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ABSTRACT The discovery of new drugs is a time consuming and expensive process. Methods such as virtual screening, which
can filter out ineffective compounds from drug libraries prior to expensive experimental study, have become popular research
topics. As the computational drug discovery community has grown, in order to benchmark the various advances in methodology,
organizations such as the Drug Design Data Resource have begun hosting blinded grand challenges seeking to identify the
best methods for ligand pose-prediction, ligand affinity ranking, and free energy calculations. Such open challenges offer a
unique opportunity for researchers to partner with junior students (e.g., high school and undergraduate) to validate basic yet
fundamental hypotheses considered to be uninteresting to domain experts. Here, we, a group of high school-aged students and
their mentors, present the results of our participation in Grand Challenge 4 where we predicted ligand affinity rankings for the
Cathepsin S protease, an important protein target for autoimmune diseases. To investigate the effect of incorporating receptor
dynamics on ligand affinity rankings, we employed the Relaxed Complex Scheme, a molecular docking method paired with
molecular dynamics-generated receptor conformations. We found that CatS is a difficult target for molecular docking and we
explore some advanced methods such as distance-restrained docking to try to improve the correlation with experiments. This
project has exemplified the capabilities of high school students when supported with a rigorous curriculum, and demonstrates
the value of community-driven competitions for beginners in computational drug discovery.
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1 INTRODUCTION31

Drug discovery efforts often require the screening of many32

compounds to determine their efficacy. Owing to the high cost33

of experimental screening and advances in computer models,34

the use of inexpensive computational screening methods to35

enrich compounds in large datasets have been used in drug36

discovery pipelines for several decades (1). Early on in the37

screening process, when an initial compound library may38

contain only a few ’active’ among many orders of magnitude39

more inactive compounds, computer-aided drug discovery40

(CADD) methods, such as virtual screening, can be used to41

filter out unlikely candidates, reducing experimental costs,42

and accelerating the initial discovery phase (2–4).43

Due to the diversity and breadth of the CADD research44

community, many methods have been developed. Cross-45

comparison and benchmarking between the different ap-46

proaches is necessary for identifying the limitations of the47

docking method and areas for improvement. The Drug Design48

Data Resource (D3R) hosts blinded community prediction49

challenges to evaluate these software and techniques and com-50

pare their effectiveness on benchmark systems, such as the51

HSP90 chaperone protein, the Farnesoid X nuclear receptor,52

and the Cathepsin S protease (CatS) (5–7). In 2018, D3R53

hosted Grand Challenge 4 (GC4), which had components of54

pose prediction, free energy prediction, and ligand affinity55

rank ordering (8).56

We participated in Subchallenge 2, a ligand affinity ranking57

challenge for the Cathepsin S protease with a set of 459 ligands58

provided by Janssen Pharmaceuticals (8). CatS is a cysteine59

protease involved in the presentation of antigens by the MHC60

class II molecules within CD4+ T cells (9). This makes it a61

promising target in autoimmune disease and allergy treatment,62

where inhibition of the immune response is critical for effective63

therapy (10–12).64

We used molecular docking, a popular method of vir-65

tual screening, in a strategy known as the Relaxed Complex66

Scheme to account for protein flexibility (13). Molecular67

docking applies a conformational search algorithm paired68
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with an inexpensive, and often empirical, scoring function to69

find favorable lead compounds (14, 15). By forgoing rigorous70

dynamics and detailed potential energy functions, such as71

those used in free energy calculations, docking approaches72

are designed to yield results quickly albeit with lower accu-73

racy (16). The speed of molecular docking codes enables the74

screening of hundreds of thousands to millions of compounds75

(17). A risk of docking is the increased likelihood of false76

negatives. To this end, much work has been done by the77

community to develop improved algorithms which improve78

docking accuracy with minimal impact on speed (3).79

In early docking studies, proteins and ligands were repre-80

sented as static structures (16, 18, 19). To incorporate ligand81

flexibility, multiple ligand positions can be sampled through82

rotational torsions, i.e. conformer generation (20). However,83

Molecular Dynamics (MD) simulations have revealed that84

thermal protein fluctuations in solute-based environments85

can give rise to varying conformational states, resulting in86

different binding sites (21). Accounting for receptor binding87

site flexibility in molecular docking is a significant challenge.88

One solution is to perform ensemble docking. This involves89

docking a ligand compound library to a number of distinct,90

rigid receptor conformations to identify the receptor confor-91

mation that is best suited for that particular ligand (i.e. best92

docking score) (20, 22–24).93

Here, we perform MD simulations of the receptor protein,94

CatS, to obtain unique conformational states and introduce95

structural variation in the binding site. MD simulations allow96

the exploration of multiple conformations of the protein while97

in a solute-based, native environment (25, 26). This concept of98

selecting naturally-occurring conformations through MD for99

ensemble docking is known as the Relaxed Complex Scheme100

(26–31). MD-generated ensembles of flexible binding sites101

have been used successfully in a number of studies to identify102

lead compounds (13, 32–35).103

Incorporating more receptor conformations increases com-104

putational cost, as a complete docking protocol must be per-105

formed for each conformation. To address this, the trajectory106

can be clustered to extract unique, representative conforma-107

tions (36, 37). This methodology is still susceptible to the108

conformational sampling problem of MD, due to the large109

discrepancy between the accessible timescales of MD simula-110

tion (microseconds) and the slow, native dynamics of proteins111

(milliseconds and longer) (38, 39). Although a trajectory may112

not statistically converge to encompass all possible conforma-113

tions, studies have shown that clustering MD trajectories can114

reveal previously unknown druggable pockets (32).115

Many studies have successfully used clustering methods116

in ensemble docking to extract relevant conformations, such117

as those based on RMSD (26, 34), QR factorization (13, 33),118

and active pocket volume (26). However, choosing the most119

appropriate clustering method for a system is still challenging120

and often dependent on human intuition.121

Although ensemble docking has been successfully used122

to identify lead compounds, clustering methods in ensemble123

docking have not been extensively studied (40). We explored124

three clustering methodologies in this study to investigate125

if they could (i) provide an accurate ligand ranking and (ii)126

give insights into CatS ligand binding mechanisms. The three127

clustering methods we used are: 1) Time-lagged Independent128

Components Analysis and K-means clustering (TICA) (41,129

42), 2) Principal Component Analysis and K-means clustering130

(PCA) (41, 42), and 3) Gromos RMSD clustering (Gromos)131

(43). TICA identifies the slowest motions of the simulation132

and projects the input features into a slow subspace where133

distinct clusters are kinetically separated (44). PCA, on the134

other hand, finds features with the largest variance (45). Lastly,135

Gromos is a RMSD-based clustering method that counts the136

neighbors in a cluster based on a pre-set cutoff value and137

defines trajectory clusters by structural variation (43).138

In this work, we apply the Relaxed Complex Scheme139

with these clustering methods and compare the ensemble140

docking results (30). We test the accuracy of two state-of-the-141

art docking softwares: Open Eye FRED (46) and Schrodinger142

Glide (47). We found that CatS is a difficult target for molecular143

docking and we explore some advanced methods such as144

distance-restrained docking to try to improve the correlation145

with experiments.146

2 PEDAGOGICAL SIGNIFICANCE147

This manuscript presents the work of high school students148

who have performed this work after completing BioChem-149

CoRe, a 7 week crash course on computational chemistry150

(http://biochemcore.ucsd.edu/). These results helps to151

illustrate the benefits and possibilities of teaching science152

as we do science (48, 49). By participating in structured153

challenges with real-world significance, students gain motiva-154

tion, confidence, and both technical and soft skills. Moreover,155

the exposure to the rigors of the scientific approach and the156

methods employed in the field of study aids them with their157

future career decisions. On the other hand, community-driven158

competitions and resources such as D3R’s Grand Challenge 4159

can also benefit from student participation. Rarely do these160

programs receive submission which test the basic hypothesis.161

For example, is domain expertise required for the application162

of the methods of interest? Given the current state of tutorials163

or instructions available to the public, can students with lim-164

ited domain experience use these resources to produce results165

without major technical difficulties? We posit that student166

participation can not only yield important benchmarking data167

but also serve to improve the documentation of our tools and168

methods.169

3 MATERIALS AND METHODS170

All scripts used in this work can be found online at https:171

//github.com/ctlee/bccgc4. Full workflow of methods172

is shown in Fig. 1.173
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Figure 1: Workflow of ensemble docking approach. PDB file was selected and simulated in Molecular Dynamics. Molecular
Dynamics trajectory was clustered by six various methods and cluster centroids were extracted as representative structures.
Ligand SMILES were prepared as 3D structures and various conformers were generated. Molecular docking of ligands to
cluster centroids was performed with FRED and Glide docking. Pose scores were used to generate rank orderings and Kendall’s
g values when compared to the experimental rank ordering.

3.1 Molecular Dynamics174

A crystal structure of CatS (PDBID: 5QC4 (11)) was obtained175

from the RCSB PDB database (50). The structure was chosen176

due to its resolution of 2 Å and similarity of the cocrystallized177

ligand to those in the D3R dataset. This cocrystal was part of178

D3R’s prior Grand Challenge 3 (GC3), subchallenge 1, and179

the ligands in the CatS subchallenge of Grand Challenge 4 all180

contain the tetrahydropyrido-pyrazole core that 22 of the 24181

ligands had in the previous challenge (7).182

Models with (holo) and without (apo) the cocrystallized183

ligand were prepared for MD simulations. For both apo184

and holo models the same steps were performed with a few185

deviations noted below. Chain A of the structure was prepared186

in Schrodinger Maestro 2019 (51) with the Protein Preparation187

Wizard. For the holo simulation, the cocrystallized ligand was188

retained. For the apo simulation the ligand was removed (52).189

Force field parameters for the ligand were derived from GAFF190

(53) with partial charges fit using the restrained electrostatic191

potential method (RESP) (54) from potentials computed192

using the AM1-BCC semi-empirical quantum mechanical193

method (55, 56). For both systems, the protein termini were194

capped with an acetyl (ACE) and N-methyl amide (NME)195

capping groups. PROPKA (57, 58) was used to assign residue196

protonation states in a solvent of pH 5.0, to mimic experimental197

conditions of CatS binding assays (9). Crystal waters with198

more than 2 hydrogen bonds to non-waters were retained.199

Using a combination of pdb4amber and tleap from the200

AMBER 18 software suite, we parameterized the systems201

with the AMBER FF14SB forcefield, and solvated the systems202

with TIP4P-Ew up to a 15 Å buffer distance (59). We added203

ions according to the SLTCAP tool by Schmit et al. (60)204

at 100 mM salt concentration, again to mimic experimental205

conditions (9).206

All-atom, explicit-solvent MD simulation was performed207

for the both systems using AMBER18 in four stages: min-208

imization, heating, equilibration, and production (59). The209

systems were gradually minimized in four steps: (i) mini-210

mization of only protons, restraining the protein and solvent,211

(ii) minimization of the solvent, restraining the protein, (iii)212

minimization of the protein sidechains, restraining the protein213

backbone, and (iv) minimization of all atoms. Restrained heat-214

ing was performed in two steps: first, in the NVT ensemble215

the temperature was increased from 0 to 100 K over 50 ps216

using a Langevin thermostat, and second in the NPT ensemble217

the temperature was increased from 100 to 300 K over 200 ps218

using a Langevin thermostat while pressure was maintained219

at 1 bar using a Berendesen barostat. Equilibration was also220

performed in two stages, first with a restrained backbone,221

and second without restraints. For both equilibration stages222

the temperature was maintained at 300 K using a Langevin223

thermostat. For the restrained equilibration stage, 500 ps were224

run with a Berendsen barostat to equilibrate pressure to 1 bar.225

In the unrestrained equilibration step 1000 ps were run using226

a Monte Carlo barostat at 1 bar.227

Production simulations were run in the NPT ensemble228

with the same conditions as the unrestrained equilibration229

step. Five independent simulations of each condition, apo and230

holo, of length 2 `s were run, totaling 20 `s. Hydrogen Mass231

Repartitioning (HMR) was performed with PARMED (59,232

61) for all systems permitting a 4 fs timestep. All simulations233

were run with SHAKE restraints (62) and a non-bonded cutoff234

of 10 Å.235

3.2 Clustering236

The MD trajectory was clustered using three different clus-237

tering methods: 1) TICA and k-means (41, 42, 63, 64) on238

the protein backbone atom position coordinates, 2) PCA and239

k-means on the protein backbone atom position coordinates,240

and 3) Gromos (43) on the C-alpha atom position coordinates.241

To identify a good set of initial input features, we compared242

the mean 10-fold cross-validated Variational Approach for243

Markov Processes (VAMP2) scores for three selections: i)244

protein backbone atom positions, ii) protein backbone tor-245
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sions, and iii) the positions of a binding atoms selection (65).246

We decided to use the positions of protein backbone atoms247

because it had the largest VAMP2 score, indicating greater248

kinetic variance. The binding atoms were defined by taking249

all receptor atoms within 2 Å of the initial docked poses of a250

ligand from the D3R data-set. PCA was clustered on the same251

subset of backbone atom positions (41), and Gromos was252

clustered on the C-alpha positions due to memory limitations.253

After the challenge, the clustering was reevaluated and a sec-254

ond discretization using the binding atoms selection, referred255

to as Clustered by Binding Atoms (CBA), was generated. We256

used similar ideas as the approach taken in Ref. (66), focusing257

on the binding site’s structural fluctuations rather than the258

entire structure. All six clustering methods (TICA, PCA, and259

Gromos for backbone or C-alpha atoms and CBA) were also260

performed on the holo MD trajectories. The cluster centroids261

of the apo MD were compared by pairwise RMSD, utilizing262

MDTraj and NumPy together to calculate RMSDs and order263

them into a matrix which was visualized in matplotlib (67–69).264

They were also compared in terms of Root-Mean-Squared-265

Fluctuation (RMSF) to investigate the particular structural266

variability, computed in MDTraj and visualized in PyMOL267

(68, 70).268

3.2.1 Time-lagged Independent Components Analysis269

and K-means (TICA)270

TICA clustering was employed to capture the slow motions271

within the trajectory. TICA was performed with a lag time of272

4 ps and a variance cutoff of 0.95 on the protein backbone273

atom coordinates (41). The trajectory was projected into274

the TIC basis and subsequently, the k-means algorithm was275

used to cluster the trajectory into 10 distinct clusters. The 10276

configurations from the trajectory, in real space, closest in277

TIC space to the cluster centroids were used for docking (42).278

3.2.2 Principal Components Analysis and K-means279

(PCA)280

PCA with a variance cutoff of 0.95 was performed on the281

protein backbone atom coordinates to capture large motions282

within the trajectory (41). The trajectory was projected into the283

PC basis and subsequently, the k-means algorithm was used284

to cluster the trajectory into 10 clusters. The 10 configurations285

from the trajectory, in real space, closest in PC space to the286

cluster centroids were used for docking (42).287

3.2.3 Gromacs RMSD-Based Clustering (Gromos)288

Gromos clustering was performed on the alpha carbons in289

the protein to identify structurally diverse conformations290

according to RMSD (43). The trajectories input to Gromos291

were subsampled to yield frames every 0.4 ps. This was due to292

computational intractability at more frequent frame rates. The293

clustering RMSD cutoff was chosen to satisfy the following294

criteria: (i) the first cluster had less than 70% of the frames,295

(ii) the first 10 clusters contained at least 80% of the frames,296

and (iii) each of the first 10 clusters had at least 20 frames. A297

cutoff of 0.08 Å was used when clustering with alpha carbons298

while a cutoff of 0.15 Å was used when compared to CBA299

for the apo trajectory. A cutoff of 0.07 Å was used when300

clustering with alpha carbons while a cutoff of 0.135 Å was301

used when compared to CBA for the holo trajectory.302

3.3 Docking303

OpenEye Scientifics Fast Exhaustive Docking (FRED) was304

used to dock the 459 ligands in the GC4 CatS challenge to305

the centroids of the clustered MD trajectory and the original306

crystal structure (46). After the challenge, Schrodingers Glide307

was also used in an attempt to improve rank ordering and308

pose prediction (47, 71). In addition, many iterations of Glide309

docking were run with modifications to further improve the310

results. The pose results were visualized in Schrodinger’s311

Maestro (51) and labeled in Inkscape (72). The pose results312

were analyzed for accuracy through the RMSD of the common313

core to the original cocrystal ligand core, calculated using314

Schrodinger’s Python API and visualized in matplotlib (69).315

3.3.1 FRED316

OpenEye’s OMEGA was used to convert ligand SMILES to317

3D conformers, with the maximum number of conformers318

per ligand set to 800 (73). The conformers were then docked319

to the crystal structure and the 10 cluster centroids from320

each clustering method using OEDockings FRED default321

settings (Chemgauss4 scoring function with standard search322

resolution) (46, 74). The receptor area was defined by a box323

around the protein, determined by the minimum and maximum324

distance coordinates of the entire protein. For each receptor325

ensemble, the minimum score of every ligand was used in326

determining the rank ordering, as in previous studies (13, 32).327

3.3.2 Glide328

Schrodingers Ligprep was used to convert ligand SMILES us-329

ing standard settings into Maestro structures for Schrodingers330

Glide docking (75). Glides cross-docking script, xglide.py,331

was used to perform ensemble docking for each clustering332

method. The cross-docking script generated receptor grid files333

for each centroid structure using a 32 Å box centered on the334

center of mass of the crystal structure’s ligand (BC7 (11)) to335

define the docking region. Each centroid was then docked to336

using Glides Standard Precision (SP) docking methodology,337

which has its own ligand conformer generation steps, and338

scored with the subsequent Standard Precision GlideScore339

scoring function (47, 71). For each ensemble docking ap-340

proach, the best score of each ligand across the ensemble of341

conformations (N) was used to determine its rank,342

B; = min{B;,8 : 8 ∈ N}, (1)
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where B; and B;,8 are the best overall score and best score for343

receptor conformation 8 for ligand ; respectively.344

To further investigate the ligand binding we also 1) applied345

a restraint on the tetrahydropyrido-pyrazole common core346

structure, restricted to lie within 3.5 Å of the cocrystal ligand’s347

common core, 2) changed the precision of the docking and348

scoring function from Glide SP to Glide Extra Precision (XP)349

(76), and 3) clustering and docking to centroids from a holo350

MD trajectory.351

3.4 Scoring Schemes for Ligand Scores352

Aside from changing the docking methodology, we also tried353

two other scoring schemes such as taking the average and the354

weighted average (Eq. (2)) of the OpenEye’s FRED and Glide355

SP scores.356

B; =
∑
8∈N

%8 ∗ B;,8 . (2)

where %8 is the probability of observing conformation 8, B;,8 is357

the best docked score for that conformation, and N is the set358

of conformations in the ensemble. Note that the probabilities,359

%8 , are normalized such that
∑

8∈N %8 = 1. The %8 for a given360

conformation 8 is calculated as 58/ 5) , where 58 is the number361

of frames in the same cluster as 8, and 5) is the total number362

of frames in the trajectory. These scoring schemes have been363

used in other studies due to the reasoning that the average (33,364

77) or weighted average (34, 35) score better accounts for the365

variability of the ensemble, and in the case of the weighted366

average, represents the likelihood of the ligand encountering367

each representative conformation in a natural environment.368

3.5 Kendall’s Taus369

Ligand rankings were created by sorting the ligands based on370

their score. Kendall’s Tau values were calculated by comparing371

the predicted rank ordering to the experimental rank ordering372

using the Kendall’s Tau function in SciPy (78).373

4 RESULTS AND DISCUSSION374

In lieu of running expensive free energy calculations which375

account for both ligand and receptor flexibility, the Relaxed376

Complex Scheme attempts to reduce computational cost while377

capturing the flexibility of a protein by docking to multiple378

protein conformations selected from a MD simulation. These379

representative conformations are often chosen by combining380

a method of dimensionality reduction followed by the appli-381

cation of a clustering algorithm. Although this approach is382

conceptually simple, the choice of clusters has many pitfalls.383

For example, even if a set of clusters spans the conforma-384

tional diversity of the MD trajectory, the ensemble will not385

necessarily produce the most accurate ligand rank ordering386

(40). Some receptors may have natural conformations which387

are not ideal for ligand binding, and these may result in false388

positives (25). In addition, the active conformation for ligand389

binding could be transient, and would have a lower probability390

of being represented in the ensemble.391

To test the effect of clustering approach on the resulting392

conformations, we test several different clustering methods.393

TICA captures slow protein movements (variance in time),394

while PCA focuses on large structural variance, and Gromos395

captures structural variations as measured by RMSD. We396

plot the structural variation across clusters from the different397

algorithms in Fig. 2B,C, where CBA refers to clustered by398

binding atoms, defined in Fig. 2A. We find that centroids399

from different clustering methods vary in different structural400

domains, Fig. 2C. The structural fluctuation around the binding401

site (facing the reader in Fig. 2C) are most likely to affect402

ligand binding. By restricting the set features input to the403

clustering workflow to the binding atoms, we find that the404

CBA methods capture increased variability in the binding405

site.406

4.1 Initial Docking407

Our FRED docking results performed worse than random rank408

ordering (Fig. 3A). To investigate the influence of docking409

algorithm, both scoring and conformational searching, we410

also performed docking with Schrodinger’s Glide (81). The411

rank order correlation of the predictions from Glide docking412

were better than random rank ordering (Fig. 3B).413

There are some inherent differences between OpenEye’s414

FRED and Schrodinger’s Glide conformational search algo-415

rithms. FRED’s docking algorithm emphasizes shape com-416

plementarity between the ligand and protein through an ex-417

haustive pose search that samples multiple ligand positions. It418

accounts for ligand rotations and scores multiple poses before419

selecting one top scoring pose per ligand (46). On the other420

hand, Glide’s docking algorithm begins with receptor grid421

generation and focuses on ligand binding energy, including422

a ligand minimization with a standard molecular mechanics423

energy function, the OPLS-AA force field, and a distance-424

dependent dielectric model. In addition, the final poses are425

refined with a Monte-Carlo procedure to find torsional min-426

ima (47). Both methods consider ligand conformers, either427

generated separately (through OpenEye OMEGA) or as part428

of the docking workflow (Glide).429

The scoring functions also differ between the two software.430

For FRED, the ChemGauss 4 scoring function, which uses431

Gaussian-smoothed step-function based interaction potentials,432

is used to optimize top poses from the filtering steps (46).433

Meanwhile, Glide’s GlideScore uses more complex and varied434

weight functions for the various potential terms (47). The435

more complex approach to fit empirical scoring functions used436

by Glide may have improved the pose prediction similarity to437

cocrystal poses and the rank ordering accuracy.438
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Figure 2: Apo Molecular Dynamics (MD) Clustering Results. A) Binding Atoms definition for Clustered by Binding Atoms
(CBA) centroids, defined by taking all atoms within 2 Å of docked poses of a ligand from the D3R dataset (CatS_2) from both
Glide and FRED SP apo blind docking. The crystal structure protein is depicted in NewCartoon and colored teal, while the
binding atoms are both represented by red spheres and a transparent red surface representation, visualized in Visual Molecular
Dynamics (VMD) (79, 80). B) The pairwise Root-Means-Squared-Deviations (RMSDs) of the binding atoms of the crystal
structure and all 10 centroid structures from each clustering method are depicted in a heatmap. The centroids obtained from
clustering have a range of RMSDs and therefore have structural variability. C) MD clustering extracts various centroid structures,
and different clustering methods yield different conformations. The RMSF of the 10 centroids extracted from each clustering
method, shown as the relative thickness and color, was calculated with MDTraj (68) and visualized using PyMOL (70). The
orientation of the protein for parts A and C are the same.
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Kendall’s g For All Ligand Rankings

Docking Function Scoring Method Clustering Methods
XTAL TICA PCA GROMOS TICA CBA PCA CBA GROMOS CBA

FRED AB
Minimum −0.08 0.04 −0.18 −0.06 −0.06 −0.05 −0.08
W. Avg. − −0.11 −0.20 −0.04 −0.11 −0.09 −0.06
Avg. − −0.13 −0.09 −0.10 −0.09 −0.21 −0.10

Glide
SP-AB

Minimum 0.20 0.18 0.18 0.22 0.12 0.28 0.12
W. Avg. − 0.21 0.20 0.18 0.17 0.24 0.21
Avg. − 0.20 0.21 0.25 0.20 0.24 0.23

Glide
SP-AR

Minimum 0.13 0.14 0.13 0.13 0.11 0.11 0.09
W. Avg. − 0.08 0.07 0.10 0.09 0.05 0.07
Avg. − 0.12 0.07 0.09 0.07 0.06 0.09

Glide
XP-AB

Minimum 0.20 0.11 0.11 0.12 0.11 0.24 0.14
W. Avg. − 0.10 0.08 0.08 0.11 0.17 0.15
Avg. − 0.11 0.08 0.07 0.12 0.19 0.17

Glide
XP-AR

Minimum 0.13 0.14 0.10 0.12 0.11 0.09 0.13
W. Avg. − 0.10 0.07 0.04 0.07 0.03 0.11
Avg. − 0.11 0.07 0.06 0.04 0.04 0.08

Glide
SP-HB

Minimum 0.09 0.17 0.14 0.18 0.23 0.23 0.18
W. Avg. − 0.20 −0.01 0.17 0.24 0.14 0.20
Avg. − 0.22 −0.01 0.21 0.23 0.18 0.21

Glide
SP-HR

Minimum 0.12 0.18 0.13 0.11 0.16 0.17 0.15
W. Avg. − 0.13 0.09 0.08 0.15 0.11 0.13
Avg. − 0.15 0.11 0.12 0.14 0.13 0.14

Table 1: The Kendall’s gs for the FRED and initial Glide docking show slight fluctuations in different scoring schemes, but do
not show any immense improvement. Here we show the Kendall’s g from rank orderings produced through various docking
functions, clustering methods, and scoring schemes. Docking Functions are labeled accordingly: SP: Glide Standard Precision
Docking, XP: Glide Extra Precision Docking; A: apo structure, H: holo structure; B: blind docking, R: restrained docking.
We experimented with these scoring schemes to test if a particular method of discerning scores for each ensemble would
better represent the protein binding mechanisms and improve rank ordering. The various scoring schemes were the Minimum,
Weighted Average (W. Avg.), and Average (Avg.).
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Figure 3: The FRED rank ordering results were unsuccessful in producing a higher Kendall’s g value than random ordering,
while the Glide results were able to predict better than random. A) Kendall’s g values for ligand rankings based on minimum
scores from OpenEye’s FRED blind docking to apo MD centroids, compared to a random rank ordering distribution. B)
Kendall’s g values for ligand rankings based on minimum scores from Schrodinger’s Glide docking to apo MD centroids,
compared to a random rank ordering distribution. In both A) and B) a probability distribution function is graphed from the
Kendall’s g values of 10,000 random ligand rank orderings. The distribution has ` = 0 and f = 0.031.

4.2 Scoring Scheme Results439

Next, we investigated if the approach to compute a single440

score from an ensemble of scores can improve the accuracy441

of our predictions. There are several ways to obtain a single442

score from an ensemble of values. The first is to take the443

minimum score of the ensemble. This assumes that the other444

configurations do not contribute to the ligand binding energy.445

Relaxing this assumption, it is possible to consider the contri-446

butions of other receptor configurations by using an average447

or weighted average of the ensemble values. The choice of448

weights may be assigned by the probability of observing each449

conformation among other strategies. Limitations from the450

limited sampling of MD may lead to unintended biases in the451

ensemble weights.452

In our results, we saw minor fluctuations in Kendall’s453

gs across different scoring schemes (Table 1). While some454

conditions saw improvements to Kendall’s g when using the455

weighted average versus the minimum score, no consistent456

rationale for these improvements were found. It is therefore457

unclear from this system and study whether or not incorpo-458

rating receptor flexibility can improve predictions of rank459

ordered correlation. We hypothesize that the challenges of460

docking to CatS which has a large solvent-exposed binding461

pocket may outweigh the benefits of incorporating receptor462

flexibility which has been reported in other works (26, 30).463

To further understand the shortcomings in our approach,464

we conducted multiple revisions to both the trajectory cluster-465

ing and the docking methodology.466

4.3 Pose Analysis and Glide Docking467

Revisions468

We found that the ligands in the CatS dataset had a common469

tetrahydropyrido-pyrazole core to other ligands with published470

cocrystal structures from a prior D3R Grand Challenge (GC3)471

(Fig. S1) (7, 50). The poses from FRED docking were varied472

and often located opposite from the binding location of similar473

cocrystallized ligands (Fig. 4A). Other cocrystals contain474

ligands bound to this alternative site, although these ligands475

are dissimilar to the ones in our dataset (ligands 29 to 48 in476

Fig. S1, Table. S1) (82).477

Glide docking produced some poses similar to the cocrys-478

tal pose (Fig. 4B) although it also produced more unexpected479

poses. We also observed cocrystals with ligands binding in the480

less common “flipped core” configuration, shown in Fig. 4C,481

reported in GC3 (7).482

To test the hypothesis whether improved pose similarity483

to cocrystal structures can improve docking accuracy, we484

applied a distance-restraint to the common core of the ligands485

using the core position of published cocrystals with similar486

ligands as a reference point (Fig. 4D). Other work has found487

that approaches which use information from cocrystals such488

as template docking or restraints can improve pose accuracy489

(5–7, 83, 84). The restraint employed eliminated poses which490

deviate significantly from the cocrystal pose while permitting491

the flipped configuration. As shown in Fig. 4E, the RMSDs492

of the tetrahydropyrido-pyrazole core in SP apo docking were493

reduced (from a median of 7.39 Å to 1.40 Å) by adding the494

restraint, however, this did not improve the accuracy of the495
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PHE71

VAL163

PHE212

VAL163

PHE212
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C.

E. F.

A.

PHE212

VAL163

PHE71

PHE212
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VAL163
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Figure 4: Docking pose analysis shows that a distance-restraint improves pose accuracy. A) Ligand CatS 259, example of
an inaccurate FRED pose, with the core in a different location than the crystal structure of a similar ligand. B) Ligand CatS
118 of the SP apo blind crystal docking: ideal pose most similar to the cocrystal structure. C) Ligand CatS 363 of the SP
apo blind crystal docking: some docked ligands show a flipped core binding mode that is less common but can be found in
some available cocrystals. (7). D) cocrystal pose (PDBID: 5QC4 (11)) Ligand carbons are pink; ligand common core carbons
are yellow; key binding residues PHE71, VAL163, and PHE212 are green. E) The RMSDs of the ligand core for each pose
in each Glide docking method show that blind poses were concentrated farther from the cocrystal position compared to the
ligand-core-restrained docking. In addition, the FRED average core RMSD is larger than that of all blinded Glide RMSDs. Each
violin is composed of all minimum poses for each clustering method which contributed to the final rank ordering and the crystal
structure poses, totaling = = 3213 per violin. Method Acronyms: OE: OpenEye FRED docking, SP: Glide Standard Precision
Docking, XP: Glide Extra Precision Docking; A: apo structure, H: holo structure; B: blind docking, R: restrained docking. The
median is represented in white, the interquartile range is shown in black, and the minimum and maximum values are shown as
whiskers. F) Ligand CatS 23 of the SP apo restrained PCA docking: When the ligand is restrained, it can be unnaturally docked
in receptors that are dissimilar to the cocrystal, such as here where the PHE71 is in a different configuration.
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ranking (Table 1).496

The ligand core restraint may not be appropriate for all497

centroids (e.g., Fig. 4F). The reference for the restraint is498

defined for all receptor configurations by RMSD alignment to499

the cocrystal structure. Receptor configurations which exhibit500

large structural differences from the cocrystal structure may501

have poor binding site alignment which introduces uncertainty502

into the approach. For some receptor configurations, restraints503

lead to atypical binding poses with high solvent accessibility.504

To test whether using a more complex scoring function and505

search algorithm at the cost of computational efficiency can506

improve the predicted rank ordering, we compared between507

GlideScore SP and GlideScore Extra Precision (XP), with508

and without the restraint, using the same ensembles from apo509

MD. Compared to Glide SP, Glide XP (i) has more exhaustive510

docking by performing Glide SP docking then performing a511

separate anchor-and-grow sampling procedure, and (ii) the512

Glide XP scoring function penalizes ligand poses more harshly513

with desolvation penalties, identification of enhanced binding514

motifs, and higher receptor-ligand shape complementarity515

(76). Glide XP has been found to outperform other methods516

and achieve better drug discovery results than Glide SP (81).517

We found that Glide XP did not improve our predictions (1).518

Although the poses predicted by XP were more similar to the519

cocrystallized poses (4E).520

To test whether conformational selection may lead to521

improved results, we docked to centroids picked from a holo522

MD simulation. McGovern and Shoichet have showed that use523

of a holo structure can improve enrichment of lead compound524

identification (85). We also expected that structures with a525

ligand would lead to lower ligand core RMSD’s with more526

accurate active residue positioning. However, the Kendall’s527

gs of the rank ordering stayed within the same range as the528

original apo docking, even when the ligand was restrained529

(1). Upon further analysis of the structural fluctuations of the530

apo and holo MD centroids, we find that residue PHE71 is531

restricted by the ligand while other regions of the binding532

pocket exhibited similar structural variability (Fig. S2). When533

ligands were blindly docked using Glide SP to the holo534

structures, the resulting poses remained different than the535

cocrystal pose. The average RMSD of the docked ligand cores536

was 5.47 Å from the core of the cocrystal ligand (4C). Overall,537

the blind docking to structure from the holo MD trajectory had538

a slightly lower ligand core RMSD compared to the results539

form docking to the apo MD (Fig. S3). When a core restraint540

was applied upon docking to configurations from the holo541

trajectory, even with the influence of the bound ligand on the542

binding site, the rank ordering did not improve (1).543

Although others have suggested that improved poses could544

yield better scores (86), we found that improvements to the545

predicted poses from the application of ligand restraints and/or546

docking to holo receptor conformations did not improve our547

predictions. This suggests that there may be other confounding548

factors influencing our results.549

5 CONCLUSION550

In this work we describe our submission to subchallenge 2551

of the Drug Design Data Resource (D3R) Grand Challenge552

4 where we performed ensemble docking to rank order lig-553

ands by binding affinity. We explore and compare several554

factors including the choice of clustering algorithm for choos-555

ing representative receptor conformations and two docking556

workflows with and without restraints to improve pose accu-557

racy. The different clustering algorithms produce different558

structural ensembles which can influence the docking results.559

Owing to the difficulty of docking to the CatS system, which560

has been recognized by others (87), we find that more so-561

phisticated approaches can improve rank ordering compared562

to naive settings produced by FRED and GLIDE using a563

basic ensemble docking workflow (7). Glide yielded better564

rank order correlations than FRED although no notable dif-565

ferences between the clustering algorithms was observed. We566

conclude that confounding factors and complications of the567

CatS system outweigh the benefits of ensemble docking. We568

explored if rank-order correlation could be improved with569

better pose accuracy by performing docking with restraints570

in addition to docking with receptor conformations extracted571

from a holo trajectory with ligand removed. We find that both572

approaches improve the pose similarity of docked ligands to573

related cocrystallized ligands, but do not improve the rank574

order correlation.575

This project illustrates the benefits of partnering with high576

school and undergraduate students to participate in commu-577

nity challenges. Grand challenges are excellent resources for578

teaching research skills through a semi-guided, goal-oriented579

project, with expert curated datasets and deadlines. The stu-580

dents were exposed to important research skills, such as581

managing time, selecting and performing data analyses, and582

making publication-quality figures, at early stages of their583

scientific career. Owing to the computational nature of this584

challenge, the students also gained experience with data man-585

agement, computational thinking, and script development. We586

suggest that student participation in community challenges587

can benefit both the community and the students and hope588

this work encourages others to explore this approach.589
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