The guidance and adhesion protein FLRT2 dimerizes in cis via dual Small-X₃-Small transmembrane motifs

Verity Jackson⁴,¹, Julia Hermann⁷,¹, Christopher J. Tynan⁴,², Daniel J. Rolfe², Antreas C. Kalli³, Anna L. Duncan¹, E. Yvonne Jones⁴, Mark S. P. Sansom¹, Marisa L. Martin-Fernandez*², Elena Seiradake*¹, Matthieu Chavent*⁵

#These authors contributed equally to this study

1. Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, United Kingdom
2. Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, United Kingdom
3. Department of Discovery and Translational Science, Institute of Cardiovascular and Metabolic Medicine, School of Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, United Kingdom
4. Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
5. Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400, Toulouse, France
6. Present address: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany

* Correspondence and requests for materials should be addressed to E. S. (email: elena.seiradake@bioch.ox.ac.uk), to M. L. M. F. (email: marisa.martin-fernandez@stfc.ac.uk), or to M. C. (email: matthieu.chavent@ipbs.fr)

Abstract

Fibronectin Leucine-rich Repeat Transmembrane (FLRT 1-3) proteins are a family of broadly expressed single-spanning transmembrane receptors that play key roles in development. Their extracellular domains mediate homotypic cell-cell adhesion and heterotypic protein interactions with other receptors to regulate synapse development and cell guidance. These in trans FLRT interactions determine the formation of signaling complexes of varying complexity and function. Whether FLRTs also interact in cis remains unknown. Here, we reveal two dimerization motifs in the FLRT2 transmembrane helix. Molecular dynamics simulations and single particle tracking experiments show that these 'Small-X₃-Small' motifs synergize with a third dimerization motif encoded in the extracellular domain to permit the cis association and diffusion patterns of FLRT2 on cells. The results point to a competitive switching mechanism between in cis and in trans interactions which suggests that homotypic FLRT interaction mirrors the functionalities of classic adhesion molecules.

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Introduction

Fibronectin Leucine-rich Repeat Transmembrane (FLRT) proteins are a family of cell adhesion molecules (CAMs) that are broadly expressed during vertebrate development\(^{1,2}\). FLRTs are unusual CAMs as they perform both cell adhesive and repulsive functions, leading to their definition as Repellent CAMs (ReCAMs)\(^{3,4}\). In neurons, FLRTs act as repulsive guidance cues during cortical cell migration\(^{3,5-7}\), whereby they play key role in cortical folding\(^8\) and as adhesion molecules in synaptic complexes\(^9,10\). Adhesive FLRT functions are elicited by homotypic binding\(^1,2\) or by binding to the G-protein coupled receptor Latrophilin (Lphn) \(^{11,12}\) on opposing cells while cell repulsion results from interaction with Uncoordinated-5 (Unc5A-D)\(^4,11\). FLRT also interacts with Unc5 in cis to regulate Lphn-mediated adhesion, at least in vitro\(^7\). In migrating neurons, FLRT cooperates with the Lphn-binding receptor Teneurin to form a ternary trans-synaptic complex that mediates cell repulsion\(^13\), while the three proteins also function in promoting synapsing\(^14\). Thus, FLRT acts in a context-dependent manner to determine the formation of different higher order cell-guidance signalling complexes and regulate brain development\(^15\). Here we ask whether FLRT forms homotypic cis complexes and how this may modulate cis and trans interactions with other partners.

FLRTs share a common architecture\(^16\) (Fig. 1A) beginning with an N-terminal Leucine-Rich Repeat (LRR) extracellular domain, which contains a concave surface on which both FLRT and Lphn bind\(^3,6\). Unc5 binds to an adjacent surface on the LRR domain, which is compatible at least with Lphn-binding\(^7\). The LRR domain is linked to a type III fibronectin (FN) domain which then leads into the single-spanning transmembrane (TM) domain and a ~100 amino acid long intracellular domain (ICD) of unknown structure. FLRT2 TM domains contained two consecutives "Small-X\(_3\)-Small" motifs\(^17-19\) (Fig. 1B) which may promote FLRT interactions in cis. Indeed, this motif play fundamental roles in other single-spanning transmembrane receptors, including epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), integrins, and EphA receptors\(^20,26\).

Characterizing dynamic membrane protein structures is challenging\(^18,27,28\). However, the recent developments in molecular dynamics (MD) simulations\(^29\) have provided a powerful tool to study membrane receptors and their interactions\(^30-35\). Coarse-grained molecular dynamics (CG-MD) simulations have emerged as the method of choice to explore the self-assembly of TMs\(^36-38\) and have been exhaustively validated\(^39-41\). Combining MD simulations with well-established experimental assays such as Single Molecule Tracking (SMT) microscopy\(^42,43\), which tracks the clustering of receptors\(^44-49\) on live cells, is a powerful approach to provide new insights into the dynamic assemblies of cell receptors\(^21,33,50\).

Here, we use molecular dynamics simulations and live cell SMT experiments to reveal how FLRT2 dimerizes in cis via two Small-X\(_3\)-Small motifs. Unexpectedly, these motifs work synergistically with the extracellular dimerization motif in the ligand-
binding domain\(^3\) to produce FLRT-FLRT association. The results suggest a bipartite structural mechanism that underlies the diverse functions of FLRT, and a competitive mechanism for \textit{in cis} versus \textit{in trans} binding via the extracellular domain.

Figure 1: Dimerization of FLRT2 TM domains. A- Schematic of FLRT proteins engaging \textit{in trans} and potentially also \textit{in cis} interactions. B-Sequence of the FLRT2 TM helix. The two Small-X\(_3\)-Small motifs, key residues for the formation of the helix/helix interface highlighted by the CG-MD simulations, are colored in green and red. Two constructs were used as inputs for MD simulations: the core TM helix of 24 residues (TM\(_{24}\)) and an extended version with the four most N- and C-terminal residues (TM\(_{32}\)). C- The CG-MD protocol to assess TM helix interactions. The two helices are positioned 60 Å apart and diffuse freely in the membrane. The colored bars show, for each simulation, the distance in between the two TM helices as a function of the time. D- The TM contact bars of the 30 simulations for the TM\(_{32}\) helices in a membrane of 80% POPC and 20% cholesterol. Details for all the simulations can be found in Sup. Fig. 1 and Sup. Fig. 2.

Results

FLRT2 TM dimerization involves two Small-X\(_3\)-Small motifs

As no structural information exists for the FLRT2 TM domain, we have used secondary structure prediction tools (see Methods) to predict the membrane-embedded helical region of FLRT2 (Fig. 1B). We obtained 24 residues as the core TM helix (denoted TM\(_{24}\)). This length is consistent with the average length for a plasma membrane-spanning TM helix\(^{31}\). We also extended the helical segment with four N- and C-terminal residues, which were modelled as coils (denoted TM\(_{32}\)).

We then performed multiple runs of coarse-grained molecular dynamics (CG-MD) to model the associations of both TM\(_{24}\) and TM\(_{32}\) in three different types of membrane: POPC, DPPC, and a lipid mixture of 80% POPC and 20% cholesterol (Sup. Table 1). For each of these three lipid compositions, we positioned the two helices 60 Å apart allowing them to diffuse freely until there is an encounter which predominantly leads to the formation of a stable helix dimer (Fig. 1D and Sup. Fig. 1).
and 2). The TM helices interacted through a network of residues distributed along each peptide. Among these residues, we identified two consecutive Small-X₃-Small motifs known to favor TM interactions⁵²,⁵³, A₅₄₄-X₃-G₅₄₈ and G₅₄₅-X₃-G₅₄₉ (Sup. Fig. 3).

We next performed crossing angle analysis to analyze the geometry of the TM helices. For both the TM₃₂ and TM₃₃ models, this revealed three dimer populations (Fig. 2A and Sup. Fig. 4): two main right-handed populations with average crossing angles of approximately -27° (RH1) and -9° (RH2) and one minor left-handed population with an average crossing angle of around +9° (LH). For each crossing angle population, a clear interface was identified (Fig. 2B). RH1 conformations were driven...
by interactions around the G₅₄₅-X₃-G₅₄₉ motif while RH2 conformations were centered on the A₅₄₄-X₃-G₅₄₈ motif. The LH population was constituted by peptides interacting via both motifs.

To obtain a more detailed view of the dynamical TM dimer association, we plotted the helix crossing angle against the distance between the two Small-X₃-Small motifs. This revealed several sub-populations associated with each crossing angle peak (Fig. 2A). Notably, membrane lipid composition appeared to modulate this dynamical equilibrium (Fig. 2A and Sup. Fig. 4) as seen in other studies⁵⁶-⁶⁰. Furthermore, for each membrane composition, the juxtamembrane regions appeared to modulate TM dimer formation (Fig. 2A and Sup. Fig. 4) as previously reported⁶¹. Plotting individual simulations (Sup. Fig. 5 to 10) suggested that the RH1 conformation can exchange with the LH conformation. RH2 seemed to also exchange with RH1 conformation but to a lesser extent. Thus, RH1 may be seen as a transition state in between RH1 and LH conformations.

We then refined the three main TM dimer structures (RH1, RH2 and LH) by performing 400 ns of atomistic MD simulations (see Methods) (Sup. Fig. 11-A). The RH1 and RH2 dimers remained in a right-handed conformation though we observed a slight increase of the crossing angle for the RH2 structure (with a final crossing angle of -37°). Interestingly, the LH structure switched to a right-handed conformation at the beginning of the simulation and then returned to a stable left-handed conformation. This confirmed the exchanges between RH1 and LH configurations seen in coarse-grain simulations (Sup. Fig. 5 to 10). For all three structures, the interactions between the Small-X₃-Small motifs were stable throughout the simulation (Sup. Fig. 11-B).

Thus, MD simulations revealed a dynamic equilibrium of dimer structures involving the two consecutives Small-X₃-Small motifs: A₅₄₄-X₃- G₅₄₈ and G₅₄₅-X₃-G₅₄₉.

Distinctive mutations in the Small-X₃-Small motifs selectively modulate FLRT2 TM dimerization

To assess the individual contributions of the two Small-X₃-Small motifs to the dimerization, we performed CG-MD simulations with several mutants replacing glycine residues with isoleucine or valine residues, the larger hydrophobic side chains of which are expected to disturb the TM dimerization⁶²-⁶⁶ (Fig. 3A and Sup. Table 1). For each mutant, we evaluated both the crossing angle populations and the spatial distributions for the TM₃₂ construct in a DPPC bilayer.
Figure 3: *In silico* mutations in the two Small-X₃-Small motifs affect the TM dimerization and dynamical equilibrium. **A** - Table of mutations for *in silico* and SMT experiments. The LRR/TM₁+₂ mutant was only used for the SMT experiments. **B** - Spatial distribution profiles of one TM₃₂ helix relative to the other for the CG simulations of both WT and mutants. The diagram shows the probability density of finding the backbone particles of one TM₃₂ helix at a given point in the bilayer plane around the other helix. Diagrams are colored such that white represents low probability up to blue for higher probabilities. Green (respectively red) circles depict averaged positions of A₅₄₄ and G₅₄₈ (respectively G₅₄₅ and G₅₄₉) residues. **C** - Helix crossing angle distributions for both TM₃₂ WT and mutants. **D** - Averaged TM contact matrices of the different mutants based on different representative TM conformations.
In contrast with the wild type, mutations in the A$_{544}$-X$_3$-G$_{548}$ motif (mutants TM$_0$ and TM$_1$) favored formation of a dimer with a spatial distribution focused on the G$_{545}$-X$_3$-G$_{549}$ motif (Fig. 3B) and switched of crossing angle populations towards RH1 conformations (Fig. 3C). For these conformations, TM helices are packed around the G$_{545}$-X$_3$-G$_{549}$ motif (Fig. 3D). Mutations in the G$_{545}$-X$_3$-G$_{549}$ motif (mutants TM$_2$ and TM$_3$) drove interactions through the G$_{544}$-X$_3$-G$_{548}$ motif (Fig. 3B,D) favoring RH2 crossing angle populations (Fig. 3C) and allowing TM domains to explore a wider area around the G$_{544}$-X$_3$-G$_{548}$ motif compared to the WT (Fig. 3B). Mutations of both motifs (mutant TM$_{1+2}$) enabled one TM domain to explore the entire bilayer plane surrounding its TM partner (Fig. 3B), thereby abolishing the specificity of the TM helix interactions. For this double mutant, the crossing angle density was clearly more diffuse than for the WT or the other mutants, further highlighting a loss of specificity (Fig. 3C). Mutating both motifs also limited the interactions in between the TM helices for the two main conformations RH2 and LH (Fig. 3D).

Thus, these mutations highlighted two distinct dynamical behaviors of the TMD dimer specific to each motif. Only mutation of both motifs resulted in an almost complete loss of interactions between the two monomers.

Mutations in the Small-X$_3$-Small motifs affect FLRT2 co-localization in cells

To support the *in silico* results, we performed SMT experiments to assess the contribution of the predicted key residues in the Small-X$_3$-Small motifs to dimer formation by mutating glycine residues to isoleucine or valine residues (Fig. 3A). We tracked FLRT2 receptors on live cells with a sub-pixel accuracy by SMT in two different channels using the dyes Alexa549 and CF640R (Fig. 4A-C). Based on receptor frame-to-frame proximity in each channel (Fig. 4C), we then built a distribution of the durations of co-localization events (Fig. 4D), referred to as τ_{on}. The duration of co-localization events is a characteristic of the stability of any interaction or association between the tracked receptors, and is independent of expressed receptor concentration.47

Comparing the τ_{on} distributions of WT and mutants (Fig. 4E) revealed that mutations in only one of the two motifs (either TM$_1$, TM$_2$ or TM$_3$ alone) was insufficient to reduce the baseline average τ_{on} of wild-type FLRT2. However, mutation of both Small-X$_3$-Small motifs (TM$_{1+2}$ mutant) resulted in a significant shift in the τ_{on} distribution towards lower values (Fig. 4E and Sup. Fig. 12B). These results are in agreement with a previous study showing that mutation of both Small-X$_3$-Small transmembrane motifs is necessary to disrupt the EGFR TM dimer and affect receptor function.67 The significant shift in τ_{on} was also seen for the mutation in the LRR ectodomain, known to abolish FLRT-FLRT trans-interactions,3 and for the triple mutation LRR+TM$_{1+2}$. This provides experimental support for the *in silico* results demonstrating that the two Small-X$_3$-Small motifs are required for FLRT interactions *in cis*.

We next analyzed the diffusion coefficients for the WT and mutants as an alternative approach to provide further insight into the role of these motifs in dimer formation (Fig. 4F). In line with the τon results, only diffusion values for the mutants TM1+2, LRR, and LRR+TM1+2, increased significantly from the WT (Sup. Fig. 12C,D). Notably, diffusion calculations in MD simulations also indicated a significant difference in between the double mutant TM1+2 and the WT (Sup. Fig. 12E). Although the spatial resolution of single molecule tracking is insufficient to discriminate between direct pairwise interactions and co-confinement or joint interactions with the same larger protein complex, this correlation between the decreased duration of co-localization events and the increased diffusion constant of the tracked receptors is consistent with the mutations disrupting interactions that usually occur between WT FLRT2 TM domains.

Taken together, these data indicate that the extracellular motif and both G544- X₃- G548 and G545- X₃- G549 motifs in the transmembrane region are required for wild-type FLRT2 homotypic interactions in cis.
Discussion

TM dimer association is a highly dynamic process involving multiple states and weak interactions hence challenging structural studies. As a consequence, only a limited number of TM dimer structures are available and these are often restricted to one state of the TM dimer. To complement structural studies, MD simulations can provide details of these dynamic assemblies. Here, we have used MD simulations to gain structural insights into the formation of FLRT2 TM dimers. Our models revealed a dynamical equilibrium between conformations involving two successive Small-X₃-Small motifs: G₅₄₄-X₃-G₅₄₈ and G₅₄₅-X₃-G₅₄₉ motifs. To further assess these models and the conformational changes governing the FLRT2 dimer association, one could use accelerated MD simulations combined with free energy calculations.

Figure 5: Model of the FLRT cis-interaction. A- Sequence alignment of the TM domain for FLRT1-3 in human and for FLRT2 in other species (human:h, chicken:g, frog:x, fish:dr). B- Model of FLRT2 cis-interactions that may compete with different FLRT2 trans interactions. The interconversion in between RH1, involving the G₅₄₅-G₅₄₉ motif (in red), and RH2 interactions, driven by the A₅₄₄-G₅₄₈ motif (in green), may be modulated by mutations in the TM domain or environmental conditions such as changes in the lipid composition of the membrane.

The TM helices of other receptors such as EGFRs and EPHAs dimerize via Small-X3-Small motifs to transduce extracellular signals into intracellular activity21,22,24. Unlike these receptors, there is no enzymatic activity associated with FLRT. Instead, FLRTs act as crucial adaptor proteins that define the architecture of cell surface signalling hubs3,7,13, and also regulate the trafficking of diverse receptors. For example, FGF receptor traffics with FLRT1-37,72, while FLRT3 regulates the cell surface levels of the Deleted in Colorectal Carcinoma (DCC) receptor in thalamic axons73. Dimerization of the EGFR Small-X3-Small motif also regulates EGFR trafficking85. Thus, in cis dimerization via the Small-X3-Small motifs in the TM helix of FLRTs may act similarly and play a central role in receptors trafficking and thereby signal transduction.

A functional role for the Small-X3-Small motifs is supported by their conservation in all three FLRT human homologues (FLRT 1-3) as well as for FLRT2 in different species (Fig. 5A). In addition, the COSMIC database74 lists a number of cancer-related mutations targeting the TM domain of FLRT2. Two such mutations (A544V and G545V) map to the Small-X3-Small motifs described here, and may affect FLRT2 function and dynamics as seen in MD simulations (Fig. 3). Furthermore, the lipid environment can modulate WT TM association75-77 (Fig. 2A, Sup. Fig. 4) and may accentuate deleterious effects of these mutations.

Unexpectedly, our results show that the same mutation in the LRR domain that disrupts FLRT-FLRT interactions in trans3 also disrupts FLRT-FLRT interaction in cis, posing the question whether FLRT cis and trans interactions are competitive (Fig. 5B). Adding complexity to this issue is the observation that the same mutation also abolishes trans FLRT-Lphn interactions3,6. These findings suggest that Lphn may also compete with in cis FLRT-FLRT dimerization, leading to a mechanism in which FLRTs switch between in cis dimerization and in trans interactions (Fig. 5B). Interplay between cis and trans interactions are essential for the formation of clusters of adhesion proteins leading to cell-cell recognition78. One canonical example is the formation of adherens junction by the clustering of cadherins for which both cis and trans interactions are required79,80. In addition, a competitive switch between in trans and in cis interactions occurs for EphA receptors with their ephrin-A ligands81,82. Our results describe the structural basis and nature of in cis dimerization of FLRT2 receptors and suggest how these interactions may compete with interactions in trans to determines the formation of specific signalling complexes and regulate fundamental developmental processes, such as cortical folding and synapsing.

Acknowledgements
A.L.D. is supported by the BBSRC grant BB/R00126X/1 and Pembroke College, Oxford (BTP Fellowship). E.Y.J. was funded by UK Medical Research Council programme grant G9900061. The Wellcome Centre for Human Genetics is supported
by Wellcome Trust Centre grant 203141/Z/16/Z. E.S. is funded by the Wellcome Trust (202827/Z/16/Z), EMBO YIP and supported by the COST action 'Adhere'n Rise'. V.A.J was funded by the Wellcome Trust DPhil programme in Cellular Structural Biology. M.S.P.S. is funded by Wellcome Trust grants WT092970MA and 208361/Z/17/Z. M. C. is supported by the CNRS-MITI grant “Modélisation du vivant” 2020. This work was granted access to the HPC resources of CALMIP supercomputing center under the allocation 2020-17036. The single molecule analysis used computing resources provided by STFC Scientific Computing Department's SCARF cluster. We acknowledge Life Science Editors for proofreading the manuscript. M. C. thanks E. Haanappel and A. Atkinson for fruitful discussions and support.

Competing interests

No competing interests declared
Methods

Modeling Transmembrane domain and Molecular Dynamics Simulations

Results from the PSIPred, PRED-TMR2, and HMMTOP servers were combined to predict the membrane embedded helical region of FLRT2. Twenty-four residues of human FLRT2 (residues 541 – 564) were selected to form the core of the TM helix (TM24). The transmembrane domain was created using the Pymol secondary structure creation script: build_seq.py (http://pldserver1.biochem.queensu.ca/~rlc/work/pymol/) and then converted into coarse-grained model. For TM32, the four residues both N- and C-terminal of TM24 were modelled as random coils using Modeller 9v9.

Coarse-grained MD (CG-MD) simulations were performed using GROMACS 4.6 (www.gromacs.org) with the MARTINI 2.1 forcefield. The temperature was 323K. Electrostatic interactions were shifted to zero between 0 and 1.2 nm and the Lenard-Jones interactions between 0.9 and 1.2 nm. A Berendsen thermostat in combination with a Berendsen barostat with a coupling constant of 1.0 ps, a compressibility of 5.0 x 10^-6 bar^-1, and a reference pressure of 1 bar were used. The integration timestep was 20 fs. Simulations were run for either 1 or 2 μs (Sup. Table 1) over twenty to thirty replicates to ensure exhaustive sampling of TM helix dimer structures.

We then converted the three main representative (RH1, RH2, and LH) coarse grained structures into atomistic models using the CHARMM-GUI MARTINI to All-atom converter (http://www.charmm-gui.org/?doc=input/converter.martini2all). Atomistic simulations were performed with GROMACS 2018 in combination with the CHARMM36 forcefield and TIP3P water model. The temperature was held at 310K. A first step of energy minimization was performed using the steepest descent algorithm and was equilibrated with a constant temperature (canonical ensemble, NVT, 310 K) ensemble for 100 picoseconds, followed by a 100 picoseconds equilibration at constant pressure (isothermal-isobaric, NPT, 1 bar). We then ran 100 ns of equilibration by keeping the protein backbone constrained followed by 400 ns of unrestrained production run. We applied a Nosé-Hoover thermostat on the system, coupled with the Parrinello–Rahman barostat, with a compressibility of 4.5x10^-5 bar^-1. Long-range electrostatics were modeled using the Particle-Mesh Ewald method. All bonds were treated using the LINCS algorithm. The integration time step was 1 femtosecond.

Simulation analysis:

Protein and lipid structures were rendered using VMD. Simulations trajectories were analyzed using a combination of Tcl/VMD and Python scripts. Matplotlib was used to create graphs and images of TMD monomer distances, contact matrices, TMD density rendering, and crossing angles analysis. All the scripts used to
perform these analyses are available at: https://github.com/MChavent/FLRT.

Distances were calculated in between the two centers of mass of each TM helix. Density, TM contacts and crossing angles calculations were performed every nanosecond for the part of the trajectory where a dimer was formed. In Figure 2-A (resp. 3-B,C), the values were renormalized to take into account of both the maximum values and time of interactions to properly compare the different membrane (resp. Wild Type and mutants) systems.

Diffusion analyses of dimers were carried out by extracting time-averaged mean squared displacement (MSD) for all simulation replicates, for the part of the trajectory where a dimer was formed. For each replicate, a MSD vs. \(\Delta t \) was plotted for \(\Delta t \) in the range 0.2 ns – 200 ns. The diffusion coefficient (D) for each trajectory was calculated by fitting the equation MSD = 4D\(\Delta t \) to the first two points in the plot, in order to obtain an instantaneous diffusion coefficient. The diffusion analysis script used to perform the analysis can be found at:
https://github.com/tylerjereddy/diffusion_analysis_MD_simulations.

Cloning

SNAP-FLRT2 was cloned into the EcoRI/XhoI restriction sites of the pHSec vector. In SNAP-FLRT2 an N-terminal SNAP tag (containing the RPTP\(\sigma \) signal sequence) was fused to murine FLRT2 (residues A35 – T660) via an HA-tag. Mutations were introduced using molecular cloning.

Cell Culture and Transfection

HeLa cells were seeded onto uncoated 4-well \(\mu \)-Slides, #1.5 polymer coverslips (Ibidi) at a density of 1.1x105 cells/well in 600 \(\mu \)L phenol red-free DMEM + 10% FBS + 1% L-Gln + 1% NEAA (complete medium). After 24 h, each well was transfected with 2.0 \(\mu \)g plasmid DNA using FuGENE6, according to the manufacturer’s instructions. Cells were maintained at 37 °C, 5% CO2 and were prepared for experiments 12-18 hours post-transfection.

BG-CF640R Conjugation

CF640R succinimidyld ester (Biotium) was reacted with BG-NH2 (New England Biolabs) to produce the benzylguanine functionalised dye BG-CF640R. 1 \(\mu \)mol of CF640R succinimidyle ester was reconstituted in DMSO and dissolved in 10 ml 0.1 M sodium bicarbonate buffer at pH 8.4. 1.5 \(\mu \)mol BG-NH2 in DMSO was added to the dye mixture and vortexed well. The reaction was shaken at room temperature overnight before dilution with deionised water. For all subsequent dilutions the conjugation efficiency was assumed to be 100%.
Two-Colour Fluorescent Labelling

To achieve an approximately equal ratio of single molecules labelled with SNAP Dy549 and BG-CF640R a two-step staining procedure was used. Firstly, the medium was removed from each well of the 4-well μ-Slides and the cells washed twice with 300 μL complete medium. BG-CF640R was diluted in complete medium to a final concentration of 10 nM and applied to each well of the μ-Slide for 5 min. The medium was then exchanged for 150 μL 10 nM SNAP-Dy549 (SNAP-Surface 549, New England Biolabs) in complete medium and incubated for a further 5 min. All labelling steps were performed at 37 °C, 5% CO2. Labelled cells were then washed three times with complete medium and the final wash replaced with Live Cell Imaging Solution plus 1:50 ProLong Antifade reagent (both ThermoFisher) and incubated for at least 15 min, at 37 °C, 5% CO2 before beginning experiments.

Single molecule image acquisition and feature tracking

Single-molecule images were acquired using an Axiovert 200M microscope with an iLas2 TIRF illuminator (Cairn, UK), with a ×100 oil-immersion objective (α-Plan-Fluar, NA = 1.46; Zeiss, UK) and an EMCCD (iXon X3; Andor, UK). The microscope is also equipped with a wrap-around incubator (Pecon XL S1). The 561 and 642 nm lines of a LightHub laser combiner (Omicron-laserage Laserprodukte GmbH) were used to illuminate the sample and an Optosplit Image Splitter (Cairn Research) was used to separate the image into its spectral components as described previously\(^99\). The field of view of each channel for single-molecule imaging was 80 × 30 μm. Typically, for each condition at least 50 fields of view comprising one or more cells were acquired from a total of 4 independent biological replicates. Single molecules were tracked in each field of view for 30s, by which time the majority of molecules had undergone photobleaching. All single-molecule time series data were analyzed using the multidimensional analysis software described previously\(^100\). Briefly, this software performs frame-by-frame Bayesian segmentation to detect and measure features to sub-pixel precision, then links these features through time to create tracks using a simple proximity-based algorithm. The software determines cubic polynomial registration transformations between wavelength channels from images of fluorescent beads. Feature detection and tracking was performed independently in each channel.

Calculation of colocalisation and \(τ_{ON}\)

Two-colour TIRF images of the basolateral surfaces of cells were chromatically separated by a beam splitter and registered using custom-made software to map the relative positions of the probes over the time course of data acquisition\(^100\) and extract single molecule tracks. A colocalisation event was defined as one in which a track in one channel moves within one pixel of a track in the other channel before they move apart again (Sup. Fig 12A). The duration of each such event is one measurement of \(τ_{ON}\). This parameter indicates the stability of presumptive receptor interactions while...
being sensitive to variation in expression of the receptors between cells or different levels of labelling with the two probes within cells47. The track positions were registered between channels prior to this analysis. To reduce the impact of localisation error on these results a temporal Gaussian smoothing filter of FWHM 4 frames (200 ms) was applied to the position traces before the colocalisation analyses. τ_{ON} distributions were compared between conditions using the two sample Kolmogorov-Smirnov test to decide which were significantly different (Sup. Fig 12B).

Mean squared displacement and diffusion calculation

From single particle tracks, mean squared displacement (MSD) curves were calculated as $\text{MSD}(\Delta T) = \langle |r_i(T+\Delta T)-r_i(T)|^2 \rangle$ where $|r_i(T+\Delta T)-r_i(T)|$ is the displacement between position of track i at time T and time $T+\Delta T$ and the average is over all pairs of points separated by ΔT in each track. The average instantaneous diffusion coefficient (D) for these tracks was calculated by fitting a straight line to the first two points of the MSD curve then calculating D directly from the gradient m of the fit, $D=m/4$. The tracks for each single molecule field of view (FOV) were pooled into one MSD curve per FOV to produce a sample of D values, one value per FOV per condition. These D distributions were compared between conditions using the Kolmogorov-Smirnov test to decide which were significantly different.
References

29. Bottaro, S. & Lindoff-Larsen, K. Biophysical experiments and biomolecular simulations: A

