17: else
18: next2 ← 0
19: end if
20: while i < M do
21: while i < M and GSA[i+ next1] = GSA[i+

next1 + 1] do
22: next1← next1 + 1
23: end while
24: while focus = + and i < M and GSA[i +

next1 + next2] = GSA[i+ next1 + next2 + 1] do
25: next2← next2 + 1
26: end while
27: for j from next1 + next2 to 0 do
28: minlcp ← min{minlcp, LCP[i+ j + 1]}
29: if j ≤ next1 then
30: LCP∗d[i+ j]← minlcp
31: end if
32: end for
33: i← i+ next1 + 1
34: minlcp ←M , next1 ← 0
35: if focus = + then

36: next2 ← 1
37: else
38: next2 ← 0
39: end if
40: end while
41: i←M , minlcp ←M , next1 ← 0
42: if focus = − then
43: next2 ← 1
44: else
45: next2 ← 0
46: end if
47: while i > 1 do
48: while i > 1 and GSA[i − next1] = GSA[i −

next1− 1] do
49: next1← next1 + 1
50: end while
51: while focus = − and i > 1 and GSA[i −

next1− next2] = GSA[i− next1− next2− 1] do
52: next2← next2 + 1
53: end while
54: for j from next1 + next2 to 0 do
55: minlcp ← min{minlcp, LCP[i− j]}
56: if j ≥ next2 then
57: LCP∗d[i − j] ← max{LCP∗d[i −

j],minlcp}
58: end if
59: end for
60: i← i− next1− 1
61: minlcp ←M , next1 ← 0
62: if focus = − then
63: next2 ← 1
64: else
65: next2 ← 0
66: end if
67: end while
68: return LCP∗d
69: end function

begini + |si| − 1. At the and of this, add the sampled unique substrings in U ′i to the hash table described in
Section 2.1.

In the following we show that the above greedy strategy obtains the smallest number of unique substrings
that cover the same set of unique L-mers as Ui, provided that each unique substring in Ui occurs only one
time (i.e., any ui,x ∈ Ui is not identical to another ui,y ∈ Ui if x 6= y). As a result, the total number of
unique substrings in U ′ = ∪mi=1U ′i included in CAMMiQ index is also as small as possible.

Theorem 6. If ui,x ∈ Ui 6= ui,y ∈ Ui for x 6= y, then GreedySampling returns the smallest U ′i such that if
an L-mer includes some ui,x ∈ Ui, then it also includes at least one ui,x′ ∈ U ′i .

Proof. Consider U ′i = {u′i,1(l′1, r
′
1), · · · , u′i,|U ′i |(l

′
|U ′i |

, r′|U ′i |
)} that GreedySampling returns; also consider an

alternative sample U ′′i = {u′′i,1(l′′1 , r
′′
1 ), · · · , u′′i,|U ′′i |(l

′′
|U ′′i |

, r′′|U ′′i |
)} of Ui that covers the same set of L-mers;

assume both sets are sorted by the left indices (l′1 < · · · < l′|U ′i |
; l′′1 < · · · < l′′|U ′′i |

). First, observe that l′1 ≥ l′′1
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Algorithm 4 GreedySampling(Ui = {ui,1(l1, r1), ui,nui(lnui , rnui)}, L)

1: U ′i ← ∅
2: cur← begini // begini: the beginning position of si in s
3: ui,last(llast, rlast)← NIL

4: for x from 1 to nui do
5: if ui,last 6= NIL and rx ≥ cur + L then
6: U ′i ← U ′i ∪ {ui,last(llast, rlast)}
7: cur← llast + 1
8: end if
9: ui,last(llast, rlast)← ui,x(lx, rx)

10: end for
11: return U ′i

since u′i,1 is the rightmost unique substring in Ui which is fully included in the leftmost unique L-mer. As
a consequence we must have l′2 ≥ l′′2 (and so on). Otherwise, if l′1 = l′′1 then u′i,2(l′2, r

′
2) is not the rightmost

unique substring in the next unique L-mer whose left index is greater than l′1, and if l′1 > l′′1 then there
is some unique L-mer not covered by any unique substring in U ′′i . Therefore |U ′i | ≤ |U ′′i | since there is a
injection between the elements in U ′i and U ′′i until reaching the last unique L-mer on si.

Corollary 7. If ui,x ∈ Ui 6= ui,y ∈ Ui for x 6= y on each si, then U ′ = ∪mi=1U ′i is the smallest set of unique
substrings such that if an L-mer on si includes some ui,x ∈ Ui, then it also includes at least one ui,x′ ∈ U ′i .

We note that the greedy sampling strategy works in practice even if there are actually unique substrings
occurring more than once in a given genome, meaning ui,x = ui,y ∈ Ui for some y > x, leading to U ′i (and thus
U ′) being close to optimality, since these unique substrings would constitute a very small proportion (≤ 0.1%)
with the default minimum length Lmin = 26 of unique substrings. This gives significantly smaller indices
than alternative k-mer based tools, and results in an integer program with a small number of constraints.

We applied the above strategy to sample doubly-unique substrings in Di, to obtain the minimum size D′i
for each genome si so that the aggregate set of doubly-unique substrings D′ is at most twice the optimal,
provided that each doubly-unique substring occurs once in each of the corresponding genomes.

Corollary 8. If di,x ∈ Di 6= di,y ∈ Di for x 6= y on each si, then D′ = ∪mi=1D′i is at most twice as large as
the smallest set of doubly-unique substrings such that if an L-mer on si includes some di,x ∈ Di, then it also
includes at least one di,x′ ∈ D′i.

5.4 Proof of Theorem 1

We begin with the following theorem from Weissman et al. [62] that bounds the L1 distance between the
empirical distribution of a sequence of independent, identically distributed random variables and the true
distribution.

Theorem 9. Let P be a probability distribution on the set A = {1, · · · , a}. Let X1, X2, · · · , Xn be i.i.d.
random variables distributed according to P . Then, for any given ε > 0,

Pr[||P − P̄ ||1 ≥ ε] ≤ (2a − 2) exp(−nε2/2)

where P̄ is the empirical estimation of P defined as P̄ (i) =
∑n
j=1 ∆(Xi=j)

n , where ∆(e) = 1 if and only if e is
true and ∆(e) = 0 otherwise.

Now consider a collection of genomes A = {s1, · · · , sa} with relative abundances p1, · · · , pa and the set
Q = {r1, · · · , rn} of n reads (i.e., L-mers) sampled independently and uniformly at random from A according

to p1, · · · , pa. On each genome si let nLi denote the total number of L-mers and qi =
nuLi
nLi

be the proportion

of unique L-mers; then the probability of a read rj ∈ Q corresponds to a unique L-mer on si is
pin

L
i∑a

i′=1
pi′n

L
i′
·qi,

and the probability of a read rj ∈ Q does not correspond to any unique L-mers on si is
pin

L
i∑a

i′=1
pi′n

L
i′
· (1− qi).
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Therefore r1, · · · , rj are i.i.d. distributed according to (
p1n

L
1∑a

i′=1
pi′n

L
i′
·q1, · · · , pan

L
a∑a

i′=1
pi′n

L
i′
·qa,

∑a
i=1

pin
L
i∑a

i′=1
pi′n

L
i′
·

(1−qi)) = (p′1q1, · · · , p′aqa,
∑a
i=1 p

′
i(1−qi)) where the last term corresponds to the reads that are not unique

to any si ∈ A.

Proof of Theorem 1. Let ci be the number of reads assigned to si. Also let p′ = (p′1, · · · , p′a). We

set p̂ = (p̂1, · · · , p̂a), by defining p̂i = ci/qi
n to be the predicted abundance of si based on the number of

reads assigned to it. Consider P = (p′1q1, · · · , p′aqa,
∑a
i=1 p

′
i(1 − qi)) and P̂ = ( c1n , · · · ,

ca
n , 1 −

∑a
i=1

ci
n ) =

(p̂1q1, · · · , p̂aqa, 1 −
∑a
i=1

ci
n ); by definition, we have ||P − P̂ ||1 ≥

∑a
i=1 |p′i − p̂i|qi ≥ qmin ·

∑a
i=1 |p′i − p̂i| =

qmin · ||p′ − p̂||1. Then the following three theorem statements hold.

• (i) Given that n ≥ 2(a+1)+ln 1
δ

(pminqmin)2 , we have

Pr

[
||p′ − p̂||1 ≥ pmin

]
= Pr

[
qmin||p′ − p̂||1 ≥ pminqmin

]
≤ Pr

[
||P − P̂ ||1 ≥ pminqmin

]
≤ 2a+1 exp(−n(pminqmin)2/2)

≤ 2a+1 exp(−
2(a+ 1) + ln 1

δ

(pminqmin)2
(pminqmin)2/2)

=
2a+1

ea+1
δ

≤ δ.

This implies that with probability ≥ 1− δ the L1 distance between p′ and p̂ is upper bounded by pmin.
As a result we have p̂i > 0 for each p̂i, i.e. ci ≥ 0.

• (ii) The proof follows by simply replacing pmin with ε in the proof of (i).

• (iii) The proof follows by simply replacing pmin with

√
2(ln 1

δ+(a+1))

nq2min
in the proof of (i). Specifically,

Pr

[
||p′ − p̂||1 ≥

√
2(ln 1

δ + (a+ 1))

nq2
min

]
= Pr

[
qmin||p′ − p̂||1 ≥ qmin ·

√
2(ln 1

δ + (a+ 1))

nq2
min

]

≤ Pr

[
||P − P̂ ||1 ≥

√
2(ln 1

δ + (a+ 1))

n

]
≤ 2a+1 exp(−n

2
·

2(ln 1
δ + (a+ 1))

n
)

=
2a+1

ea+1
δ

≤ δ.

5.5 blastn analysis of Salmonella strains

The RNASeq reads for each cell studied in [58] are stored as separate read sets in the Sequence Read
Archive (SRA) [63]. To reduce the number of reads that need to be downloaded or aligned, we used
ReadFinder (https://github.com/morgulis/ReadFinder) to find any reads that could plausibly map to either
the Salmonella strains LT2 or D23580 with permissive parameters allowing alignments that stray by as
much as four diagonals from the main diagonal. ReadFinder uses similar methods as SRPRISM [64] to
search SRA without the need to download the data and is more streamlined than SRPRISM for our purpose
of finding candidate matching reads. We then used blastn [65] with word size 16 to find local (and ideally,
global) alignments between the reads identified by ReadFinder and either Salmonella strain. This test is
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much simpler than the CAMMiQ test because we did not consider alignments to any Salmonella strains other
than the two actually used in the original wet lab experiment.

Most reads that align to either strain actually align to the two strains equally well. To decide which
reads align strictly better to one strain or the other, we implemented an in-house script with the following
rules. A blastn alignment is ”high-quality ” if it has length at least 70 (taking into account that the reads
are of length 75), has identity percentage ≥ 98. A read R maps better to the LT2 strain if either:

• R has a high-quality alignment to the LT2 strain but R has no high-quality alignment to the D23580
strain or

• R has high-quality alignments to both strains and the best LT2 alignment is at least as good as the
best D23580 alignment on i) length ii) identity percentage, iii) gaps and is better than the best D-strain
alignment on at least one of the thee Roman numeral criteria.

The criteria for mapping better to the D-strain are symmetric. The script reports counts of how many reads
map align strictly better to each of the two strains. Although the data in [58] consist of paired reads, each
mate pair was treated individually in the blastn analysis.

6 Supplementary Figures

Figure 5 presents 50 genomes in our species-level dataset with the least number of unique L-mers. In this
graph each node represents one such genome; each edge connects two nodes if they share a doubly-unique
substring. Solid black edges indicate a pair of nodes that share at least 30 doubly-unique substrings; the
remaining edges in grey indicate node pairs with fewer number of shared doubly-unique substrings. Notice
that there is a special node in the center, representing the union of all genomes not included in these 50-
genome subset. Any node connected to this special node by a single edge, or by a path, is identifiable and
quantifiable by CAMMiQ, provided that all edges in this path are black (22 of these 50 nodes are as such) or all
nodes in this path have sufficient abundance. Note that 20 of the genomes here are connected to this special
node by a black edge: these are the genomes that form the least-quantifiable-20 dataset in our experiments.
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Figure 5: Shared doubly-unique substrings among the 50 genomes with the least number of unique L-mers
in our species-level dataset consisting of 4122 RefSeq bacteria genomes. Each node represents one of these 50
genomes, labeled with its NCBI taxID at species level. The central node specially represents the remaining
4072 genomes. An edge connecting two nodes indicate at least one doubly-unique substring shared between
them. A black edge indicates ≥ 30 doubly-unique substrings in CAMMiQ’s index shared between the two
corresponding genomes. All other edges in grey imply < 30 shared doubly-unique substrings. A blue-colored
node indicates one that is connected to the central node through a path of black edges. As such, they are
relatively easy to identify and quantify; 22 of these 50 nodes are blue. The remaining (red) nodes can be
identified by CAMMiQ provided they have “sufficient abundance” in the query.
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