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Abstract:	

Neuronal	representations	in	the	hippocampus	and	related	structures	gradually	change	
over	time	despite	no	changes	in	the	environment	or	behavior.	The	extent	to	which	such	
‘representational	drift’	occurs	in	sensory	cortical	areas	and	whether	the	hierarchy	of	
information	 flow	 across	 areas	 affects	 neural-code	 stability	 have	 remained	 elusive.	
Here,	 we	 address	 these	 questions	 by	 analyzing	 large-scale	 optical	 and	
electrophysiological	 recordings	 from	six	visual	cortical	areas	 in	behaving	mice	 that	
were	repeatedly	presented	with	the	same	natural	movies.	We	found	representational	
drift	over	timescales	spanning	minutes	to	days	across	multiple	visual	areas.	The	drift	
was	 driven	mostly	 by	 changes	 in	 individual	 cells’	 activity	 rates,	 while	 their	 tuning	
changed	 to	 a	 lesser	 extent.	 Despite	 these	 changes,	 the	 structure	 of	 relationships	
between	the	population	activity	patterns	remained	stable	and	stereotypic,	allowing	
robust	maintenance	of	information	over	time.	Such	population-level	organization	may	
underlie	 stable	 visual	 perception	 in	 the	 face	 of	 continuous	 changes	 in	 neuronal	
responses.	
Introduction:		

One	of	the	great	marvels	of	the	brain	is	that	it	achieves	persistent	functionality	throughout	
adult	life	despite	an	extensive	continuous	turnover	of	its	bio-molecular	and	cellular	building	
blocks	 (Yasumatsu	 et	 al.,	 2008;	 Holtmaat	 and	 Svoboda,	 2009;	 Minerbi	 et	 al.,	 2009;	
Loewenstein,	 Kuras	 and	 Rumpel,	 2011;	 Alvarez-Castelao	 and	 Schuman,	 2015).	 Recent	
advances	 in	 electrophysiology	 and	 optical	 imaging	 techniques	 enable	 to	 study	 in	 awake	
behaving	animals	the	persistence	over	time	of	neuronal	coding	properties,	such	as	the	tuning	
of	neurons	 to	 specific	 stimuli	 (Rokni	et	 al.,	 2007;	Tolias	et	 al.,	 2007;	Bondar	et	 al.,	 2009;	
Andermann,	Kerlin	and	Reid,	2010;	Huber	et	al.,	2012;	Ziv	et	al.,	2013;	Peron	et	al.,	2015;	
Poort	et	al.,	2015;	Okun	et	al.,	2016;	Dhawale	et	al.,	2017;	 Jun	et	al.,	2017).	Some	of	these	
studies	exposed	a	substantial	degree	of	variability	in	neuronal	responses	to	the	same	stimuli	
over	timescales	spanning	minutes	to	weeks,	prompting	neuroscientists	to	question	the	naïve	
assumption	that	stable	neuronal	codes	are	essential	for	stable	brain	functionality	(Tolhurst,	
Movshon	and	Dean,	1983;	Arieli	et	al.,	1996;	Rokni	et	al.,	2007;	Faisal,	Selen	and	Wolpert,	
2008;	Minerbi	et	al.,	2009;	Cohen	and	Maunsell,	2010;	Huber	et	al.,	2012;	Ziv	et	al.,	2013;	
Lütcke,	Margolis	and	Helmchen,	2013;	Montijn,	Goltstein	and	Pennartz,	2015;	Rubin	et	al.,	
2015;	Schölvinck	et	al.,	2015;	Rose	et	al.,	2016;	Chambers	and	Rumpel,	2017;	Clopath	et	al.,	
2017;	Dhawale	et	al.,	2017;	Driscoll	et	al.,	2017;	Engel	and	Steinmetz,	2019;	Rule	et	al.,	2020;	
Sheintuch	et	al.,	2020).		

One	example	is	the	neuronal	representations	of	space	in	the	hippocampus,	which	gradually	
change	over	time	despite	no	apparent	changes	in	the	spatial	environment	or	behavior	(Ziv	et	
al.,	2013;	Mankin	et	al.,	2015;	Rubin	et	al.,	2015;	Sheintuch	et	al.,	2020).	Similar	continuous	
dynamics	of	neuronal	representations	has	also	been	shown	in	other	brain	structures	(Driscoll	
et	al.,	2017).	The	finding	of	this	so	called	‘representational	drift’	(Rule,	O’Leary	and	Harvey,	
2019)	 was	 surprising,	 because	 classical	 models	 of	 memory	 consider	 the	 stability	 of	 the	
engram	as	the	basis	for	the	persistence	of	memory	(Josselyn,	Köhler	and	Frankland,	2015;	
Tonegawa,	Morrissey	and	Kitamura,	2018).	Notably,	representational	drift	is	different	than	
mere	variability	in	neuronal	responses	in	that	the	changes	in	the	cells’	coding	properties	are	
gradual.	Namely,	in	representational	drift,	the	similarity	between	any	two	representations	of	
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the	same	stimulus	gradually	decays	with	elapsed	 time;	 in	contrast,	variability	 in	neuronal	
responsiveness	 does	 not	 lead	 to	 such	 time-dependent	 decay	 in	 the	 similarity	 between	
representations	(Clopath	et	al.,	2017;	Rule,	O’Leary	and	Harvey,	2019).		

In	the	hippocampus,	representational	drift	is	driven	primarily	by	changes	in	the	activity	rates	
of	individual	neurons,	whereas	the	cells’	tuning	to	specific	positions	changes	to	a	lesser	extent	
(Ziv	et	al.,	2013;	Rubin	et	al.,	2015).	These	findings	suggest	that	coding	stability	is	a	complex	
trait	that	is	affected	by	different	aspects	of	cellular	physiology	and	connectivity.	The	specific	
mechanisms	that	underlie	representational	drift	 remain	elusive,	but	 it	was	suggested	that	
drift	may	be	an	inevitable	outcome	of	the	network	dynamics	in	deep	brain	circuits	that	consist	
of	multiple	 input	and	output	 loops	(Rule,	O’Leary	and	Harvey,	2019).	Consistent	with	 this	
logic,	and	given	the	need	to	support	stable	perception	and	motor	outputs,	it	is	plausible	that	
brain	circuits	situated	closer	to	the	sensory	input	or	to	the	motor	output	will	display	highly	
stable	neuronal	representations	(Haak,	Morland	and	Engel,	2015;	Haak	and	Mesik,	2016).		

While	 a	 direct	 examination	 of	 this	 hypothesis	 is	 still	 lacking,	 several	 recent	 chronic	 two-
photon	imaging	studies	of	sensory	cortices	investigated	coding	stability	and	found	variability	
in	neuronal	responsiveness	to	sensory	stimuli	over	multiple	days	(Andermann,	Kerlin	and	
Reid,	 2010;	Montijn	 et	 al.,	 2016;	 Rose	 et	 al.,	 2016;	 Ranson,	 2017;	 Jeon	 et	 al.,	 2018).	 For	
instance,	 in	 the	primary	visual	cortex	(V1),	Rose	et	al.	(2016)	revealed	session-to-session,	
time-independent	variability	of	neuronal	visual	tuning	properties	(e.g.,	ocular	dominance).	
Similarly,	Montijn	et	al.	(2016)	reported	that	the	neuronal	responses	in	V1	are	variable	across	
trials	within	the	same	day,	but	their	tuning	is	relatively	stable	across	days.		

These	studies	provide	clear	indications	that	representations	of	visual	stimuli	in	L2/3	neurons	
of	V1	are	variable	over	 time.	However,	 it	 remains	unclear	 if	and	 to	what	extent	 the	visual	
cortex	(or	any	sensory	cortex,	for	that	matter)	exhibits	representational	drift	that	is	similar	
to	that	observed	in	deep	circuits	(Ziv	et	al.,	2013;	Rubin	et	al.,	2015),	in	terms	of	the	degree	
to	which	different	aspects	of	cells’	coding	properties,	such	as	tuning	and	activity	rate,	change	
over	 time.	 It	 is	 also	 unknown	 whether	 higher-order	 sensory	 cortical	 areas	 generate	
representations	 that	 are	 less	 stable	 than	 those	 of	 primary	 sensory	 cortices,	 and	 how	 the	
stability	of	neuronal	coding	properties	differs	across	different	layers	within	a	given	cortical	
area.		

Recently,	 the	 Allen	 Brain	 Institute	 published	 two	 large-scale,	 standardized	 physiological	
surveys	of	neuronal	coding	in	the	visual	cortex	(Allen	Brain	Observatory)	(Siegle	et	al.,	2019;	
de	Vries	et	al.,	2020).	These	datasets	consist	of	optical	and	electrophysiological	recordings	of	
tens	of	thousands	of	neurons	from	six	different	visual	cortical	areas	in	hundreds	of	awake	
behaving	mice	that	were	repeatedly	presented	with	the	same	set	of	stimuli.	Thus,	they	offer	
a	unique	opportunity	to	study	coding	stability	across	different	areas	of	the	visual	cortex	and	
over	 different	 timescales,	 from	 minutes	 to	 days.	 The	 dense	 recording	 using	 Neuropixels	
probes	(Jun	et	al.,	2017)	allows	within-mouse	comparison	across	visual	areas,	whereas	the	
two-photon	Ca2+	imaging	dataset	enables	the	longitudinal	analysis	of	a	large	population	of	the	
same	 cells,	 both	within	 and	 across	days.	 Given	 that	 the	 study	 of	 coding	 stability	 is	 often	
confounded	by	technical	issues,	such	as	the	mechanical	stability	of	the	recoding	apparatus,	
the	fact	that	the	same	experiments	were	conducted	using	two	different	recording	techniques	
(Neuropixels	and	two-photon	Ca2+	imaging)	can	help	overcome	and	control	for	limitations	
and	biases	associated	with	each	technique.	Furthermore,	a	specific	set	of	stimuli	–	natural	
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scene	movies	–	were	used	in	these	experiments	and	on	different	days.	This	allows	the	detailed	
investigation	 of	 the	 stability	 of	 visual	 representations	 that	 are	 more	 complex	 and	
ethologically	relevant	 than	the	synthetic	stimuli	traditionally	used	 for	 longitudinal	studies	
(David,	Vinje	and	Gallant,	2004;	Kampa	et	al.,	2011;	Talebi	and	Baker,	2012).		

Here,	 we	 utilized	 these	 datasets	 to	 address	 basic	 questions	 regarding	 the	 stability	 and	
dynamics	 of	 visual	 representations.	 We	 found	 that	 representational	 drift	 occurs	 across	
different	visual	areas,	over	timescales	spanning	minutes	to	days,	and	is	primarily	driven	by	
changes	in	the	cells’	activity	rates	rather	than	in	their	tuning.	We	demonstrate	that	despite	
clear	time-dependent	changes	in	neuronal	responsiveness	to	visual	stimuli,	the	structure	of	
relationships	between	neuronal	population	activity	patterns	remained	stable,	permitting	the	
conservation	of	visual	information	over	time.	

	
Results	

We	analyzed	publicly	available	datasets	by	 the	Allen	Brain	Observatory	 from	experiments	
that	 used	 two	 recording	 techniques:	 two-photon	 Ca2+	 imaging	 (de	Vries	 et	 al.,	 2020)	 and	
electrophysiology	 via	 Neuropixels	 probes	 (Siegle	 et	 al.,	 2019).	 The	 Ca2+	 imaging	 dataset	
comprises	neuronal	activity	 from	nearly	60,000	neurons	collected	 from	six	visual	cortical	
areas,	across	different	layers,	from	hundreds	of	adult	mice	that	were	presented	with	the	same	
set	of	visual	stimuli	 (Fig.	1A-D).	Each	mouse	was	 imaged	from	a	single	cortical	area	while	
performing	 three	 imaging	 sessions,	 separated	by	a	different	number	of	 days.	During	 each	
imaging	session,	mice	viewed	a	battery	of	natural	and	artificial	stimuli	(Fig.	1C	and	Methods).	
The	 Neuropixels	 dataset	 comprises	 neuronal	 activity	 from	 nearly	 90,000	 single	 units	
collected	from	six	visual	areas,	thalamic	nuclei,	and	the	hippocampus,	from	58	adult	mice	(Fig.	
1E-H).	Each	mouse	was	implanted	with	multiple	Neuropixels	probes	in	different	brain	areas	
and	went	through	a	single	recording	session	while	viewing	a	battery	of	natural	and	artificial	
stimuli	(Fig.	1E-F).	In	this	study,	we	focused	our	analysis	on	neuronal	activity	recorded	during	
the	presentations	of	two	natural	movies,	because	they	were	presented	in	all	imaging	sessions	
across	days	(‘Natural	Movie	1’	in	the	Ca2+	imaging	dataset)	or	twice	within	the	same	recording	
session	(‘Natural	Movie	3’	in	the	Ca2+	imaging	and	Neuropixels	datasets;	and	‘Natural	Movie	
1’	in	the	Neuropixels	dataset).	This	experimental	design	enabled	us	to	study	the	stability	of	
neuronal	representations	on	different	time	scales:	(1)	Between	movie	repetitions	within	a	
single	block	across	seconds-minutes;	(2)	Between	different	blocks	within	the	same	recording	
session	across	minutes-hours;	And	(3)	across	sessions	recorded	on	different	days.	In	datasets	
from	both	recording	techniques,	we	could	readily	identify	neurons	that	displayed	reliable	and	
distinct	tuning	curves	that	were	stable	across	different	movies	repeats,	blocks	and	days	(Fig.	
1D,	H).		

To	study	the	stability	and	dynamics	of	visual	representations	over	timescales	of	seconds	to	
minutes,	we	analyzed	data	recorded	using	Neuropixels	probes	during	the	presentations	of	
‘Natural	 Movie	 1’.	 We	 divided	 each	 movie	 repeat	 into	 equal	 time	 bins	 and	 constructed	
population	 vectors	 (PVs)	 of	 neuronal	 activity	 for	 each	 time	 bin	 (see	 Methods).	 We	 then	
calculated	the	correlation	across	the	PVs	of	all	time	bins	of	all	movie	repeats	as	a	measure	for	
similarity	 between	 neuronal	 representations	 across	 time	 (Fig.	 2A).	 We	 found	 higher	 PV	
correlations	between	the	same	time	bins	across	movies	repeats	than	between	different	time	
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bins,	indicating	distinct	and	stable	representation	of	the	movie	sequence	(Fig.	2A	inset).	The	
average	PV	correlation	values	across	the	same	time	bins	capture	the	stability	of	the	ensemble	
representation	 between	 different	 movie	 repeats	 (Fig.	 2B).	 If	 the	 stability	 of	 the	 visual	
representation	is	mostly	affected	by	the	variability	of	the	neuronal	responses,	then	the	PV	
correlation	values	across	two	movie	repeats	that	are	close	in	time	would	be	similar	to	those	
of	two	movies	repeats	that	are	more	remote	in	time.	If,	however,	the	neuronal	representation	
is	drifting,	 then	 the	PV	correlation	values	across	 two	movie	repeats	 that	are	close	 in	 time	
would	be	higher	than	those	of	two	movies	repeats	that	are	more	remote	in	time	(Clopath	et	
al.,	2017).	Calculating	the	mean	PV	correlation	as	a	function	of	the	interval	between	movie	
repeats	showed	a	significant	gradual	decline,	indicating	representational	drift	in	all	studied	
visual	areas	(Fig.	2C-E	and	Supp.	Fig.	1A).		

Could	the	observed	representational	drift	merely	reflect	changes	in	behavioral	state	or	global	
fluctuation	in	neuronal	activity	levels?	Indeed,	we	found	a	mild	drop	in	running	speed	and	
pupil	area	after	the	first	few	movie	repeats,	potentially	reflecting	changes	in	arousal	(Niell	
and	Stryker,	2010;	Keller,	Bonhoeffer	and	Hübener,	2012;	Ayaz	et	al.,	2013;	Polack,	Friedman	
and	Golshani,	2013;	Erisken	et	al.,	2014;	Ruff	and	Cohen,	2014;	Vinck	et	al.,	2015;	Mineault	et	
al.,	 2016;	 Dipoppa	 et	 al.,	 2018;	Musall	 et	 al.,	 2019)(Supp.	 Fig.	 2A,B).	We	 also	 observed	 a	
modest	decrease	in	the	global	neuronal	activity	rates	during	the	first	several	movie	repeats	
(Supp.	Fig.	2C,D).	To	test	the	possibility	that	these	changes	in	behavior	and	neuronal	activity	
rates	 underlie	 our	measurements	 of	 representational	 drift,	 we	 removed	 the	 first	 several	
movie	repeats	and	repeated	our	analysis.	The	decline	in	PV	correlation	values	as	a	function	
of	the	interval	between	movie	repeats	in	the	subsampled	dataset	was	similar	to	the	decline	
seen	in	the	analysis	of	the	complete	dataset	(Supp.	Fig.	2D,E).	Furthermore,	the	distribution	
of	the	differences	in	activity	rates	of	individual	neurons	between	the	beginning	and	end	of	
each	block	of	movie	repeats	was	centered	around	zero,	suggesting	that	representational	drift	
is	not	driven	by	a	systematic	decline	in	firing	rates	in	individual	neurons	(Supp.	Fig.	2F).	Thus,	
changes	 in	 the	 behavioral	 state	 or	 in	 global	 neuronal	 activity	 levels	 did	 not	 underlie	 the	
observed	representational	drift.	

What	 cellular	 properties	 could	 underlie	 the	 observed	 representational	 drift?	 Time-
dependent	decline	in	PV	correlations	may	stem	from	changes	in	cellular	excitability	(Fig.	2F)	
or	from	changes	in	the	tuning	of	individual	neurons	to	the	presented	stimuli	(Fig.	2G).	To	test	
the	contribution	of	each	of	these	factors	to	the	observed	changes	in	PV	correlations	over	time,	
we	performed	two	complementary	analyses:	(1)	‘Ensemble	rate	correlation’:	For	each	movie	
repeat	we	constructed	a	single	vector	constituting	the	overall	activity	rates	of	each	cell	in	the	
recorded	population.	We	then	quantified	 the	correlations	across	all	pairs	of	 these	vectors,	
which	captured	the	changes	in	the	cells’	activity	rates,	irrespective	of	their	tuning	to	different	
time	points	along	the	movie.	This	analysis	revealed	a	significant	decline	in	the	ensemble	rate	
correlation	as	a	function	of	the	interval	between	movie	repeats	in	all	studied	visual	areas	(Fig.	
2H,	and	Supp.	Fig.	1B).	(2)	‘Tuning	curve	correlation’:	For	each	neuron,	at	each	movie	repeat,	
we	 constructed	 a	 vector	 representing	 its	 responsiveness	 to	 different	 time	 bins	 of	 the	
presented	movie	(i.e.,	its	tuning	curve)	and	then	correlated	the	tuning	curves	for	the	same	
neurons	 across	 different	movie	 repeats.	 This	 analysis	 revealed	 a	modest,	 yet	 significant,	
decline	in	the	tuning	curve	correlation	values	as	a	function	of	the	distance	between	movie	
repeats	 in	 all	 studied	 visual	 areas	 (Fig.	 2I,	 and	 Supp.	 Fig.	 1C).	 We	 found	 similar	 time-
dependent	changes	 in	visual	 tuning	when	we	trained	a	decoder	(k-nearest	neighbors;	see	
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Methods)	to	infer	the	time	bin	associated	with	a	given	activity	pattern	at	a	given	movie	repeat	
based	on	the	activity	patterns	of	the	neuronal	population	during	the	preceding	repeat	(Supp.	
Fig.	 3A-F).	 To	minimize	 the	 contribution	 of	 recording	 instability	 to	 our	 observations,	we	
restricted	 our	 analysis	 only	 to	 cells	 whose	 tuning	 curves	 were	 highly	 correlated	 across	
different	blocks,	thereby	ensuring	we	tracked	the	same	cells	within	a	given	block.	Even	when	
using	this	inclusion	criterion,	we	found	time-dependent	changes	in	visual	representations	in	
all	studied	cortical	areas	(Supp.	Fig.	4A-F).	Notably,	we	obtained	similar	results	in	the	Ca2+	
imaging	 dataset,	 further	 substantiating	 that	 the	 observed	 drift	 is	 not	 due	 to	 recording	
instability	 (Supp.	 Fig.	 1D-F).	 Overall,	 changes	 in	 both	 the	 cells’	 tuning	 and	 activity	 rates	
contributed	to	drift	in	visual	representations	over	timescales	of	seconds-minutes.	

To	determine	the	degree	to	which	visual	representations	change	over	timescales	of	tens	of	
minutes,	we	analyzed	the	stability	within	and	across	blocks	of	movie	presentations	in	both	
Neuropixels	and	Ca2+	imaging	data.	We	found	significantly	higher	correlations	within	a	given	
block	 compared	 to	 between	 blocks	 in	 all	 measurements	 (PV	 correlation,	 ensemble	 rate	
correlation,	and	tuning	curve	correlation),	brain	areas	and	datasets,	suggesting	that	visual	
representations	change	over	the	course	of	tens	of	minutes	(Fig.	3A-D	and	Supp.	Fig.	5A-D).	
Time-dependent	changes	in	ensemble	rate	correlations	were	more	pronounced	than	time-
dependent	 changes	 in	 the	 cells’	 tuning	 (Fig.	 3C,D,	 Supp.	 Fig.	 5C,D	 and	 Supp.	 Fig.	 6A,B).	
Furthermore,	the	decline	in	ensemble	rate	correlations	was	continuous	and	proportional	to	
the	interval	between	blocks	of	different	natural	movies	(Supp.	Fig.	7A-F).			

A	 major	 advantage	 of	 the	 Ca2+	 imaging	 approach	 is	 the	 ability	 to	 record	 from	 the	 same	
neurons	over	multiple	days,	which	allows	examination	of	the	long-term	stability	of	neuronal	
representations	 (Sheintuch	et	 al.,	 2017).	The	Ca2+	 imaging	dataset	 contains	 three	 imaging	
sessions	per	mouse,	spanning	multiple	days	(Fig.	3E).	Previous	time-lapse	imaging	studies	in	
the	hippocampus	and	posterior-parietal	cortex	have	shown	turnover	in	the	ensemble	of	cells	
that	are	active	on	different	imaging	days	(Ziv	et	al.,	2013;	Rubin	et	al.,	2015;	Driscoll	et	al.,	
2017).	This	turnover	by	itself	can	contribute	to	representational	drift.	Thus,	we	first	took	a	
conservative	approach	and	included	only	cells	that	were	active	in	both	of	the	compared	time	
points	 (either	within	a	session	or	across	sessions).	Similarly	 to	our	observations	within	a	
given	day,	we	found	a	significant	representational	drift	across	days	in	all	measurements	and	
brain	areas	(Fig.	3F-H).	Notably,	also	across-days,	changes	in	ensemble	rate	correlations	were	
more	pronounced	than	changes	in	the	cells’	tuning	(Fig.	3G,H	and	Supp.	Fig.	6C).	Furthermore,	
in	most	visual	areas,	the	PV	correlations	between	two	proximal	sessions	were	significantly	
higher	than	between	two	distal	sessions,	suggesting	that	representational	drift	is	continuous	
over	multiple	sessions	that	occur	on	different	days	(Fig.	3I	and	Supp.	Fig.	8A).		

The	distribution	of	the	mean	activity	rates	was	similar	across	sessions	in	all	visual	areas,	and	
there	 was	 also	 no	 difference	 in	 the	 PV	 correlation	 values	 between	 different	 pairs	 of	
subsequent	 sessions	(i.e.,	 the	 similarity	between	 sessions	1	and	2	was	 comparable	 to	 the	
similarity	between	sessions	2	and	3),	suggesting	that	representational	drift	over	timescales	
of	days	is	not	a	result	of	a	gradual	deterioration	in	neuronal	activity	or	 tuning	(Supp.	Fig.	
8B,C).		

To	determine	the	effect	of	elapsed	time,	we	compared	the	ensemble	rate	and	tuning	curve	
correlation	 between	 pairs	 of	 sessions	 separated	 by	 a	 different	 number	 of	 days.	 While	
ensemble	rate	correlations	significantly	decreased	as	a	function	of	the	number	days	between	
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sessions	in	all	visual	areas,	the	tuning	curve	correlations	showed	only	a	modest	trend	(Fig.	
3J,K).	We	also	examined	the	extent	to	which	representational	drift	is	affected	by	the	dynamic	
recruitment	of	cells	to	the	representation	on	different	days	(Ziv	et	al.,	2013;	Rubin	et	al.,	2015;	
Driscoll	et	al.,	2017),	by	repeating	our	analyses	with	the	pool	of	cells	found	active	in	at	least	
one	of	 the	 time	points	we	compared	(Supp.	Fig.	8D).	This	analysis	revealed	an	even	more	
pronounced	decline	in	the	difference	between	subsequent	sessions	(Supp.	Fig.	8E).	Notably,	
time-dependent	 changes	 in	 visual	 representations	were	different	 across	 cortical	 layers	 in	
different	areas	(Supp.	Fig.	9A,B),	with	layers	2/3	and	5	showing	more	stable	representations	
than	layers	4	and	6.		

To	what	extent	does	the	hierarchy	of	information	flow	across	visual	areas	affect	the	stability	
of	 visual	 representations?	 To	 address	 this	 issue,	 we	 considered	 recent	 anatomical	 and	
functional	studies	that	established	a	hierarchical	structure	of	the	mouse	visual	system	(Harris	
et	al.,	2019;	Siegle	et	al.,	2019).	In	this	hierarchy,	the	lateral	geniculate	nucleus	(LGN)	is	at	the	
bottom,	and	area	AM	is	at	the	top.	Therefore,	 in	our	analysis	we	compared	the	stability	of	
thalamic	areas	(dorsal	LGN	and	LP)	and	cortical	areas	(V1	and	LM).	Brain	areas	within	these	
pairs	 are	 anatomically	 adjacent	 and	 show	 similar	 degree	 of	 tuning	 reliability	 to	 natural	
movies,	but	are	distinct	with	respect	to	their	level	in	the	hierarchical	structure	of	the	visual	
system.	We	found	that	V1	was	consistently	less	stable	than	the	downstream	area	LM	across	
all	measured	timescales	(Supp.	Fig.	10A-H),	and	likewise,	LGN	showed	faster	drift	compared	
to	the	downstream	area	LP	(Supp.	Fig.	10A,B).	Thus,	our	results	do	not	support	the	hypothesis	
that	lower	visual	areas	are	more	stable	over	time	than	higher	areas.		

Our	 analyses	 so	 far	 have	 shown	 that	 the	 changes	 in	 visual	 representations	 occur	 across	
timescales	that	range	from	seconds	to	days.	This	raises	the	question	of	how	could	the	visual	
system	 generate	 consistent	 perception	 despite	 representational	 drift	 and	 variability	 in	
neuronal	responses.	Recent	studies	in	the	hippocampus	have	shown	that	the	structure	of	the	
relationship	between	neuronal	population	activity	patterns	remains	stable	over	timescales	
of	 days,	 and	 is	 also	 stereotypic	 across	mice	 (Rubin	 et	 al.,	 2019).	 Such	 a	 population-level	
representation	may	confer	perceptual	constancy	in	the	face	of	changing	coding	properties	of	
individual	neurons.	Thus,	we	next	asked	to	determine	the	degree	to	which	the	structure	of	
neuronal	population	activity	is	distinct	for	each	visual	area,	stereotypic	across	individuals,	
and	stable	over	time.	To	this	end,	we	calculated	for	each	area	the	PV	for	each	time	bin	within	
a	movie	repeat	and	then	calculated	the	correlations	across	all	the	PVs.	This	yielded	a	matrix	
(time	by	time)	that	represented	the	structure	of	similarities	between	representations	(i.e.	the	
‘internal	structure’	of	neuronal	population	activity)	of	different	time	bins	in	the	presented	
movie	(Fig.	4A	and	Supp.	Fig.	11A).	We	then	applied	dimensionality	reduction	to	the	vectors	
representing	the	internal	structures	for	all	movie	repeats	from	all	visual	areas	(see	Methods).	
We	found	that	the	data	was	highly	clustered,	clearly	separating	between	the	different	visual	
areas	(Fig.	4B).	This	result	suggests	that	the	neuronal	population	activity	of	each	visual	area	
has	a	unique	internal	structure,	and	raises	the	possibility	that	the	relationship	among	these	
structures	is	stereotypic.	

It	remains	unclear,	however,	to	what	extent	such	an	organization	stems	from	the	intrinsic	
functional	 properties	 of	 each	 brain	 area	 (Andermann	 et	 al.,	 2011;	 Glickfeld	 et	 al.,	 2013;	
Juavinett	and	Callaway,	2015;	Murakami,	Matsui	and	Ohki,	2017;	Zatka-Haas	et	al.,	2018),	and	
to	what	extent	it	is	susceptible	to	biases	in	the	analysis	(e.g.,	due	to	incidental	differences	in	
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the	coding	properties	of	the	sampled	neurons	or	differential	effects	of	the	behavioral	state	on	
neuronal	activity	in	different	areas).	To	address	these	issues,	we	divided	the	dataset	into	two	
equal	 groups	 of	mice,	 and	 then	 pooled	 together	 the	 data	 from	 each	 group	 to	 create	 two	
independent	 ‘pseudo-mice’,	 taking	 the	 same	 number	 of	 cells	 for	 each	 visual	 area	 in	 both	
pseudo-mice	(Supp.	Fig.	12A).	Hence,	 the	resultant	pseudo-mice	have	an	equal	number	of	
randomly-sampled	neurons	for	all	visual	areas,	with	an	order	of	magnitude	more	neurons	
per	visual	area	compared	to	individual	mice.	Applying	dimensionality	reduction	to	the	data	
from	the	two	pseudo-mice	revealed	well-separated	clusters	(Fig.	4C	and	Supp.	Fig.	11B)	that	
correspond	to	the	different	visual	areas,	similarly	to	what	we	found	in	individual	mice	(Fig.	
4B).		

Next,	we	sought	to	quantify	how	distinct	are	the	internal	structures	of	different	visual	areas.	
To	this	end,	we	used	a	k-nearest	neighbors	algorithm	to	decode	the	identity	of	the	recorded	
visual	 area	 based	 on	 the	 internal	 structure	 of	 single	 movie	 repeats,	 and	 found	 good	
classifications	in	all	brain	areas,	both	within	and	between	pseudo-mice	(Fig.	4D	and	Supp.	Fig.	
11C).	The	decoder’s	performance	within	pseudo-mice	was	also	higher	than	those	of	the	same	
decoder	in	which	we	shuffled	the	identity	of	the	neurons	across	visual	areas	(Supp.	Fig.	11D-
F),	 indicating	that	the	performance	of	such	decoder	genuinely	reflects	 the	diversity	 in	 the	
coding	properties	across	the	different	visual	areas.	Importantly,	the	internal	structures	of	all	
visual	areas	(except	of	area	LM)	most	closely	resembled	their	equivalent	structures	across	
pseudo-mice	(Fig.	4D	and	Supp.	Fig.	11F,G),	 suggesting	 that	 the	 internal	structure	of	each	
visual	 area	 is	 stereotypic.	 This	 was	 also	 true	 for	 the	 relationship	 between	 the	 internal	
structures	of	different	brain	areas	across	two	different	natural	movies	(Fig.	4E	and	Methods).	
Importantly,	 the	 relationship	 between	 the	 internal	 structures	 of	 the	 different	 areas	 was	
preserved	across	movies	 and	pseudo-mice	 (Fig.	 4E,	 inset	 and	Supp.	 Fig.	 12B).	As	another	
independent	verification	of	 these	results,	we	constructed	 two	pseudo-mice	using	datasets	
from	the	two	recording	techniques:	one	pseudo-mouse	for	the	Ca2+	imaging	data	and	another	
for	 the	 Neuropixels	 data	 (Fig.	 4F).	 Consistent	 with	 our	 previous	 analyses,	 even	 across-
recording	techniques,	all	six	visual	areas	were	most	similar	to	themselves	across	pseudo-mice	
(Fig.	 4F,	 inset).	 Together,	 these	 analyses	 suggest	 that	 the	 different	 brain	 areas	 form	 a	
stereotypic	relationship	between	their	internal	structures.		

Finally,	we	examined	whether	the	internal	structure	of	neuronal	population	activity	is	more	
stable	over	time	than	the	activity	rates	and	tuning	of	individual	neurons.	Therefore,	for	each	
brain	area	we	calculated	the	change	in	the	correlations	between	the	internal	structures,	and	
compared	it	to	the	change	in	the	PV	correlation	as	a	function	of	the	interval	between	movie	
repeats.	While	the	PV	correlations	decayed	with	time,	the	correlations	between	the	internal	
structures	 remained	 stable	 (Fig.	 4G,H	 and	Supp.	 Fig.	 11H).	 The	 stability	 over	 time	 of	 the	
internal	structure	depended	on	 the	size	of	 the	neuronal	population	(Fig.	4I	and	Supp.	Fig.	
11I);	including	more	cells	in	the	analysis	resulted	in	a	more	stable	structure.	Conversely,	the	
change	in	PV	correlation	over	time	did	not	depend	on	the	number	of	cells,	consistent	with	a	
measurement	that	treats	cells	independently.	Overall,	our	results	suggest	that	the	internal	
structure	of	neuronal	population	activity	of	each	visual	area	is	distinct,	stereotypic,	and	stable	
across	time.	
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Discussion	

Here,	we	 used	 large-scale	 electrophysiological	 and	 optical	 imaging	 data	 to	 systematically	
study	the	stability	of	neuronal	encoding	of	complex	visual	stimuli	across	different	areas	of	the	
visual	cortex	(Siegle	et	al.,	2019;	de	Vries	et	al.,	2020).	Our	results	demonstrate	the	existence	
of	 a	 representational	 drift	 over	 timescales	 of	 minutes	 to	 days	 in	 all	 studied	 brain	 areas.	
Similarly	 to	 previous	 findings	 in	 the	 hippocampus,	 we	 found	 that	 drift	 in	 visual	
representations	 is	 primarily	 driven	 by	 changes	 in	 cells’	 activity	 rates,	 while	 their	 tuning	
changes	to	a	lesser	degree	(Ziv	et	al.,	2013;	Rubin	et	al.,	2015).	Surprisingly,	our	analysis	does	
not	support	the	hypothesis	that	primary	(or	lower)	sensory	areas	should	display	more	stable	
coding	than	downstream	(higher)	areas	(Haak,	Morland	and	Engel,	2015;	Haak	and	Mesik,	
2016).	If	anything,	our	analysis	shows	that	the	coding	stability	of	some	cortical	(V1	and	V2)	
and	subcortical	(LGN	and	LP)	areas	exhibit	an	opposite	trend	with	respect	to	their	hierarchy.	
These	results	are	in	line	with	a	recent	study	in	the	human	visual	cortex	that	demonstrated,	
using	functional	MRI,	a	non-monotonic	relationship	between	plasticity	and	hierarchical	level	
(Haak	and	Beckmann,	2019).	We	further	show	that	the	structure	of	the	relationship	between	
neuronal	 population	 activity	 patterns	 is	 stereotypic	 across	 mice	 and	 stable	 over	 time,	
pointing	 to	 a	 possible	 network	mechanism	 that	 can	 reliably	 preserve	 visual	 information	
despite	drift	in	the	coding	properties	of	individual	neurons.	

Our	work	joins	a	number	of	longitudinal	studies	that	quantified	coding	stability	in	the	visual	
cortex	and	adds	to	these	studies	in	several	important	aspects	(Montijn	et	al.,	2016;	Rose	et	
al.,	2016;	Ranson,	2017;	Jeon	et	al.,	2018).	While	previous	work	focused	on	V1,	our	analysis	
encompasses	six	different	visual	areas	(along	with	two	sub-cortical	structures),	allowing	a	
direct	 comparison	 between	 them.	 Whereas	 earlier	 studies	 used	 mostly	 simple	 synthetic	
stimuli	(e.g.,	static	or	moving	gratings),	our	study	characterizes	neuronal	responses	to	natural	
movies,	 a	 complex	 and	more	 ethologically	 relevant	 visual	 stimulus.	While	most	 previous	
investigations	focused	on	L2/3	neurons,	in	this	work	we	were	able	to	analyze	recordings	from	
different	cortical	layers.	Previous	studies	used	either	electrophysiological	recordings	or	two-
photon	 Ca2+	 imaging	 and	 had	different	 experimental	 schedules,	which	 precluded	 a	direct	
comparison	of	findings	made	using	the	different	techniques.	Here,	neuronal	responses	to	the	
exact	 same	 stimuli	 were	 recorded	 using	 both	 electrophysiology	 and	 Ca2+	 imaging,	 which	
allowed	 us	 to	 validate	 the	 results	 and	 control	 for	biases	 specific	 for	 each	 technique	 (see	
below).	The	datasets	from	both	recording	techniques	also	allowed	us	to	study	coding	stability	
across	different	timescales	(seconds	to	days).	

In	 this	 work	 we	 deconstructed	 a	 commonly	 applied	 measure	 of	 coding	 stability	 (PV	
correlations)(Leutgeb	et	al.,	2005)		into	two	measures:	ensemble	rate	correlation	and	tuning	
curve	correlation.	By	doing	so,	we	found	that	similarly	to	findings	in	hippocampus	(Ziv	et	al.,	
2013;	Rubin	et	al.,	2015),	time-dependent	changes	in	activity	rates	are	more	dominant	than	
changes	 in	 the	 cells’	 tuning	 curve.	 These	 two	 measures	 presumably	 capture	 changes	 in	
different	aspects	of	neuronal	physiology,	such	as	excitability	(rate)	and	synaptic	connectivity	
(tuning).	Our	findings	that	tuning	curve	correlations	change	over	time	to	a	lesser	extent	than	
do	 ensemble	 rate	 correlations	 are	 in	 line	with	previous	work	 that	 found	 tuning	 to	 visual	
stimuli	 to	 be	 relatively	 stable	 (Montijn	 et	 al.,	 2016).	 However,	 both	 measures	 revealed	
significant	changes	over	time	across	most	brain	areas,	which	highlights	the	fact	that	coding	
stability	 is	 a	 multi-dimensional	 property.	 Whether	 time-dependent	 changes	 along	 such	
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different	dimensions	of	coding	stability	have	a	qualitatively	different	impact	on	the	function	
of	the	visual	system	remains	to	be	studied.		

Recent	studies	suggest	that,	in	some	brain	areas,	representational	drift	could	have	a	beneficial	
role.	For	example,	 in	the	hippocampus	and	lateral	entorhinal	cortex,	representational	drift	
may	support	 the	encoding	of	 time	 in	episodic	memory	(Manns,	Howard	and	Eichenbaum,	
2007;	Ziv	et	al.,	2013;	Cai	et	al.,	2016;	Tsao	et	al.,	2018).	By	encoding	each	experienced	event	
in	a	unique	manner,	representational	drift	can	help	deal	with	catastrophic	interferences,	or	
serve	as	a	means	to	continuously	update	previously	learned	associations	(Wiskott,	Rasch	and	
Kempermann,	2006;	Eichenbaum,	2017).	Overall,	although	 it	 is	currently	unclear	whether	
the	functionality	of	the	sensory	cortex	could	benefit	from	representational	drift,	we	cannot	
rule	out	such	an	option.	

In	our	analysis,	we	were	able	to	demonstrate	the	existence	of	representational	drift,	whereas	
previous	work	emphasized	variability	(Montijn	et	al.,	2016;	Ranson,	2017;	Jeon	et	al.,	2018).	
Notably,	in	some	of	these	studies,	drift	could	not	be	determined	because	only	two	time	points	
were	 compared.	 However,	 irrespective	 of	 whether	 changes	 in	 the	 coding	 of	 visual	
information	are	due	to	drift	or	variability,	the	visual	system	must	cope	with	them	to	generate	
consistent	perception.	It	has	been	suggested	that	a	system	that	carries	a	high-dimensional	
distributed	 code	 may	 maintain	 its	 functionality	 under	 representational	 drift	 by	 either	
confining	 the	 drift	 to	 the	 null	 space	 of	 the	 code,	 or	 via	 a	 compensatory	 plasticity	 of	 the	
downstream	reader	(Rule,	O’Leary	and	Harvey,	2019;	Rule	et	al.,	2020).	 In	both	cases	 the	
similarities	 across	 representations	 of	 different	 stimuli	 are	 expected	 to	 be	 somewhat	
conserved	 over	 time,	 even	 under	 a	 significant	 change	 in	 the	 representations	 themselves.	
Here,	we	took	advantage	of	the	large	number	of	mice	in	Allen	Brain	Observatory	datasets,	and	
generated	pseudo-mice,	which	consisted	of	between	ten-to-hundred-fold	more	neurons	per	
brain	area	 than	 in	each	real	mouse.	This	approach	allowed	us	 to	portray	and	analyze	 the	
internal	structure	of	neuronal	population	activity,	while	avoiding	biases	due	to	the	size	of	the	
sampled	population	of	neurons,	noise,	or	variability	in	the	behavioral	state	across	mice.	Here,	
again,	 obtaining	 the	 same	 results	using	data	 from	the	 two	 recording	 techniques	provided	
additional	 validation	 of	 this	 analysis	 approach.	We	 found	 that	 different	 visual	 areas	 had	
distinct	internal	structures	and	that	the	internal	structure	for	a	given	brain	area	was	similar	
across	mice.	We	also	demonstrated	that	the	internal	structure	was	stable	over	time	across	all	
visual	areas,	and	that	its	stability	depends	on	the	number	of	cells	included	in	the	analysis.	
These	results	are	consistent	with	several	recent	studies	that	showed	that	a	stable	structure	
(manifold)	of	population	activity	underlies	a	stable	behavior	(Rubin	et	al.,	2019;	Bolding	et	
al.,	2020;	Gallego	et	al.,	2020;	Pashkovski	et	al.,	2020).	Our	results	are	also	consistent	with	a	
recent	study	in	V1	that	showed	that	high-dimensional	population	codes	are	more	stable	than	
low-dimensional	 population	 codes	 (Montijn	 et	 al.,	 2016).	 In	 line	 with	 that	 work,	 our	
population-level	analysis	hints	at	the	possibility	that	the	sheer	size	of	the	neuronal	population	
in	 a	 given	 area	 contributes	 to	 the	 robustness	 of	 the	 visual	 representation	 to	 drifting	
responsiveness	of	individual	neurons.		

Measuring	coding	stability	 is	challenging	because	various	 factors	could	affect	 longitudinal	
recordings	in	a	way	that	could	lead	to	the	appearance	of	drift,	even	if	the	neuronal	activity	
itself	is	stable.	In	electrophysiological	recordings,	movement	of	the	electrode	inside	the	tissue	
can	cause	some	units	to	disappear	and	others	to	appear,	which	will	show	in	the	analysis	as	
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variable	or	drifting	responses.	Biological	reactions	to	the	implanted	probes,	such	as	scaring	
and	inflammation	around	the	electrode,	could	likewise	lead	to	gradual	deterioration	of	the	
recorded	 signal.	 Given	 these	 issues,	 traditional	 electrophysiological	 recording	 techniques	
cannot	be	reliably	used	for	longitudinal	studies	over	timescale	longer	than	~1-2	days.	In	this	
work,	we	analyzed	electrophysiological	data	recorded	in	head-fixed	mice	using	Neuropixels	
probes	(Jun	et	al.,	2017),	and	focused	on	changes	in	neuronal	responses	over	timescales	of	
tens	of	minutes	(Fig.	2	and	Fig.	3A-D),	during	which	recording	instability	is	less	likely	to	play	
a	role.	Moreover,	several	control	analyses	suggest	that	our	results	are	not	due	to	recording	
instability:	(1)	We	found	similar	effects	within	a	block	even	when	we	included	in	our	analysis	
only	 units	 that	were	 highly	 stable	 across	 blocks	 (Supp.	 Fig.	 4).	 (2)	We	 found	 continuous	
changes	in	the	ensemble	activity	across	blocks	(over	>	1	hour),	even	when	we	included	in	the	
analysis	only	units	that	showed	high	tuning	curve	correlation	across	blocks	and	across	two	
different	movies	 (Supp.	 Fig.	 7).	 (3)	We	 found	 similar	 results	 in	data	 recorded	 using	 two-
photon	Ca2+	imaging	(Supp.	Fig.	1D-F	and	Supp.	Fig.	5A-D).		

Notably,	 while	 two-photon	 Ca2+	 imaging	 is	 suitable	 for	 time-lapse	 recordings	 from	
populations	of	the	same	neurons	over	weeks	and	even	months,	variability	in	the	output	of	
cell	detection	or	cell	registration	algorithms	may	lead	to	upward	bias	in	the	turnover-rates	in	
the	identity	of	cells	that	are	active	in	different	sessions	(Sheintuch	et	al.,	2017).	To	address	
this	 issue,	 we	 focused	 our	 analysis	 on	 cells	 that	were	 active	 in	 each	 pair	 of	 time	 points	
compared.	Furthermore,	we	found	no	evidence	of	a	gradual	time-dependent	deterioration	of	
the	 neural	 code	 (Supp.	 Fig.	 8B,C).	 Overall,	 although	 we	 cannot	 completely	 rule	 out	 any	
contribution	of	recording	instability	to	our	results,	we	find	this	possibility	to	be	unlikely.		

Gradual	alterations	in	the	code	could	also	result	from	changes	in	animal	behavior	or	attention	
(Niell	and	Stryker,	2010;	Keller,	Bonhoeffer	and	Hübener,	2012;	Ayaz	et	al.,	2013;	Polack,	
Friedman	and	Golshani,	2013;	Erisken	et	al.,	2014;	Ruff	and	Cohen,	2014;	Vinck	et	al.,	2015;	
Mineault	et	al.,	2016;	Dipoppa	et	al.,	2018;	Musall	et	al.,	2019).	Indeed,	mouse	running	speed	
and	pupil	area	declined	during	 the	 first	 five	(out	of	30)	movie	repeats,	possibly	reflecting	
changing	attention	or	arousal	within	a	block	of	movie	repeats.	However,	our	findings	show	
that	drift	rates	remain	similar	also	when	the	first	eight	movie	repeats	were	excluded	from	the	
analysis	(Supp.	Fig.	2).	Thus,	representational	drift	occurs	even	in	the	absence	of	an	overt	sign	
of	changes	in	the	behavioral	or	cognitive	state.						

In	summary,	the	availability	of	large-scale	recording	datasets	by	the	Allen	Brain	Observatory	
make	 it	 possible	 to	 conduct	 an	 in-depth	 investigation	 of	 coding	 stability	 across	 different	
visual	 cortical	 areas	 and	 a	 wide	 range	 of	 temporal	 scales.	 Here,	 we	 conducted	 such	 an	
investigation	 and	 found	 the	 existence	 of	 representational	 drift	 in	 all	 studied	 areas.	 The	
available	 two-photon	 imaging	data	allowed	a	longitudinal	 investigation	over	 timescales	of	
days,	but	since	different	mice	had	different	intervals	between	the	three	recording	sessions,	
we	could	not	quantify	the	lifetime	of	visual	representations	in	different	cortical	areas.	Future	
studies	 that	 consist	 of	 multiple	 equally	 spaced	 sessions	 over	 many	 days	 and	 weeks	 are	
needed	 to	 fully	 address	 this	 issue.	 Currently,	 the	 degree	 to	 which	 our	 findings	 could	 be	
generalized	 to	other	 sensory	 cortical	areas	 is	 unknown;	 still,	 our	 findings	 across	multiple	
cortical	areas	imply	that	representational	drift	is	an	inherent	property	of	neural	networks,	
and	 that	 population-level	 organization	 of	 information	 could	 contribute	 to	 robust,	 time-
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invariant	 representations	 despite	 drifting	 or	 variable	 coding	 at	 the	 level	 of	 individual	
neurons.			

	

Methods	

Data	curation.	We	analyzed	data	from	the	publicly	available	Allen	Brain	Observatory:	two-
photon	calcium	imaging(de	Vries	et	al.,	2020)	and	electrophysiology	(Neuropixels)	datasets	
(Siegle	et	al.,	2019;	de	Vries	et	al.,	2020).	We	used	the	default	functions	in	AllenSDK	package	
to	download	the	raw	Neurodata	Without	Borders	(NWB)	files	containing	the	neuronal	and	
behavioral	data	from	the	relevant	experiments.	Their	full	data	collection	methodology	can	be	
found	in	the	white	paper	(https://observatory.brain-map.org/visualcoding).	In	the	calcium	
imaging	 dataset,	 216	 transgenic	mice	 expressing	 GCaMP6f	 in	 laminar-specific	 subsets	 of	
cortical	pyramidal	neurons	underwent	intrinsic	signal	imaging	to	map	their	visual	cortical	
regions	before	cranial	windows	were	implanted	above	the	desired	visual	region.	Mice	were	
habituated	to	head	fixation	before	the	three	imaging	sessions,	in	which	they	were	shown	a	
battery	of	natural	scenes,	natural	movies,	locally	sparse	noise,	or	gratings.	In	the	Neuropixels	
dataset,	30	C57BL/6J	wild-type	mice	and	28	mice	from	three	transgenic	lines	(N	=	8	Pvalb-
IRES-Cre	x	Ai32,	N	=	12	Sst-IRES-Cre	x	Ai32,	and	N	=	8	Vip-IRES-Cre	x	Ai32)	were	implanted	
with	 up	 to	 six	 Neuropixels	 silicone	 probes	 each.	 The	 dataset	 contains	 simultaneous	
recordings	 from	up	 to	8	 cortico-thalamic	 visual	areas	 (as	well	as	nearby	 regions,	 such	 as	
hippocampus).	During	each	recording	session,	mice	passively	viewed	a	battery	of	natural	and	
artificial	stimuli,	depending	on	their	experimental	group.	

Data	analysis.	Analysis	was	carried	out	using	both	AllenSDK	package	default	functions	(for	
data	curation)	and	custom-written	MATLAB	scripts	(for	data	analysis).	In	the	Ca2+	imaging	
dataset,	we	analyzed	all	available	excitatory	Cre-lines,	 including	all	 layers	and	brain	areas.	
The	 dataset	 is	 structured	 into	 ‘experiment	 containers’	 that	 group	 recordings	 from	 three	
different	imaging	sessions	of	the	same	field	of	view.	We	considered	each	such	container	as	an	
individual	mouse.	We	included	only	mice	that	passed	a	fixed	criterion	of	at	least	20	recorded	
cells	in	the	compared	time	points.	Specifically,	in	the	within-block	and	between-days	analysis	
(Supp.	Figs.	1-2	and	Fig.	3,	respectively),	we	included	only	mice	that	had	at	least	20	recorded	
cells	in	each	of	the	three	imaging	sessions.	In	the	between-blocks	analysis	(Supp.	Fig.	5A-D),	
we	included	only	mice	that	had	at	least	20	recorded	cells	within	the	same	session	(‘Session	
A’).	In	the	Neuropixels	dataset,	we	used	the	AllenSDK	package	default	functions	to	retrieve	
the	relevant	unit’s	identity	according	to	their	corresponding	manually	labeled	brain	areas.	
These	units	passed	a	set	of	quality	criteria	to	ensure	their	validity.	We	then	included	in	all	
analyses	(except	those	presented	in	Fig.	4)	only	data	from	areas	with	at	least	15	recorded	
units	in	each	mouse.		

Detection	of	Ca2+	events.	Neuropil-corrected	fluorescence	change	(ΔF(t)/F0)	traces	for	each	
cell	were	extracted	using	automated,	structural	region	of	interest	(ROI)	based	methods	(see	
Allen	Institute	white	paper	for	details,	https://observatory.brain-map.org/visualcoding).	We	
performed	no	further	preprocessing	on	ΔF(t)/F0	traces	after	downloading	them	through	the	
AllenSDK.	We	identified	Ca2+	events	by	searching	each	trace	for	local	maxima	that	had	a	peak	
amplitude	higher	than	four	times	the	entire	trace	absolute	median	while	including	only	the	
frames	 that	showed	an	 increase	 in	Ca2+	transients	relative	 to	 their	previous	 frame.	All	 the	
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ΔF(t)/F0values	in	the	frames	that	passed	the	assigned	filters	were	set	to	the	value	of	1	and	the	
rest	were	set	to	a	value	of	0.	

Registration	of	cells	across	sessions.	We	used	each	cell’s	match	labels	across	sessions	as	
was	calculated	and	provided	by	Allen	Brain	Institute	in	each	experiment’s	NWB	file.	Briefly,	
an	algorithm	that	combines	the	degree	of	spatial	overlapping	and	closeness	between	the	ROIs	
of	different	cells	was	used	to	create	a	unified	label	for	each	cell	across	all	three	sessions.	The	
full	registration	procedure	appears	in	de	Vries	et	al.	(2020).		

Visual	stimuli.	In	our	analysis	we	only	used	‘Natural	movie	1’	(30-second	clip)	and	‘Natural	
movie	3’	(120-second	clip)	stimuli	from	the	Allen	Brain	Observatory	paradigm.	In	the	calcium	
imaging	 dataset,	 ‘Natural	 movie	 1’	 was	 presented	 across	 all	 three	 imaging	 sessions	 (ten	
repeats	per	session).	‘Natural	movie	3’	was	presented	only	in	one	of	the	sessions	(session	A),	
with	ten	repeats	spanning	two	blocks	(five	repeats	in	each	block).	In	the	Neuropixels	dataset,	
‘Natural	movie	1’	was	presented	with	either	60	repeats	spanning	two	blocks	(30	repeats	in	
each	block)	for	the	‘Functional	connectivity’	group,	or	with	20	repeats	spanning	two	blocks	
(10	 repeats	 in	 each	 block)	 for	 the	 ‘Brain	 observatory	 1.1’	 group.	 ‘Natural	 movie	 3’	 was	
presented	with	 ten	 repeats	 spanning	 two	blocks	 (five	 repeats	 in	 each	block)	only	 for	 the	
‘Brain	observatory	1.1’	group.	

Population	 vector	 correlation.	 To	 determine	 the	 level	 of	 similarity	 between	 visual	
representations	 of	 the	 same	 stimulus	 on	 different	 presentations,	 we	 calculated	 for	 each	
mouse	the	population	vector	correlation	between	pairs	of	different	movie	repeats.	First,	we	
divided	each	movie	repeat	into	30	equal	time	bins	(each	bin	spanning	1	sec	in	‘Natural	movie	
1’	and	4	secs	in	‘Natural	movie	3’).	Then,	for	each	temporal	bin,	we	defined	the	population	
vector	as	the	activity	rate	for	each	cell/unit.	We	calculated	the	Pearson’s	correlation	between	
the	population	vector	(PV	correlation)	in	one	repeat	with	that	of	all	temporal	bins	in	another	
movie	repeat,	and	averaged	the	correlations	over	all	pairs	of	corresponding	time	bins.	For	the	
between-blocks	analysis,	we	created	two	mean	PVs	for	each	of	the	two	blocks;	one	PV	from	
the	 first	 two	 ‘Natural	movie	3’	 repeats	 (repeats	1-2),	and	a	second	PV	 from	the	 last	three	
repeats	(repeats	3-5).	We	than	calculated	the	Pearson’s	correlation	across	all	four	vectors	of	
both	blocks	and	measured	the	difference	between	PV	correlations	within	blocks	and	across	
blocks.	The	mean	correlations	between	the	two	PVs	of	the	same	blocks	capture	the	‘within-
block’	stability,	and	the	mean	correlations	between	different	blocks,	capture	the	 ‘between-
blocks’	stability.	The	between-days	analysis	is	similar	to	that	of	between	blocks	with	minor	
changes:		For	each	‘Natural	movie	1’	session,	two	mean	PVs	were	calculated,	one	vector	from	
the	first	five	‘Natural	movie	1’	repeats	(repeats	1-5)	and	a	second	vector	from	the	last	five	
‘Natural	 movie	 1’	 repeats	 (repeats	 6-10).	 We	 then	 calculated	 the	 Pearson’s	 correlation	
between	each	pair	of	PVs,	including	in	the	PVs	of	only	the	cells	that	were	active	in	both	time	
points,	and	measured	the	difference	in	PV	correlations	within	blocks	and	across	blocks.	The	
mean	 correlations	 between	 the	 two	 PVs	 of	 the	 same	 session	 capture	 the	 ‘within-session’	
stability,	and	that	of	different	blocks,	the	‘between-sessions’	stability.	For	the	analysis	shown	
in	Fig	3	I	and	Supp.	Fig	8C,	PV	correlations	were	calculated	after	averaging	the	activity	rate	of	
each	individual	neuron	over	all	movie	repeats	in	a	given	session.	

Ensemble	 rate	 correlation.	 To	 quantify	 the	 similarities	 in	 activity	 patterns	 between	
different	 presentations	 of	 the	 same	 stimulus	 (regardless	 of	 the	 specific	 tuning	 of	 each	
neuron),	 we	 calculated	 for	 each	 mouse	 the	 ensemble	 rate	 correlation	 between	 pairs	 of	
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different	movie	repeats.	First,	we	calculated	the	overall	activity	rate	for	each	neuron	in	each	
movie	 repeat.	 We	 then	 calculated	 for	 each	 pairs	 of	 movie	 repeats	 the	 ensemble	 rate	
correlation	as	the	Pearson’s	correlation	between	their	vectors	of	activity	rates.	As	in	the	PV	
correlation	 analysis,	 the	 differences	 in	 ensemble	 rate	 correlation	 for	within	 and	 between	
blocks	(or	sessions)	were	calculated	after	averaging	the	activity	rates	of	individual	neurons	
over	the	first	and	second	halves	of	movie	repeats	in	each	block	(or	session).	For	the	analysis	
shown	in	Fig	3J	and	Supp.	Fig	8A,	ensemble	rate	correlations	were	calculated	after	averaging	
the	activity	rate	of	each	individual	neuron	over	all	movie	repeats	in	a	given	session.	

Tuning	curve	correlation.	To	quantify	the	similarities	in	the	tuning	preference	of	individual	
neurons	across	different	presentations	of	the	same	stimulus	(regardless	of	changes	in	activity	
rates),	we	calculated	for	each	neuron	the	tuning	curve	correlation	between	different	movie	
repeats.	As	in	the	PV	correlation	analysis,	we	first	divided	each	movie	repeat	into	30	equal	
time	bins	(each	bin	spanning	1	sec	in	‘Natural	movie	1’	and	4	secs	in	‘Natural	movie	3’).	Then,	
for	each	neuron,	we	defined	the	tuning	curve	as	the	mean	activity	rate	in	each	temporal	bin	
within	the	movie.	We	calculated	the	Pearson’s	correlation	between	the	tuning	curve	of	each	
individual	neuron	in	one	movie	repeat	and	that	of	the	same	neuron	in	another	movie	repeat,	
and	used	the	median	value	across	all	neurons	to	capture	the	central	tendency	of	the	entire	
population.	As	in	the	PV	correlation	analysis,	the	differences	in	tuning	curve	correlation	for	
within	and	between	blocks	(or	sessions)	were	calculated	after	averaging	the	activity	rates	of	
individual	neurons	for	the	first	and	second	halves	of	movie	repeats	in	each	block	(or	session).	
For	the	analysis	shown	in	Fig	3K	and	Supp.	Fig	8A,	tuning	curve	correlations	were	calculated	
after	averaging	the	activity	rate	of	each	individual	neuron	over	all	movie	repeats	in	a	given	
session.	Due	to	the	sparseness	in	neuronal	responses	in	the	Ca2+	imaging	dataset,	we	used	the	
mean	 value	 across	 all	 cells	 (instead	 of	 the	 median)	 when	 computing	 the	 tuning	 curve	
correlation	between	individual	movie	repeats	(Supp.	Fig.	1F	and	Supp.	Fig.	10D).		

Time-lapse	 decoding	 analysis	 (related	 to	 Supp.	 Fig.	 3).	We	 used	 a	 k-nearest	 neighbors	
classifier	with	K=1	to	decode	the	time	bin	at	a	given	movie	repeat	based	on	the	population	
vectors	of	a	preceding	repeat	using	the	Euclidean	distance	between	the	response	vectors.	The	
performance	of	the	decoder	was	defined	as	the	percentage	of	correct	classifications	out	of	the	
30	time	bins	for	each	pair	of	movie	repeats.		

Internal	structure	of	neuronal	population	activity.	Similar	to	the	PV	correlation	analysis,	
we	divided	each	movie	repeat	into	30	equal	time	bins	and	calculated	the	population	vector	
for	 each	 time	 bin,	 yielding	 a	matrix	 of	 30	 by	 the	 number	 of	 recorded	 neurons.	 Then,	we	
calculated	the	Pearson’s	correlation	across	all	vectors	of	the	same	movie	repeat,	resulting	in	
a	symmetric	30-by-30	matrix.	This	matrix	represented	the	structure	of	similarities	across	the	
population	activity	patterns	at	all	different	time	bins	of	the	presented	movie.	We	defined	this	
matrix	of	similarities	as	the	‘internal	structure	of	neuronal	population	activity’	(or	‘internal	
structure’).	 Since	 this	 structure	 no	 longer	 holds	 the	 identities	 of	 individual	neurons,	 it	 is	
possible	to	measure	the	resemblance	between	structures	extracted	from	different	datasets	
(e.g.,	movie	repeats,	natural	movies,	areas,	mice,	etc.)	without	relying	on	the	ability	to	record	
from	the	same	cells	or	requiring	equal	numbers	of	cells	across	measurements.		

Pseudo-mice	and	shuffled	pseudo-mice	(related	to	Fig.	4	and	Supp.	Fig.	11).	To	reduce	the	
effect	of	incidental	differences	in	the	coding	properties	of	the	sampled	neurons	on	our	ability	
to	capture	the	true	internal	structure	of	each	of	the	studied	areas,	we	constructed	‘pseudo-
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mice’,	which	are	a	pooling	of	cells	recorded	from	different	mice	of	the	same	dataset	(Supp.	
Fig.	12A).	To	create	two	independent	pseudo-mice	(i.e.	pseudo-mice	that	have	no	overlap	in	
their	source	of	neuronal	activity),	we	first	randomly	split	the	complete	Neuropixels	dataset	
of	58	mice	into	two	non-overlapping	groups	of	29	mice.	Each	mouse	in	each	group	contained	
the	neuronal	 activity	 recorded	 from	1-6	brain	areas.	 Pooling	all	 the	 cells/units	 from	each	
brain	area	across	all	mice	of	the	same	group	yielded	six	distinct	sets	of	neurons	(one	per	area)	
for	each	of	the	two	pseudo-mice	(12	pseudo-areas	in	total).	Since	there	is	variability	in	the	
number	of	recorded	areas	and	cells	across	mice,	the	pooling	procedure	resulted	in	different	
number	of	cells	in	each	of	the	pseudo-areas.	To	ensure	that	differences	between	the	internal	
structures	of	different	areas	did	not	stem	from	the	size	of	the	recorded	neuronal	population,	
we	randomly	subsampled	an	equal	number	of	cells	from	the	entire	population	of	each	area.	
The	exact	number	of	subsampled	cells	was	determined	based	on	the	pseudo-area	with	the	
lowest	number	of	cells	among	both	pseudo-mice.	To	verify	 the	uniqueness	of	 the	 internal	
structure	of	each	area,	the	analysis	was	compared	to	complementary	‘shuffled	pseudo-mice’	
that	were	created	by	 the	random	redistribution	of	all	 the	cells	across	areas	in	each	of	the	
pseudo-mice.		

Within	and	across	‘pseudo-mice’	decoding	(related	to	Fig.	4	and	Supp.	Fig.	11).	Since	the	
two	 groups	 of	 mice	 in	 the	 Neuropixels	 dataset	 (‘Brain	 Observatory	 1.1’	 and	 ‘Functional	
connectivity’)	were	presented	with	different	number	of	‘Natural	movie	1’	repeats	(20	and	60,	
respectively),	 the	 analysis	was	performed	using	only	 the	 first	 20	 repeats.	 For	 the	within-
pseudo-mouse	decoding,	we	used	a	k-nearest	neighbors	classifier	with	K=1	to	decode	 the	
area	of	origin	for	a	single	internal	structure	(representing	a	single	movie	repeat)	based	on	
the	cosine	distances	to	rest	of	the	internal	structures	of	the	same	pseudo-mouse.	To	evaluate	
the	performance	of	the	decoder,	we	calculated	the	percentage	of	internal	structures	that	were	
correctly	classified	to	their	corresponding	area	within	each	of	the	two	pseudo-mice	and	later	
averaged	 across	 them.	 For	 the	 between-pseudo-mice	 decoding,	 we	 used	 a	 k-nearest	
neighbors	classifier	with	K=1	to	decode	the	area	of	origin	for	a	single	internal	structure	of	a	
given	pseudo-mouse	based	on	 the	cosine	distances	 to	 the	 internal	structures	of	 the	other	
pseudo-mouse.	To	evaluate	the	performance	of	the	decoder,	we	calculated	the	percentage	of	
internal	structures	that	were	correctly	classified	to	their	corresponding	area	across	pseudo-
mice.	The	analysis	was	repeated	100	times	to	obtain	representative	results	across	different	
realizations	of	pseudo-mice	(different	realizations	of	dividing	the	mice	population	into	two	
random	subsets)	 and	was	 compared	 to	 the	 results	 obtained	when	using	shuffled	pseudo-
mice.	

Relationship	 between	 internal	 structures	 of	 different	 brain	 areas	 across	 natural	
movies	(related	to	Fig.	4E	and	Supp.	Fig.	12B).	Since	the	two	movies	are	of	different	lengths	
(30	seconds	and	120	seconds)	and	were	presented	different	number	of	 times	(20	and	10	
repeats),	the	analysis	was	performed	on	the	first	30	seconds	and	first	10	movie	repeats	of	
both	‘Natural	movie	1’	and	‘Natural	movie	3’	using	only	the	mice	from	the	Neuropixels	‘Brain	
observatory	1.1’	group	(the	group	that	was	presented	with	both	movies).	To	measure	 the	
degree	 to	 which	 the	 relationship	 between	 the	 internal	 structures	 of	 different	 areas	 is	
conserved	across	different	movies	and	pseudo-mice,	we	first	calculated	for	each	brain	area	
of	each	pseudo-mouse	the	internal	structure	per	movie	repeat.	We	then	averaged	the	internal	
structures	over	all	movie	repeats	to	create	24	mean	internal	structures	(6	areas	x	2	natural	
movies	x	2	pseudo-mice).	Then,	 for	 each	natural	movie	within	a	given	pseudo-mouse,	we	
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calculated	the	Pearson’s	correlation	matrix	across	the	internal	structures	of	all	areas.	This	
procedure	yielded	four	matrices	(2	natural	movies	x	2	pseudo-mice),	each	symmetric	and	6-
by-6	in	size	(across	all	areas).	Finally,	we	calculated	the	Pearson’s	correlation	between	the	
matrices	(using	the	vectorization	of	the	upper	half	of	each	matrix)	of	different	natural	movies	
and	different	pseudo-mice,	and	averaged	across	the	two	comparisons	(correlation	between	
‘Natural	movie	1’	in	pseudo-mouse	A	with	that	of	‘Natural	movie	3’	in	pseudo-mouse	B,	and	
vice	versa).	The	analysis	was	repeated	1000	times	 to	obtain	representative	results	across	
different	realizations	of	pseudo-mice	(different	realizations	of	dividing	the	mice	population	
into	two	random	subsets),	and	was	compared	to	the	results	obtained	when	using	shuffled	
pseudo-mice.	

Similarity	 between	 internal	 structures	 of	 the	 same	 brain	 areas	 across	 recording	
technologies	(related	to	Fig.	4F).	In	this	analysis,	we	used	‘Natural	movie	1’	data	from	all	
mice	of	the	Neuropixels	dataset	and	all	mice	of	the	two-photon	Ca+2	imaging	dataset	to	create	
two	 pseudo-mice,	 one	 for	 each	 of	 the	 recording	 techniques.	 Since	 different	 mice	 in	 the	
Neuropixels	dataset	were	presented	with	different	number	of	movie	repeats,	20	repeats	in	
the	‘Brain	Observatory	1.1’	group	and	60	repeats	in	the	‘Functional	connectivity’	group,	we	
used	only	the	first	20	repeats	for	‘Functional	connectivity’	group.	First,	we	calculated	for	each	
brain	area	of	each	pseudo-mouse	the	internal	structure	per	movie	repeat.	We	then	calculated	
the	median	internal	structures	over	all	movie	repeats	to	create	12	representative	internal	
structures	(6	areas	x	2	pseudo-mice).	Finally,	we	normalized	(z-score)	the	internal	structures	
within	each	pseudo-mouse	and	calculated	the	Pearson’s	correlation	distance	matrix	across	
areas	of	the	two	pseudo-mice	(Neuropixels	pseudo-mouse	and	Ca2+	pseudo-mouse).	

Internal	structure	stability	(related	 to	Fig.	4H).	First,	we	created	a	single	pseudo-mouse	
from	all	the	‘Natural	movie	1’	data	of	the	Ca+2	imaging	dataset	using	only	the	cells	that	were	
active	in	all	three	recording	sessions.	Then,	for	each	area,	we	calculated	both	the	population	
vectors for	all	time	bins	and	internal	structure	across	all	time	bins	for	each	of	the	30	movie	
repeats.	Lastly,	we	calculated	the	Pearson’s	correlations	for	both	measurements	across	all	
pairs	of	movie	repeats	and	calculated	the	change	in	correlations	as	a	function	of	the	interval	
between	movie	repeats.	Both	measurements	were	normalized	to	 the	value	of	 the	smallest	
interval	between	movie	repeats.		

Temporally	 shuffled	 internal	 structure	 (related	 to	 Supp.	 Fig.	 11H).	 To	 verify	 that	 the	
internal	 structure	 used	 in	 Fig.	 4H	 contain	 information	 beyond	 the	 similarities	 between	
subsequent	 time	 bins,	we	 calculated	 the	 internal	 structure	 stability,	 defined	 as	 the	mean	
Pearson’s	correlation	between	all	pairs	of	internal	structures	across	all	30	movie	repeats,	and	
compared	it	to	the	values	obtained	after	performing	a	random	cyclic	temporal	shuffling	of	the	
same	 internal	 structures.	 The	 analysis	 was	 repeated	 100	 times	 to	 obtain	 representative	
results	across	different	shuffles.	

t-distributed	Stochastic	Neighbor	Embedding (t-SNE;	related	to	Fig.	4	and	Supp.	Fig.	11).	
For	 visualizing	 the	 relationships	 between	 internal	 structures,	 the	 vectors	 of	 pairwise	
correlations	 across	 activity	 patterns	 were	 embedded	 in	 three	 dimensions	 using	 t-SNE	
(Maaten	and	Hinton,	2008;	Maaten,	2014).		We	used	the	exact	tSNE	algorithm	with	similar	
embedding	settings	for	all	visualizations	(cosine	distance	metric,	using	10	PCA	components,	
exaggeration	4	(default),	and	learning	rate	500	(default)).	The	perplexity	(effective	number	
of	 local	 neighbors	 of	 each	 point)	 was	 chosen	 for	 each	 visualization	 manually	 based	 on	
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multiplication	of	the	minimal	number	of	movie	repeats	used	in	the	analysis	(30,	60,	20	and	
20	for	Fig.	4	B,C,E	and	F,	respectively).	Note	that	embedding	in	the	reduced	space	is	used	only	
for	visualization	of	the	relationships	between	internal	structures,	the	analysis	shown	in	Fig	4	
D-F	and	Supp.	Fig.	11	were	performed	on	the	pairwise	distances	between	the	original	(non-
reduced)	vectors	of	internal	structures	as	described	in	other	sections	of	the	Methods.	

Statistical	analysis.	All	statistical	details,	including	the	specific	statistical	tests,	are	specified	
in	 the	 corresponding	 figure	 legends.	 In	 general,	 non-parametric	Wilcoxon	 rank	 sum	
tests	(unpaired	data),	signed	rank	tests	(paired	data),	or	parametric	two-way	mixed	model	
ANOVAs	 (with	 Greenhouse-Geisser	 correction	 for	 sphericity	 assumption	 violation)	 were	
performed	and	corrected	for	multiple	comparisons	(using	Holm–Bonferroni	method),	unless	
otherwise	noted.	A	one-sided	Pearson’s	correlation	coefficient	was	used	to	estimate	the	effect	
of	 elapsed	time	on	 ensemble	 rate	 and	 tuning	 curve	 stability.	 In	 all	 tests,	 significance	was	
defined	at	α	=	0.05.	Aside	from	mice	with	low	number	of	recorded	cells	(see	‘Data	analysis’	
section	in	the	Methods),	no	neural	data	was	excluded	from	analysis.	All	statistical	analyses	
were	conducted	using	MATLAB	2017b	(Mathworks).	
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Figure	1.	Neurons	recorded	from	various	visual	cortical	areas	show	reliable	tuning	to	
natural	movies.	A-D:	Ca2+	imaging	dataset.		A.	Schematic	illustration	of	the	different	brain	areas	
imaged	using	two-photon	Ca2+	imaging.	V1	-	Primary	visual	area,	LM	–	lateral-medial	visual	area,	
AL	-	anterolateral	visual	area,	PM	-	posteromedial	visual	area,	RL	-	rostrolateral	visual	area,	AM	-	
anteromedial	visual	area.	B.	Distribution	of	cell	counts	per	mouse	across	brain	areas	for	the	two-
photon	Ca2+	imaging	dataset.	C.	Experimental	design	of	the	Ca2+imaging	dataset.	Each	mouse	
performed	three	sessions	in	a	random	order,	separated	by	a	different	number	of	days.	Only	the	
two	indicated	stimuli	(‘Natural	movie	1’	and	‘Natural	movie	3’)	were	used	in	our	analysis	(other	
stimuli	are	specified	in	the	Methods).	D.	Responsiveness	of	three	example	cells	across	different	
‘Natural	movie	1’	repeats	spanning	three	Ca2+	imaging	sessions.	E-H:	Neuropixels	dataset.	E.	
Schematic	illustration	(adapted	from	Siegle	et	al.	(2019))	of	the	different	brain	area	recordings	
using	Neuropixels	probes.	LGN	–	lateral	geniculate	nucleus.	LP	–	lateral	parietal	nucleus.	F.	
Distribution	of	cell	counts	per	mouse	across	brain	areas	for	the	Neuropixels	dataset.		G.	
Experimental	design	of	the	Neuropixels	dataset.	Thirty-two	of	the	mice	performed	the	‘Brain	
Observatory’	battery	and	26	performed	the	‘Functional	Connectivity’	battery.	Only	the	indicated	
stimuli	(‘Natural	movie	1’,	‘Natural	movie	3’,	and	‘Shuffled	natural	movie	1’)	were	used	in	our	
analysis	(other	stimuli	are	specified	in	the	Methods).	H.	Responsiveness	of	three	example	cells	
across	different	‘Natural	movie	1’	repeats	spanning	two	blocks	within	the	same	Neuropixels	
recording	session.	
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Figure	2.	The	visual	cortex	exhibits	representational	drift	across	subsequent	
presentations	of	a	natural	stimulus	over	timescales	of	seconds-minutes.	A.	Population	
vector	(PV)	correlation	between	the	first	10	(out	of	30)	repeats	of	‘Natural	movie	1’	of	the	first	
block,	recorded	using	a	Neuropixels	probe,	from	area	PM	of	a	single	representative	mouse.	Inset:	
the	average	PV	correlation	over	all	pairs	across	different	movie	repeats.	B.	Mean	PV	correlation	
for	each	pair	of	movie	repeats	from	the	same	mouse	shown	in	A.	Each	entry	is	the	average	PV	
correlation	between	all	matching	time	bins	for	a	pair	of	movie	repeats.	For	visualization,	the	
main	diagonal	(in	which	values	are	equal	to	1	by	definition)	was	removed.	C.	Mean	PV	
correlation	as	a	function	of	the	interval	between	movie	repeats.	Each	data	point	represents	the	
mean	PV	correlation	value	for	a	single	pair	of	movie	repeats	from	B.	D.	Mean	PV	correlation	
between	movie	repeats	across	animals	and	brain	areas	for	the	Neuropixels	‘Functional	
connectivity’	group.	E.	PV	correlation	as	a	function	of	the	interval	between	movie	repeats	for	six	
visual	cortical	areas;	the	difference	in	PV	correlations	between	the	interval	of	one	movie	repeat	
and	that	of	29	movie	repeats	was	significant	for	all	areas	(p	<	10-3,	two-tailed	Wilcoxon	signed-
rank	test	with	Holm–Bonferroni	correction).	F.	Mean	activity	rates	for	three	example	units	from	
area	PM	from	the	same	representative	mouse	across	movie	repeats.	Each	unit	exhibited	
different	changes	in	its	activity	rates	relative	to	the	activity	levels	of	the	entire	recorded	
population,	which	remained	relatively	stable	throughout	the	block.	G.	Responsiveness	of	three	
V1	example	cells	from	the	same	representative	mouse	across	different	repeats	of	‘Natural	movie	
1’,	spanning	two	blocks	within	the	same	recording	session.	Each	unit	exhibits	a	different	degree	
of	tuning	curve	stability	within	a	given	block	and	across	the	two	blocks	(indicated	by	the	
Pearson	correlation	values	in	the	bottom	panels).	H.	Ensemble	rate	correlation	across	animals	
as	a	function	of	the	interval	between	movie	repeats	for	six	visual	cortical	areas;	the	difference	in	
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ensemble	rate	correlations	between	the	interval	of	one	movie	repeat	and	that	of	29	movie	
repeats	was	significant	for	all	areas	(p	<	10-3,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–
Bonferroni	correction).	I.	Tuning	curve	correlation	across	animals	as	a	function	of	the	interval	
between	movie	repeats	for	six	visual	cortical	areas;	the	difference	in	tuning	curve	correlations	
between	the	interval	of	one	movie	repeat	to	that	of	29	movie	repeats	was	significant	for	all	areas	
(p	≤	0.017,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	Data	in	
panels	E,	H,	I	are	mean	±	SEM	across	mice.	
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Figure	3.	Visual	representations	gradually	change	over	timescales	of	minutes-days.	A.	
correlation	between	the	1st	(repeats	1-2)	and	2nd	(repeats	3-5)	halves	of	two	different	blocks	of	
‘Natural	movie	3’	in	a	single	visual	area.	The	presented	examples	are	the	mean	matrices	across	
mice	recorded	in	area	LM	with	Neuropixels	probes.	B.	PV	correlation	between	the	two	halves	of	
the	same	block	(within	block)	and	between	halves	of	different	blocks	(between	blocks)	using	the	
Neuropixels	dataset	(p	<	10-3	for	all	areas,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–
Bonferroni	correction).	C.	Ensemble	rate	correlation	between	the	two	halves	of	the	same	block	
(within	block)	and	between	halves	of	different	blocks	(between	blocks)	using	the	Neuropixels	
dataset	(for	all	areas	p	<	10-3,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	
correction).	D.	Tuning	curve	correlation	between	the	two	halves	of	the	same	block	(within	
block)	and	between	halves	of	different	blocks	(between	blocks)	using	the	Neuropixels	dataset	
(for	all	areas	p	≤	0.002,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).		
E.	PV	correlation	between	three	different	sessions	from	a	single	representative	mouse	recorded	
in	V1	using	two-photon	Ca2+imaging.	The	correlation	between	temporally	proximal	sessions	are	
higher	relative	to	the	correlation	between	two	distal	sessions.	The	age	of	the	mouse	(in	days)	is	
indicated	in	parenthesis.	F.	PV	correlation	between	the	two	halves	of	the	same	session	(within	
session)	and	between	halves	of	different	session	(between	sessions)	(p	<	10-5	for	all	areas,	two-
tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	G.	Ensemble	rate	
correlation	between	the	two	halves	of	the	same	session	(within	session)	and	between	halves	of	
different	sessions	(between	sessions)	(p	<	10-5	for	all	areas,	two-tailed	Wilcoxon	signed-rank	
test	with	Holm–Bonferroni	correction).	H.	Tuning	curve	between	the	two	halves	of	the	same	
session	(within	session)	and	between	halves	of	different	sessions	(between	sessions)	(for	all	
areas	p	<	10-3,	two-tailed	Wilcoxon	signed-rank	tests	with	Holm–Bonferroni	correction).		I.	The	
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difference	between	the	PV	correlation	of	temporally	proximal	sessions	(the	average	correlation	
between	sessions	1&2	and	between	sessions	2&3)	and	that	of	two	distal	sessions	(the	
correlation	between	session	1&3)	(V1	(Z = 3.35,	p = 0.001),	LM	(Z = 4.64,	p <	10-4),	AL	(Z = 2.85,	
p = 0.006),	PM	(Z = 3.92,	p < 10-3),	RL	(Z = 1.38,	p = 0.083),	AM	(Z = 1.99,	p = 0.046),	one-tailed	
Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction;	*	p<0.05,	**	p<0.01,	***p<0.001).	J.	
Ensemble	rate	correlation	as	a	function	of	the	number	of	days	between	sessions.	K.	Tuning	
curve	correlation	as	a	function	of	the	number	of	days	between	sessions.	In	panels	F	and	G,	each	
mouse	is	represented	by	2-3	data	points,	corresponding	to	different	unique	intervals	between	
sessions,	with	a	regression	line	of	±	CI	of	95%	(one-tailed	Pearson’s	correlation	with	Holm–
Bonferroni	correction).	Data	in	panels	B-E	are	mean	±	SEM	across	mice.		
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Figure	4.	The	internal	structure	of	neuronal	activity	of	each	visual	area	is	distinct,	
stereotypic,	and	stable	over	time.	A.	Workflow	for	the	extraction	of	the	internal	structure	
from	the	population	neuronal	responses.	Starting	with	a	matrix	(n	x	t)	containing	the	mean	
neuronal	activity	in	each	temporal	bin	for	each	dataset	(e.g.,	movie	repeat,	session,	mouse,	
stimuli	etc.).	Correlating	each	temporal	bin	with	the	rest	of	the	bins	within	a	given	dataset	
produces	equally	sized	(t	x	t)	matrices	across	datasets.	Vectorising	the	upper	half	of	these	
matrices	produces	vectors	representing	the	internal	structure	(vector	size	=	(t2-t)/2)).	B.	
Dimensionality	reduction	(tSNE)	applied	to	the	internal	structures	of	different	visual	areas	from	
a	single	representative	mouse	recorded	via	Neuropixels.	Each	data	point	corresponds	to	an	
internal	structure	of	a	single	‘Natural	movie	1’	repeat.	C.	Example	for	dimensionality	reduction	
(tSNE)	on	the	internal	structures	of	‘Natural	movie	1’	produced	from	two	Neuropixels	‘pseudo-
mice’.		Each	data	point	corresponds	to	an	internal	structure	of	a	single	‘Natural	movie	1’	repeat.	
D.	Percentage	of	successful	classifications	of	the	internal	structures	to	their	corresponding	
visual	areas	within	and	across	Neuropixels	pseudo-mice	(mean	±	SEM	across	n=100	pairs	of	
pseudo-mice).		E.	Example	for	dimensionality	reduction	(tSNE)	on	the	internal	structures	of	
‘Natural	movie	1’	and	‘Natural	movie	3’	for	two	pseudo-mice.		Each	data	point	corresponds	to	an	
internal	structure	of	a	single	movie	repeat.	Inset:	For	each	pseudo-mouse	and	each	natural	
movie,	a	correlation-distance	matrix	between	the	mean	internal	structure	of	each	area	was	
calculated.	The	correlations	between	the	distance	matrices	of	different	movies	across	mice	are	
significantly	higher	than	those	obtained	in	shuffled	pseudo-mice	(n=1000	pairs	of	pseudo-mice,	
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p	<	10-20,	two-tailed	Wilcoxon	signed-rank	test).		F.	Dimensionality	reduction	(tSNE)	applied	to	
the	internal	structures	from	different	brain	areas	of	two	‘pseudo-mice’	created	using	data	from	
all	the	mice	of	each	dataset.	Each	data	point	corresponds	to	an	internal	structure	of	a	single	
repeat	of	‘Natural	movie	1’.	Inset:	a	correlation-distance	matrix	between	the	median	internal	
structure	of	each	area	across	recording	techniques.	G.	While	the	internal	structure	for	‘Natural	
movie	1’	in	‘pseudo-area	AL’	is	maintained	across	imaging	sessions	(top	panels),	the	individual	
neurons	whose	activity	patterns	underlie	the	same	internal	structure	drift	across	sessions	
(bottom	panels).	H.	Correlation	between	the	internal	structures	(colored	lines)	or	the	PVs	(gray	
lines)	as	a	function	of	the	interval	between	repeats	of	‘Natural	movie	1’	from	a	single	pseudo-
mouse	generated	using	data	from	all	the	mice	in	the	Ca2+	imaging	dataset.	I.	Correlation	between	
the	internal	structures	(colored	lines)	or	the	PVs	(gray	lines)	as	a	function	of	the	distance	
between	repeats	of	‘Natural	movie	1’	in	‘pseudo-area	V1’,	plotted	for	varying	numbers	of	
neurons	included	in	the	analysis.	Correlations	in	panels	H	and	I	were	normalized	to	the	value	at	
the	minimal	interval	between	movie	repeats.	
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Supplementary	Figure	1.	Representational	drift	over	timescales	of	seconds-minutes:	
comparison	between	Neuropixels	and	Ca2+	imaging	datasets.	A,	D.	Difference	in	PV	
correlation	as	a	function	of	the	interval	between	movie	repeats	for	six	visual	cortical	areas.	B,	E.	
Difference	in	the	ensemble	rate	correlation	as	a	function	of	the	interval	between	movie	repeats	
for	six	visual	cortical	areas.	C,	F.	Difference	in	the	tuning	curve	correlation	as	a	function	of	the	
interval	between	movie	repeats	for	six	visual	cortical	areas.	Data	in	panels	A-C	are	mean	±	SEM	
across	mice	from	the	Neuropixels	‘Functional	connectivity’	group.	Data	in	panels	D-F	are	mean	±	
SEM	across	mice	from	the	Ca2+	imaging	dataset.	Correlations	were	scaled	by	subtracting	the	
correlation	value	at	the	minimal	interval	between	movie	repeats.		
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Supplementary	Figure	2.	Representational	drift	is	not	driven	by	changes	in	behavioral	
state	and	global	activity	rates.	A.	Mean	running	speed	for	each	movie	repeat	across	animals.	B.	
Mean	pupil	area	for	each	movie	repeat	across	animals.		Insets	in	A	and	B	indicate	a	significant	
difference	between	the	repeats	(paired	t-test,	p<0.05,	two-tailed,	without	correction	for	multiple	
comparisons).	C.	Mean	and	median	activity	rates	for	each	movie	repeat	across	animals	and	brain	
areas.	D.	Testing	the	differences	in	mean	activity	rates	between	pairs	of	movie	repeats	for	the	
data	presented	in	panel	C.	Gray	entries	indicate	a	significant	difference	in	activity	rates	between	
the	repeats	(paired	t-test,	p<0.05,	two-tailed,	without	correction	for	multiple	comparisons).	E.	
Mean	population	vector	correlation	as	a	function	of	the	interval	between	movie	repeats,	
performed	on	a	subset	of	movie	repeats	(repeats	9	-30;	colored	lines).	PV	correlations	of	this	
subset	of	the	data	gradually	declined	with	the	interval	between	movie	repeats,	similarly	to	the	
PV	correlations	of	the	full	dataset	(gray	lines)	from	all	movie	repeats;	The	difference	in	PV	
correlations	between	the	interval	of	one	movie	repeat	and	that	of	21	movie	repeats	was	
significant	for	all	areas	(p	≤	0.007,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	
correction).	F.	Distribution	of	mean	activity	difference	of	single	units	across	areas.	For	each	unit,	
the	mean	activity	rates	(spikes/sec)	of	repeats	2-6	was	subtracted	from	the	mean	activity	of	
repeats	26-30.	The	first	repeat	was	removed	from	the	analysis	since	it	is	characterized	with	non-
representative	activity	patterns.	Data	in	all	panels	are	mean±	SEM	across	mice	from	the	
Neuropixels	‘Functional	connectivity’	group.	
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	Supplementary	Figure	3.	Time-lapse	decoding	analysis	reveals	representational	drift	
across	visual	areas	in	both	Neuropixels	and	Ca2+	imaging	datasets.	A,	D.	Mean	percentage	of	
correct	classifications	of	the	decoder	(k-nearest	neighbors)	between	repeats	of	‘Natural	movie	
1’.	B,	E.	Mean	percentage	of	decoder	classifications	between	movie	repeats	as	a	function	of	
decoder	error.	Dark	colors	represent	a	short	interval	and	light	colors	represent	a	long	interval	
between	the	train	and	test	data.	C,	F.	Percentage	of	correct	classifications	as	a	function	of	the	
interval	between	the	train	and	test	movie	repeats;	the	difference	in	correct	classifications	
between	the	minimal	and	maximal	interval	of	movie	repeats	was	significant	for	all	areas	(p	≤	
0.011,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	Panels	A-C,	
Neuropixels	dataset.	Panels	D-F,	Ca2+	imaging	dataset.	Data	are	mean±	SEM	across	mice.	 	
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Supplementary	Figure	4.	Representational	drift	is	not	a	result	of	recording	instability.	A.	
Responsiveness	of	four	V1	example	cells	from	the	same	representative	mouse	across	different	
repeats	of	‘Natural	movie	1’,	spanning	two	blocks	within	the	same	recording	session.	Each	unit	
exhibits	a	different	degree	of	tuning	curve	stability	across	the	two	blocks	(indicated	by	the	
Pearson	correlation	values	in	the	bottom	panels).	B.	Tuning	curve	correlation	between	blocks	
for	all	the	units	of	the	same	representative	mouse	shown	in	A.	C.	Distribution	of	the	tuning	curve	
correlation	values	of	the	main	diagonal	in	B.	Units	that	show	high	tuning	curve	correlation	
across	blocks	are	unlikely	to	represent	cells	whose	identity	is	unstable	within	blocks.		A	sliding	
threshold	was	used	to	include	different	subsets	of	units	with	high	tuning	stability	between	
blocks.		D.	Repeating	the	within-block	stability	analysis	(shown	in	Fig.	2H)	while	subsampling	
units	based	on	their	tuning	curve	correlation	between	blocks.	E.		Repeating	the	within-block	
stability	analysis	(shown	in	Fig.	2I)	while	subsampling	units	based	on	their	tuning	curve	
correlation	between	blocks.	F.	Fraction	of	units	included	in	the	analysis	as	a	function	of	their	
tuning	curve	correlation	between	blocks	(mean	±	SEM	across	mice	from	the	Neuropixels	
‘Functional	connectivity’	group). 
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Supplementary	Figure	5.		Visual	representations	change	over	timescales	of	tens	of	
minutes.	A.	PV	correlation	between	the	1st	(repeats	1-2)	and	2nd	(repeats	3-5)	halves	of	two	
different	blocks	of	‘Natural	movie	3’	in	a	single	visual	area.	The	presented	examples	are	the	
mean	matrices	across	mice	recorded	in	area	AM	using	two-photon	Ca2+	imaging.	B.	PV	
correlation	between	the	two	halves	of	the	same	block	(within	block)	and	between	halves	of	
different	blocks	(between	blocks)	using	the	Ca2+	imaging	dataset	(p	<	10-3	for	all	areas,	two-
tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	C.	Ensemble	rate	
correlation	between	the	two	halves	of	the	same	block	(within	block)	and	between	halves	of	
different	blocks	(between	blocks)	using	the	Ca2+	imaging	dataset	(p	<	10-3	for	all	areas,	two-
tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	D.	Tuning	curve	correlation	
between	the	two	halves	of	the	same	block	(within	block)	and	between	halves	of	different	blocks	
(between	blocks)	using	the	Ca2+	imaging	dataset	(p	≤	0.03	for	all	areas,	except	areas	AL	and	RL	
in	which	p	>	0.05,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction).	Data	
in	all	panels	are	mean	±	SEM	across	mice.		
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Supplementary	Figure	6.	Magnitude	of	change	in	ensemble	rate	and	tuning	curve	
correlation	as	a	function	of	time.	A.	The	difference	in	ensemble	rate	and	tuning	curve	
correlations	between	‘within	block’	and	‘between	blocks’	of	‘Natural	movie	3’	for	the	
Neuropixels	dataset.	B.	The	difference	in	ensemble	rate	and	tuning	curve	correlations	between	
‘within	block’	and	‘between	blocks’	of	‘Natural	movie	3’	for	the	Ca2+	imaging	dataset.	C.	The	
difference	in	ensemble	rate	and	tuning	curve	correlations	between	‘within	session’	and	‘between	
sessions’	of	‘Natural	movie	1’	for	the	Ca2+	imaging	dataset.	Data	are	mean	±	SEM	across	mice;	
two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	correction;	*	p<0.05,	**	p<0.01,	***	
p<0.001,	two-tailed.	
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Supplementary	Figure	7.		Ensemble	rate	correlations	continuously	decline	over	more	
than	1	hour.		A.	Ensemble	rate	correlations	between	halves	of	the	same	and	different	blocks	
within	the	same	session	(NM1,	natural	movie	1;	NM3,	natural	movie	3).	The	presented	example	
is	the	mean	matrices	across	mice	recorded	with	Neuropixels	probes	in	area	V1.	B.	Tuning	curve	
correlations	between	blocks	of	‘Natural	movie	1’	and	‘Natural	movie	3’	for	all	V1	units	across	
mice.	Each	data	point	represents	a	single	unit.	The	units	included	in	the	analysis	are	those	with	
tuning	curve	correlation	r>0.5	for	both	movies.	C.	Correlations	between	cell	activity	patterns	
across	blocks	of	both	the	same	and	different	blocks	of	natural	movies	decay	with	time.	Note	that	
ensemble	rate	correlations	continuously	decline	with	time,	both	between	blocks	of	the	same	
movie	(dark	gray)	and	between	blocks	of	different	movies	(light	gray).	D.	Ensemble	rate	
correlations	between	halves	of	natural	movie	1	and	shuffled	movie	1	blocks	within	the	same	
session	(NM1,	natural	movie	1;	SNM1,	shuffled	natural	movie	1).	The	presented	example	is	the	
mean	matrices	across	mice	recorded	with	Neuropixels	probes	in	area	V1.	E.	The	V1	units	
included	in	this	analysis	showed	tuning	curve	correlation	r>0.5	across	the	two	blocks	of	‘Natural	
movie	1’.	F.	Similarly,	the	ensemble	rate	correlations	across	different	blocks	of	'Natural	movie	1'	
and	different	blocks	of	shuffled	movie	1	declined	with	time.	
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Supplementary	Figure	8.	Stability	of	visual	representations	over	days.	A.	The	difference	
between	ensemble	rate	and	tuning	curve	correlations	of	temporally	proximal	sessions	(the	
average	correlation	between	sessions	1&2	and	between	sessions	2&3)	and	that	of	two	distal	
sessions	(the	correlation	between	session	1&3);	V1	(ZRate = 3.31,	p = 0.002;	ZTuning = 2.09,	
p = 0.053),	LM	(ZRate = 4.27,	p <	10-4;	ZTuning = 4.39,	p <	10-4),		AL	(ZRate = 2.57,	p = 0.014;	ZTuning = 
1.77,	p = 0.075),	PM(Zrate = 3.34,	p = 0.002;	Ztuning = 2.65,	p = 0.0159),	RL	(Zrate = 1.53,	p = 0.068;	
Ztuning = 3.03,	p = 0.005),	AM	(Zrate = 1.83,	p = 0.068;	Ztuning = 0.87,	p = 0.19),		one-tailed	Wilcoxon	
signed-rank	test	with	Holm–Bonferroni	correction;	*p	<	0.5,	**	p	<	0.01;	***p	<	0.001.		B.	
Distribution	of	population	mean	activity	rates	(Ca2+	events/frame)	across	mice	for	each	of	the	
imaging	sessions.	C.	Distribution	of	the	differences	in	the	PV	correlation	values	between	pairs	of	
subsequent	sessions	(i.e.,	the	similarity	between	sessions	1	and	2	compared	to	that	of	sessions	2	
and	3).	Each	data	point	represents	an	individual	mouse;	V1	(t88 = 0.07,	p = 0.52),	LM	(t64 = -0.06,	
p = 0.47),	AL	(t34 = 0.87,	p = 0.8),	PM	(t51 = -0.83,	p = 0.2),	RL	(t34 = -0.77,	p=0.22),	AM	(t27 = 1.21,	
p=0.86),	one-tailed	paired	t	test	without	correction	for	multiple	comparisons.		D.	Percentage	of	
cells	active	in	a	one,	two	or	all	imaging	sessions.	Mean	±	SD	across	mice.	E.	Repeating	the	
analysis	presented	in	Fig.	3I	for	cells	active	in	both	compared	time	points	(‘active	both’),	and	for	
cells	that	were	active	in	at	least	one	of	the	compared	time	points	(‘active	≥	1’);	post-hoc	one-
tailed	Wilcoxon	signed-rank	test	for	the	difference	between	the	value	of	elapsed	session	1	and	
that	of	elapsed	session	2;	*p	<	0.5,	**	p	<	0.01;	***p	<	0.001.	Data	in	panels	A	and	E	are	mean	±	
SEM	across	mice.	 	
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Supplementary	Figure	9.	Comparison	of	representational	drift	between	different	cortical	
areas	and	layers	across	days.	A.	Ensemble	rate	correlation	between	the	two	halves	of	the	same	
session	(within	session),	between	halves	of	two	temporally	proximal	sessions	(elapsed	session	
1)	and	between	halves	of	two	temporally	distal	sessions	(elapsed	session	2).	B.		Tuning	curve	
correlation	between	the	two	halves	of	the	same	session	(within	session),	between	halves	of	two	
temporally	proximal	sessions	(elapsed	session	1)	and	between	halves	of	two	temporally	distal	
sessions	(elapsed	session	2).	Colors	indicate	different	cortical	layers.	Data	are	mean	±	SEM	
across	mice.	 	
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Supplementary	Figure	10.	Comparison	of	representational	drift	between	lower	and	
higher	visual	areas.		A.	Difference	in	the	ensemble	rate	correlation	as	a	function	of	the	interval	
between	movie	repeats	for	dLGN,	LP,	V1	and	LM;	for	V1-LM	there	was	a	significant	main	effect	
for	the	interval	between	movie	repeats	(F(1.9,	74.41)	=	12.24,	p	<	10-4)	and	a		non-significant	
interaction	between	area	and	the	interval	between	movie	repeats	(F(1.9,	74.41)	=	1.244,	p	=	0.29);	
for	LGN-LP	there	was	a	significant	main	effect	for	the	interval	between	movie	repeats	(F(1.82,	43.78	
)	=	6.86,	p	=	0.003)	and	a	non-significant	interaction	between	area	and	the	interval	between	
movie	repeats	(F(1.82,	43.78	)	=	1.63,	p	=	0.2),	two-way	mixed	model	ANOVA	with	Greenhouse-
Geisser	correction.	B.	Difference	in	the	tuning	curve	correlation	as	a	function	of	the	interval	
between	movie	repeats	for	the	same	areas	shown	in	A;	for	V1-LM	there	was	a	significant	main	
effect	for	the	interval	between	movie	repeats	(F(2.12,	82.92	)	=	6.48,	p	=	0.0019)	and	a	non-
significant	interaction	for	area	and	the	interval	between	movie	repeats	(F(2.12,	82.92	)	=	1.98,	p	=	
0.14),	for	LGN-LP	there	was	a	significant	main	effect	for	the	interval	between	movie	repeats	(F(3,	
72.13	)	=	9.13,	p	<	10-4)	and	a	significant	interaction	between	area	and	the	interval	between	movie	
repeats	(F(3,	72.13	)	=	5.32,	p	=	0.002),	two-way	mixed	model	ANOVA	with	Greenhouse-Geisser	
correction.	C.	Difference	in	the	ensemble	rate	correlation	as	a	function	of	the	interval	between	
movie	repeats;	there	was	a	significant	main	effect	for	the	interval	between	movie	repeats	(F(3.32,	
504.64)	=	9.04,	p	<	10-5)	and	a	non-significant	interaction	between	area	and	the	interval	between	
movie	repeats	(F(3.32,	504.64)	=	0.89,	p	=	0.45),	two-way	mixed	model	ANOVA	with	Greenhouse-
Geisser	correction.	D.	Difference	in	the	tuning	curve	correlation	as	a	function	of	the	interval	
between	movie	repeats;	there	was	a	significant	main	effect	for	the	interval	between	movie	
repeats	(F(3.25,	495.47)	=	11.48,	p	<	10-4)	and	a	significant	interaction	between	area	and	the	interval	
between	movie	repeats	(F(3.25,	495.47)	=	5.32,	p	=	0.047),	two-way	mixed	model	ANOVA	with	
Greenhouse-Geisser	correction.	E.	Ensemble	rate	correlation	between	the	two	halves	of	the	
same	block	(‘within	block’)	and	between	halves	of	different	blocks	(‘between	blocks’).	Inset:	the	
difference	in	ensemble	rate	correlation	between	‘within	block’	and	‘between	blocks’	for	V1	
compared	to	LM;	two-tailed	Mann–Whitney	rank-sum	test,	Z = 1.63,	p = 0.101.	F.	Tuning	curve	
correlation	between	the	two	halves	of	the	same	block	(‘within	block’)	and	between	halves	of	
different	blocks	(‘between	blocks’).	Inset:	the	difference	in	tuning	curve	correlation	between	
‘within	block’	and	‘between	blocks’	for	V1	compared	to	LM;	two-tailed	Mann–Whitney	rank-sum	
test,	Z = 2.6,	p = 0.009.	G.	Ensemble	rate	correlation	between	the	two	halves	of	the	same	session	
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(‘within	session’),	between	halves	of	two	temporally	proximal	sessions	(‘elapsed	session	1’)	and	
between	halves	of	two	temporally	distal	sessions	(‘elapsed	session	2’).	H.	Tuning	curve	
correlation	between	the	two	halves	of	the	same	session	(‘within	session’),	between	halves	of	two	
temporally	proximal	sessions	(‘elapsed	session	1’)	and	between	halves	of	two	temporally	distal	
sessions	(‘elapsed	session	2’);	the	difference	in	tuning	curve	correlation	between	‘within	
session’	and	‘between	sessions’	for	V1	compared	to	LM;	‘Within	session’-	‘Elapsed	session	1’	
(Z = -2.3,	p = 0.042),	‘Within	session’-	‘Elapsed	session	2’	(Z = -0.95,	p = 0.34);	two-tailed	Mann–
Whitney	rank-sum	tests	with	Bonferroni	correction.	Data	in	all	panels	are	mean	±	SEM	across	
mice.	The	number	of	mice	recorded	from	each	area	is	indicated	in	parentheses.	In	A-D	and	G-H,	
correlations	were	scaled	by	subtracting	the	correlation	value	at	the	minimal	interval	between	
movie	presentations.			
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Supplementary	Figure	11.	The	unique	coding	properties	of	each	visual	area	underlie	a	
stereotypic	internal	structure	of	neuronal	population	activity.	A.	Different	natural	movies	
have	a	distinct	structure	of	correlations	between	their	individual	frames	(binned	into	30	equally	
spaced	segments).	Each	movie	elicited	a	different	structure	of	correlations	between	the	
population	activities	at	each	temporal	bin	(i.e.,	an	internal	structure	of	neuronal	population	
activity).	This	structure	of	similarities	between	neuronal	representations	appears	to	be	stable	
across	different	blocks	within	a	session	(top),	and	between	different	sessions	across	multiple	
days	(bottom).	Data	is	from	a	single	mouse	recorded	using	two-photon	Ca2+	imaging	in	area	LM.		
B.	Example	for	dimensionality	reduction	(tSNE)	on	the	internal	structures	of	‘Natural	movie	1’	
produced	from	two	Ca+2	imaging	‘pseudo-mice’.		Each	data	point	corresponds	to	an	internal	
structure	of	a	single	‘Natural	movie	1’	repeat.	C.	Percentage	of	successful	classifications	of	the	
internal	structures	to	their	corresponding	visual	areas	within	and	across	Ca+2	imaging	pseudo-
mice	(mean	±	SEM	across	n=100	pairs	of	pseudo-mice).	D.	Example	for	dimensionality	reduction	
(tSNE)	on	the	internal	structures	of	‘Natural	movie	1’	produced	from	two	‘shuffled	pseudo-mice’	
(mice	A	&	B),	which	were	generated	from	the	same	‘pseudo-mice’	presented	in	Fig.	4C.		Each	
data	point	corresponds	to	a	single	‘Natural	movie	1’	repeat.	E.	Percentage	of	successful	
classifications	of	internal	structures	across	brain	areas	of	the	same	‘pseudo-mice’	compared	to	
‘shuffled	pseudo-mice’	and	chance.	Internal	structures	from	all	areas	exhibited	significantly	
higher	success	in	classification	compared	to	their	corresponding	areas	in	the	shuffled	mice	and	
chance	(n=100	pairs	of	pseudo-mice;	p	≤	0.0033	for	all	areas,	two-tailed	Wilcoxon	signed-rank	
test	with	Holm–Bonferroni	correction).		F.	Percentage	of	successful	classifications	of	internal	
structures	between	brain	areas	of	different	‘pseudo-mice’	compared	to	‘shuffled	pseudo-mice’	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.05.327049doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327049
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

and	chance.	All	areas	except	LM	exhibited	significantly	higher	success	in	classification	between	
mice	compared	to	their	corresponding	areas	in	the	shuffle	mice	and	chance	(n=100	pairs	of	
pseudo-mice;	p	<	10-9	for	all	areas,	two-tailed	Wilcoxon	signed-rank	test	with	Holm–Bonferroni	
correction).	G.	Distribution	of	internal	structure	classifications	between	brain	areas	of	different	
‘pseudo-mice’.		H.	Mean	internal	structure	stability	compared	to	the	distribution	of	temporally	
shuffled	internal	structures	across	areas	from	pseudo-mice	created	using	the	calcium	imaging	
dataset.	I.	Correlation	between	the	internal	structures	(colored	lines)	or	the	PVs	(gray	lines)	as	a	
function	of	the	distance	between	repeats	of	‘Natural	movie	1’,	plotted	for	varying	numbers	of	
neurons	included	in	the	analysis.	Correlations	were	normalized	to	the	value	at	the	minimal	
interval	between	movie	repeats.	
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Supplementary	Figure	12.	Generation	of	pseudo-mice	and	shuffled	(control)	pseudo-
mice.	A.	Schematic	workflow	of	the	generation	of	the	‘pseudo-mice’	and	‘shuffled	pseudo-mice’	
presented	in	Fig.	4	and	Supp.	Fig.	11,	respectively.	We	randomly	divided	a	complete	dataset	of	N	
mice	into	two	equal,	non-overlapping,	groups	of	N/2	mice.	Each	mouse	contained	the	neuronal	
activity	recorded	from	1-6	brain	areas	(depending	on	the	dataset).	Pooling	all	the	cells	related	to	
each	visual	area	across	all	mice	yielded	six	‘pseudo-areas’	for	each	of	the	‘pseudo-mice’	(twelve	
‘pseudo-areas’	in	total).	Because	of	variability	in	the	number	of	recorded	areas	and	cells	across	
mice	in	the	original	dataset,	the	pooling	procedure	can	result	in	a	different	number	of	cells	in	
each	of	the	‘pseudo-areas’.	To	eliminate	the	possibility	that	differences	between	the	internal	
structure	of	neuronal	activity	across	visual	areas	stem	from	sampling	biases,	each	‘pseudo-area’	
was	randomly	subsampled	to	contain	an	equal	number	of	cells.	The	exact	number	of	sampled	
cells	was	determined	based	on	the	area	with	the	lowest	cell	count	across	‘pseudo-mice’.	Lastly,	a	
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complementary	‘shuffled	pseudo-mouse’	was	generated	by	the	random	redistribution	of	all	the	
cells	across	‘pseudo-areas’	in	each	of	the	‘pseudo-mice’.	This	step	yielded	‘shuffled	pseudo-areas’	
that	served	to	evaluate	the	unique	contribution	of	each	area’s	coding	properties	to	the	
relationships	within	and	between	visual	areas.	B.	Schematic	workflow	of	the	analysis	performed	
to	measure	the	degree	to	which	the	relationship	between	the	internal	structures	of	different	
areas	is	conserved	across	different	movies	and	pseudo-mice	(shown	in	Fig.	4E).	Starting	with	24	
equally	sized	matrices	(n	x	t)	containing	the	mean	neuronal	activity	across	movie	repeats	in	
each	temporal	bin	for	each	brain	area,	natural	movie	and	pseudo-mouse	(6	areas	x	2	natural	
movies	x	2	pseudo-mice).	Correlating	each	temporal	bin	with	the	rest	of	the	bins	within	a	matrix	
produces	equally	sized	(t	x	t)	matrices	for	each	brain	area.	Vectorizing	the	upper	half	of	these	
matrices	produces	vectors	representing	the	internal	structures	(vector	size	=	(t2-t)/2)).	Then,	
for	each	natural	movie	within	a	given	pseudo-mouse,	we	calculated	the	Pearson’s	correlation	
matrix	across	the	internal	structures	of	all	areas.	This	procedure	yielded	four	matrices	(2	
natural	movies	x	2	pseudo-mice),	each	symmetric	and	6-by-6	in	size	(across	all	areas).	Finally,	
we	calculated	the	Pearson’s	correlation	between	the	matrices	(using	the	vectorization	of	the	
upper	half	of	each	matrix)	of	different	natural	movies	and	different	pseudo-mice,	and	averaged	
across	the	two	comparisons	(correlation	between	‘Natural	movie	1’	in	pseudo-mouse	A	with	
that	of	‘Natural	movie	3’	in	pseudo-mouse	B,	and	vice	versa).	
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