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Abstract 

What are the mechanisms that allow species to extend their ranges and adapt to the novel 

environmental conditions they find in the newly available habitat? The study of parallel 

adaptation of pairs of populations to similar environments can provide great insights into this 

question. Here, we test for parallel evolution driven by niche specialization in a highly social 

marine mammal, the common bottlenose dolphin, Tursiops truncatus, and investigate the 

origins of the genetic variation driving local adaptation. Coastal ecotypes of common 

bottlenose dolphins have recurrently emerged in multiple regions of the world from pelagic 

ecotype populations, when novel habitat became available. Analyzing the whole genomes of 

57 individuals using comparative population genomics approaches, we found that coastal 

ecotype evolution was relatively independent between the Atlantic and Pacific, but related 

between different regions within the Atlantic. We show that parallel adaptation to coastal 

habitat was facilitated by repeated selection on ancient alleles present as standing genetic 

variation in the pelagic populations. Genes under parallel adaptation to coastal habitats have 

roles in cognitive abilities and feeding. Therefore, parallel adaptation in long-lived social 

species may be driven by a combination of ecological opportunities, selection acting on 

ancient variants, and stable behavioural transmission of ecological specialisations. Tried and 

tested genetic variation that has been subject to repeated bouts of selection, may promote 

linked adaptive variants with minimal pleiotropic effects, thereby facilitating their persistence 

at low frequency in source populations and enabling parallel evolution.  
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Main  

Understanding the processes that allow species to extend their ranges and adapt to novel 

environments is a long-standing  question in biology, which interest now extends well beyond 

this disciplinary field due to the potential effect of global change on species ranges. The 

colonisation of novel environments may result in new selective pressures on individuals and 

promote local adaptation (1). However, linking genetic divergence to local adaptation is 

particularly challenging as genetic differentiation may also arise due to demographic history 

(2), or other selective processes such as background selection (3). Replicate adaptation  of 

different populations to similar environments is often considered strong evidence of the 

repeated action of natural selection (4). Hence, we can study parallel evolution to gain insights 

into the mechanisms driving genetic variation and adaptation. 

 

Iconic examples of parallel evolution include adaptation to similar environments, i.e. repeated 

independent colonisation of freshwater environments from marine habitats in threespine 

sticklebacks, Gasterosteus aculeatus (5), parallel adaptation to the same host species in stick 

insects, Timema cristinae (6), high altitude adaptation in multiple human, Homo sapiens, 

populations (7), and different light conditions in cichlid fish (8), or similar responses to 

comparable stressors (e.g. virus (9) or pollution (10). Our understanding of the mechanisms 

involved has recently shifted from a binary view of repeated vs. idiosyncratic processes to a 

continuum ranging from parallel to non-parallel (6, 11–14).  

 

Parallel evolution may occur rapidly, if the genetic substrate which selection acts upon was 

already segregating in the ancestral population (i.e. standing genetic variation, SGV (5, 6, 9–

11, 15, 16)) as balanced polymorphisms (17), or introgressed from a locally adapted outgroup 

(18). Alleles present as SGV may have been selected in past environments, potentially 

increasing their chances to be the target of natural selection (15). Recent studies have 

highlighted that the origin of the alleles that enable populations to recurrently adapt to similar 

environments may be much older than the divergence of the populations themselves (16, 19, 

20). For example, the reservoir of alleles in marine populations of threespine sticklebacks, 

that have been recurrently selected after freshwater colonisation during the past 12,000 

years, has been segregating for millions of years (20).  
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With the rare exception of humans (7, 21), reported cases of parallel evolution almost 

exclusively involve relatively short-lived species (5, 6, 8–10, 16, 22). In long-lived species, such 

as large mammals, long generation time, low fecundity and sometimes small effective 

population size may hamper rapid local adaptation, especially from de novo mutation (15, 

23). In humans, parallel adaptation likely resulted from cultural innovations, such as lactase 

persistence in different pastoral populations as a result of animal domestication (21), or living 

at high altitude (7). In other long-lifespan social mammals, stable social transmission of 

learned behaviours such as foraging strategies  or habitat preferences may also facilitate the 

evolution of local adaptation, although examples are scarce (but see killer whales, Orcinus 

orca (24)). 

 

Here, we tested for parallel evolution driven by ecological niche specialization in a highly 

social marine mammal, the common bottlenose dolphin, which has a worldwide temperate 

and tropical distribution. Two ecotypes of common bottlenose dolphins (coastal and pelagic, 

also called offshore) have recurrently formed in multiple regions of the world (25–29). Coastal 

populations were suggested to have been founded from pelagic source populations (25–27, 

30). They are thus an excellent study system to test whether parallel evolution occurred and 

involved the same molecular processes during the repeated colonization of coastal habitat. 

Throughout their range, coastal populations have different diets compared to pelagic 

populations (31–33), and display phenotypic traits adapted to coastal waters, in particular for 

feeding (33–35). Coastal populations in distinct regions can share some morphological traits 

like larger teeth, rostra, and internal nares when compared to pelagic populations. They can 

also show some unique traits and adaptations such as North-West Atlantic (NWA) coastal 

bottlenose dolphins which are smaller than their pelagic counterparts, while in other regions 

the pattern is reversed or there are no discernable differences (31, 33–35). Coastal 

populations tend to show strong site fidelity and reduced dispersal (27, 29, 36), and foraging 

ecology is transmitted both vertically (from mother to calves) and socially (from conspecifics 

in the social groups) (37, 38). Resident behaviour and habitat-specific foraging traditions 

would be expected to facilitate the evolution of local adaptation. 
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The aim of our study was to identify the mode of evolution at the molecular level underlying 

repeated divergence in pelagic and coastal common bottlenose dolphins. We first identified 

their population structure and demographic history. We showed the pelagic and coastal 

ecotype pairs have evolved independently between the Atlantic and the Pacific but have a 

partially shared history in the Atlantic. Then, we characterised parallel patterns of selection 

to coastal habitat across the genome, and identified genes under parallel evolution 

potentially involved in cognitive abilities and feeding. 

 

Results and discussion 

Genetic structure  

We analysed nuclear genomes (7.54 X ± 1.52 after quality filtering) of 57 common bottlenose 

dolphins (Figure 1, Supplementary table 1), including ten coastal and ten pelagic individuals 

from the North-East Atlantic (NEA), ten pelagic and seven coastal individuals from the North-

West Atlantic (NWA) and nine coastal and eleven pelagic individuals from California, North-

East Pacific (NEP).  

 

The genetic structure obtained from a principal component analysis (PCA) (39) and the 

individual-based ancestry and clustering analysis of NGSAdmix (40) based on a set of 798,572 

unlinked high quality SNPs indicated that the samples assigned a priori to a population 

clustered together. The analyses showed two major axes of differentiation: Atlantic vs. Pacific, 

and pelagic vs. coastal (Figure 1, Supplementary figures 1-3, pairwise FST in Supplementary 

table 2). The three pelagic populations were more closely related to each other, even when 

in different ocean basins, than any of them were to a parapatric coastal population. In 

contrast, the three coastal populations were very differentiated from each other (Figure 1, 

Supplementary figures 1-3, pairwise FST in Supplementary table 2). These patterns of 

differentiation suggest that the coastal populations resulted from several founding events. 

 

Demographic history 

To investigate this hypothesized founder history of coastal populations, we used coalescent-

based estimates of effective population size on putatively neutral regions identified by Flink 

(41), which may reflect either changes in population size or population structure (42). We 
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found that pelagic populations experienced demographic expansions followed by a period of 

more stable Ne than the coastal populations (Figure 2a, Supplementary figures 4, 5a-b). 

Population expansion at the start of the last glacial period may reflect increased connectivity, 

rather than an increase in Ne, as suitable habitat became scarce (30). All coastal populations 

went through a bottleneck followed by an expansion, which indicates that founder effects 

were associated with coastal ecotype formation. Reduced nucleotide diversity, Watterson’s 

Theta, and consequently positive Tajima’s D estimates (Figure 2c, Supplementary figures 6a-

b and 7) also indicate that the coastal populations have experienced bottlenecks and suggest 

they were derived from the pelagic populations. Access to novel previously ice covered 

shallow coastal habitats during past climate change at the end of the LGM in the NEA (30, 31), 

or during warm interstadials created opportunity for ecological differentiation. Coastal 

habitats provide a mosaic of environments and different and potentially more stable food 

resources (31, 43).  

 

Evolutionary relationships among ecotypes 

To establish if our three geographic pairs of coastal and pelagic ecotypes represent 

independent ecological divergence events, we reconstructed their demographic histories 

using approaches that estimate covariance of drift from allele frequencies. We first explored 

the demographic history and potential admixture events using TreeMix (44), which supported 

the independent split of the Pacific and Atlantic coastal populations (Supplementary figures 

9 and 10, Supplementary text). In contrast, the two coastal populations in the eastern and 

western North Atlantic were closely related. The TreeMix results also indicated the 

contribution of an outgroup, the strictly coastal sister species, the Indo-Pacific bottlenose 

dolphin, Tursiops aduncus, used to root the Treemix tree, to the genetic composition of the 

NWA coastal population. However, the addition of this migration edge resulted in 

incongruence among T. truncatus populations, indicating the admixture graph was still not a 

good fit for the data. D-statistic tests further reject direct introgression between the NWAc 

population and T. aduncus (Supplementary table 6). This outgroup may not be T. aduncus, 

but could be a lineage with ancestry shared with T. aduncus. Alternatively, shared ancestral 

polymorphisms that differentially segregate in coastal T. truncatus and T. aduncus lineages 

may underlie this pattern, see Discussion below.  
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Given the incongruence of the TreeMix graph to the data, we further tested whether 

geographic pairs of pelagic and coastal ecotypes had evolved independently by estimating the 

less parameterized F4-statistics (45, 46) of the form (pelagicx, coastalx; pelagicy, coastaly), 

where x and y represent different geographic regions. In contrast to the expectation in case 

of independent colonisations, F4-statistics were significantly positive (Figure 3). The strongest 

signal of non-independence was observed between the two Atlantic ecotype pairs, which 

suggests a partially shared evolutionary history of parallel coastal and pelagic ecotypic 

divergences within the North Atlantic. We also calculated F4-statistics comparing drift 

between the same ecotypes from different geographic regions, F4(pelagicx, pelagicy; coastalx, 

coastaly). Tests of this form were all significantly positive, and F4(NEAp,NWAp;NEAc,NWAc) was 

the lowest of all and, importantly, lower than F4(NEAp,NEAc; NWAp,NWAc) suggesting that the 

two Atlantic coastal populations may be derived from the same ancestral pelagic population. 

Thus, overall, F4 results are consistent with the TreeMix results and suggest that coastal 

habitat colonisations by common bottlenose dolphins in the Atlantic are not fully 

independent. On the other hand, colonisation of coastal habitats in the East Pacific was 

distinct from founder events in the Atlantic, but nevertheless involved some admixture with 

Atlantic (or closely related) populations. 

 

We estimated divergence time between the two ecotypes within each region using SMC++ on 

putatively neutral regions. The oldest divergence between coastal and pelagic ecotype 

occurred in the NWA (around 80,000 yBP), and the youngest was a post-glacial divergence in 

the NEA (Figure 2b, Supplementary figures 11a-b). Divergence time between the two coastal 

populations in the North Atlantic was estimated around 50,000-70,000 yBP (Supplementary 

figures 12a-b). This rather old divergence is inconsistent with their position in the TreeMix 

tree, which indicates they are closer to each other than the NEA coastal population is to the 

NEA pelagic population.   

 

One mechanism to explain differences in the chronology of divergence between population 

pairs inferred by different analyses may be considering the genome as a mosaic of different 

evolutionary histories. For example, tracts of older ancestry components would be expected 

to have accumulated more mutations, which segregate among populations. To test for that, 

we search for tracts of dense private mutations (47) segregating in each coastal individual 
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relative to the allopatric pelagic populations (Supplementary text and Supplementary figure 

13). The highest density of private mutations was found in the NWAc dolphins 

(Supplementary tables 3-4). Three to five times more tracts of dense private mutations were 

shared between the coastal populations of the NEA and NWA than between the coastal 

populations of the NEA and NEP and of the NWA and NEP, in line with their partially shared 

ancestry inferred from the F4-statistics and TreeMix (Supplementary table 5). We hereafter 

refer to such tracts as ‘ancient’ given their older TMRCA (0.6 to 2.3 vs. 0.09-0.4 million years 

old for the rest of the genome).  

 

The highest density of ancient tracts in the NWAc individuals are consistent with the TreeMix 

results indicating the contribution of an outgroup to the genetic composition of the NWA 

coastal dolphins (Supplementary figures 9-10). Evidence of ancestral introgression from 

extinct or unsampled (i.e. ghost) populations or species has recently been found in other 

marine species (e.g killer whales and sea bass (48, 49)). However, these ‘ancient’ tracts do not 

need to be directly introgressed, but may rather have been retained as balanced 

polymorphisms (17). The presence of such ancient tracts may also explain the basal position 

of the NWA coastal population in a phylogenetic substitution-based inference that assumes 

a simple bifurcating branching process using RAD-sequencing data (50). The divergence dates 

of T. aduncus and T. truncatus estimated by Moura et al. 2020 (50) and McGowen et al. 2020 

(51) are close to the TMRCA of ancient tracts found in NWAc (1.0-2.3 million years old), after 

correcting for the different mutation rates used between studies.  

 

LocalPCA (52), a method that describes heterogeneity in patterns of relatedness among 

populations, further confirmed that our dolphin genomes were comprised of regions with 

different evolutionary histories. The three major evolutionary relationships (on PCs 1 and 2) 

include i) the pattern expected under the scenario of each coastal population originating from 

the pelagic population in the same region, ii) the pattern where the NEA and NWA coastal 

populations were more closely related than expected under independent ecotype splits on 

each side of the Atlantic (Supplementary figures 14-15), as supported by the F4-statistics and 

TreeMix (Figure 3, Supplementary Figure 9) and iii) a pattern where the NWA coastal 

population was closer to the pelagic populations. Furthermore, on PCs 3 and 4, coastal 

populations from the Atlantic and Pacific clustered together and likewise for the pelagic 
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populations, suggesting parallel ecotype-based processes (Supplementary figures 14-15). 

 

Mechanisms of parallel evolution to coastal habitat  

To test whether the above results can be interpreted as parallel selection associated with 

coastal habitat, we used Flink (41), an extension of BayeScan (53) that takes linkage among 

loci into account. We considered ecotype (coastal vs. pelagic) as the top hierarchical level, 

followed by the three populations within each group. Our analyses show striking differences 

in patterns of inferred selection involving mainly divergent selection between coastal and 

pelagic ecotypes (higher hierarchy), and mainly homogenising selection (less genetic 

differentiation than expected under neutrality) among coastal populations (Figure 4a-b, 

supplementary text and figures 16-17a). Homogenising selection implies that the same alleles 

have been repeatedly selected in the different coastal populations. We acknowledge that 

divergent selection within and between ecotypes may be inflated by false positives associated 

with bottlenecks in the founding of coastal populations. Plots of all neutral and selected raw 

genotypes show more variability in pelagic populations and more fixed alleles in the coastal 

populations, suggesting coastal populations were derived from repeated colonisation utilising 

genetic variation present in pelagic populations (Supplementary figures 16-17b).  

 

We then explored the possible origins of the variants under selection. Our results show that 

most of them were polymorphic, i.e. present as SGV, in the pelagic populations. Ninety-six 

percent of the 89,796 outlier SNPs under homogenising selection and 72% of the 89,663 loci 

under diverging selection were polymorphic in the pelagic populations (Supplementary text 

and supplementary figures 18-20). We consider the 7,165 SNPs being under both 

homogenising selection among coastal populations and diverging selection between ecotypes 

as putative loci underlying parallel evolution to coastal habitats (Figure 5a-c, Supplementary 

text) and focus on those variants in the rest of our study. Most (81%) of those SNPs were 

polymorphic in the pelagic populations. On a PCA and unrooted NJ tree based on these 7,165 

SNPs, the populations clustered by ecotype, further supporting their having evolved under 

parallel selection, and potentially having a role in habitat adaptation (Figure 5b-c). 

Additionally, when including the T. aduncus individual, which is coastal, in the PCA and NJ tree 

those SNPs showed a pattern of greater coalescence between T. aduncus and T. truncatus 

coastal individuals, than between T. truncatus coastal and T. truncatus pelagic individuals, 
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further supporting their implication in coastal habitat adaptation (Supplementary figure 21). 

This topology is discordant with that of most of the genome, but concordant with the 

covariance in a subset of allele frequencies detected by TreeMix. 

 

We found that a large proportion (66%) of the SNPs under parallel selection in coastal 

populations were found in ancient (0.6 to 2.3 million years old) tracts. In contrast, only an 

average of 22% of 100 random samples of the same number of putatively neutral SNPs were 

found in ancient tracts (Supplementary figure 22). The spread of these ancient coastal alleles 

by contemporary gene flow between coastal populations, including between the east and 

west sides of the North Atlantic is very unlikely given the site fidelity and low dispersal of 

coastal bottlenose dolphins (27, 36). These ancient alleles could have been introgressed from 

a unsampled “ghost” population which diverged from the sampled populations a long time 

ago, so that the introgressed regions contain mutations which accumulated in the ghost 

population over time, likely close to the split time between T. truncatus and T. aduncus.   

However, we do not have further support for this hypothesis and it is difficult to explain how 

this could have happened in different oceanic basins.  

 

Rather, a most parsimonious hypothesis given the prevalence of these SNPs as SGV in the 

pelagic populations, is that this adaptation likely occurred in different oceans by repeated 

selection on SGV, which persisted at low frequencies in the large pelagic population. There 

are precedents for such recurrent use of standing genetic variation in nature; ancient 

polymorphisms have enabled rapid repeated parallel ecotype formation in saltmarsh beetles 

(16) and in threespine sticklebacks (20, 54). In sticklebacks, freshwater adapted alleles have 

persisted as SGV in the large marine populations as a result of episodic recurrent gene flow 

from freshwater populations (the so-called Transporter Hypothesis) (20, 55).  

 

We propose a similar mechanism in our study system, in which coastal-associated ancestry 

could have been retained at low frequency as SGV in the pelagic ecotype through episodic 

gene flow from coastal populations, possibly occurring during cyclical expansion and 

contraction of habitat during past climate shifts. This may allow new coastal ecotypes to 

rapidly and recurrently arise through selection acting upon ancient SGV maintained at low 

frequency in pelagic populations, when new coastal habitat becomes available, for example 
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during interglacial periods. The TMRCA of the ancient tracts suggests that the coastal and 

pelagic allelic divergence occurred near to the divergence of the T. truncatus and T. aduncus 

lineages. Episodic admixture between ecotypes may be a recurrent process, which has 

happened throughout the evolution of common bottlenose dolphins and pre-dates the 

formation of the present-day coastal ecotypes (Supplementary table 4). We see this akin to 

the ‘sieving’ of balanced polymorphism during the speciation process proposed by Guerrero 

and Hahn 2017 (17).  Altogether, our results contribute towards the emerging hypothesis that 

old polymorphisms may allow rapid ecotype formation when new ecological opportunities 

arise, and ultimately ecological speciation (19). 

 

Our results together with previous studies on human populations represent rare examples of 

species with long generation time for which parallel evolution has been uncovered (7, 21). In 

humans, parallel adaptation was facilitated by similar stable lifestyles (e.g. life in high altitudes 

(7)), or same cultural revolutions (e.g. cattle domestication for lactase persistence (21)). Non-

human examples of socially driven local adaptation are scarce, but killer whale ecotypes have 

likely evolved as a result of demographic history, ecological opportunity and cultural 

transmission (24). Bottlenose dolphins (Tursiops sp.) also exhibit complex behaviors, such as 

habitat specialisation or social learning of foraging techniques, that strongly influence their 

patterns of genetic variability (28, 31, 38), and we hypothesize that these also facilitate their 

ability to adapt to novel conditions.  

 

Although further investigation is warranted as many complex traits may be polygenic (56), 

and it is difficult to prove causal relations between behavioral/ecological traits and genes 

under selection, we uncovered parallel selection in 45 genes including some related to 

behavioral and ecologically relevant functions (Supplementary table 7).  We found genes 

related to cognitive abilities, learning and memory (RELN (57, 58), ADER3 (59)), neuronal 

activity regulation (INSYN2A), lipid metabolism (AGK, LPIN2 (60), KLB), muscle contraction 

(RYR1, myosin-3, myosin-13, CAMK2D), axe growth (FEZ1, FEZ2), heart functions (CAMK2D), 

tooth enamel development (MMP20 (61)), immunity (HLA class II histocompatibility antigen, 

DQ alpha 2 chain, SERINC5), oxidative stress (cytochrome b5 reductase 4) and hormone 

regulation (STAR). 
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Perhaps the most interesting genes are those involved in cognitive, learning and memory 

abilities (RELN and ADER3) (57–59). RELN encodes for the reelin protein, which has a role in 

the modulation of synaptic transmission in response to experience (57, 58). Bottlenose 

dolphins (Tursiops sp.) have a propensity for innovation, i.e. developing habitat specific 

foraging techniques, which are transmitted maternally or in social groups (38, 62, 63). Socially 

transmitted foraging behaviour and complex coastal environments harboring a mosaic of prey 

may require genetic adaptations for increased cognitive abilities. RELN has been found under 

positive selection in sea otters, which also exhibit maternally transmitted prey preferences 

and tool use (64). 

 

Other ecologically relevant genes include those involved in lipid metabolism and storage 

(AGK, LPIN2, KLB (60)), which may be involved in adaptation to the differing diets documented 

in coastal, mainly involving large fish, and pelagic, primarily pelagic fish and squid, populations 

(31, 33). Physiological demands (65) and food resource availability are different in coastal and 

pelagic environments, possibly leading to different constraints on lipid storage and fat-mass 

body composition controlled by LPIN2 (60). Parallel adaptation in immunity related genes 

(HLA class II histocompatibility antigen, DQ alpha 2 chain, SERINC5), may highlight different 

pathogen load between coastal and offshore environments.   

 

We observed that 113,530 SNPs were under divergent selection among coastal populations, 

potentially highlighting coastal population specific divergent selection. This is not surprising 

given the heterogeneity of the different coastal habitats across the bottlenose dolphins’ 

range. Coastal dolphins are smaller than their pelagic counterparts in the NWA, while the 

pattern is opposite in other regions (34). This may be the result of differing selective pressures 

such as temperature dependent morphology. Our findings corroborate other studies 

challenging the binary view of parallel vs. non-parallel evolution, and point towards a 

continuum (12–14). This holds even for the most emblematic example of parallel evolution, 

the threespine sticklebacks, where deviation from parallel adaptation may be the result of 

geographic distance, stochastic processes and adaptation to environmental variation within 

habitat types (13, 14). 
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Conclusion 

Our results show that selection acted upon ancient SGV fueling parallel adaptation of 

common bottlenose dolphins to coastal environments, which also involved divergent 

selection among different coastal habitats. Repeated bouts of selection on genetic variation 

may promote adaptation to coastal habitat via re-using linked variants with minimal 

pleiotropic effects, thereby facilitating their persistence at low frequency in source 

populations and enabling parallel evolution of derived populations at the range margins (66). 

Stable transmission of ecological specialisations and a propensity for innovation and learning 

possibly facilitated local adaptation. Our study contributes to the growing body of evidence 

that ancient polymorphisms are a major substrate for rapid ecological adaptive divergence 

(19) and can have a key role in local adaptation of long-lived organisms. Therefore, they could 

help species to cope with environmental changes driven by current global change. 

 

 

 

Material and methods 

Sample collection and laboratory procedures 

Epidermal tissue samples were collected from 57 bottlenose dolphins (Supplementary text, 

Figure 1, Supplementary table 1).  

 

Laboratory procedures 

DNA extraction protocol procedures are detailed in the Supplementary text. Library and 

whole genome re-sequencing was performed at Beijing Genomics Institute (BGI). Illumina 

libraries were built on 300-bp DNA fragments and sequenced on an  Illumina HiSeq X Ten 

platform (Supplementary text).  

 

Data processing and filtering 

The read trimming and mapping, and data filtering are described in detail in the 

Supplementary text. Sequencing reads were processed with Trimmomatic v. 0.32 (67) using 

default parameters and sequence reads shorter than 75 bp were discarded. The remaining 

filtered reads were first mapped to a modified version of a published common bottlenose 
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dolphin mitochondrial genome (GenBank KF570351.1) (68). Reads that did not map to the 

mitochondrial genome were then mapped to the reference common bottlenose dolphin 

genome assembly (GenBank: GCA_001922835.1, NIST Tur_tru v1) using BWA mem (v. 0.7.15) 

with default options (69). 

 

Picard-tools v. 2.1.0 (70) was used to add read groups, merge the bam files from each 

individual from the different lanes and remove duplicates reads. Then, indel realignment was 

performed using GATK v. 3.6.0 (71).  We kept only the mapped reads with a mapping quality 

of at least 30 and removed repeated regions as identified using RepeatMasker (72), regions 

of excessive coverage and the sex chromosomes (see details in the Supplementary text). 

 

SNP calling using genotype likelihoods 

We called SNPs taking genotype uncertainty into account by calculating genotype likelihoods 

in ANGSD v. 0.913 (73) and keeping SNPs with a minimum MAF of 0.05 and having data in a 

minimum of 75% of the individuals. In ANGSD, all analyses described below were run 

considering only SNPs with a phred quality and a mapping quality score of 30. We further 

filtered the dataset by excluding SNPs that showed significant deviation from Hardy-Weinberg 

Equilibrium (HWE) and an inbreeding coefficient (F) value <0 as this can also be the result of 

paralogues or other mapping artefacts.  

 

Linkage Disequilibrium (LD) pruning and population structure 

We excluded one individual from the population structure analyses that were not based on 

population allele frequencies as it had a coverage much lower than the others (sample 7Tt182 

from the NWAp population). We used NgsLD (74) to obtain a set of unlinked SNPs 

(Supplementary text). Population structure analyses, admixture analysis in NGSAdmix (40) 

and PCAs in PCAngsd (39) were run using a set of 798,572 unlinked SNPs. NGSAdmix was run 

10 times for each K value between 2 and 8, using a tolerance for convergence of 1e-10 and a 

minimum likelihood ratio value of 1e-6. Consistency between runs was checked and the runs 

with the highest likelihood were plotted. The highest level of structure was identified using 

the Evanno method (75). 
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Ancestral state reconstruction 

We describe how we reconstructed the ancestral state of alleles in the Supplementary text.  

 

Genotype calling 

We called variants (i.e. generation of a vcf file) using samtools v. 1.2 mpileup and bcftools 

multiallelic and rare-variant calling, option –m (76, 77) on the filtered bam files. Variable sites 

with a minimum mapping quality of 30, a phred score quality of 30 and genotype quality of 

20 were retained in vcftools (78). We kept SNPs with a minimum MAF of 0.05 and having 

genotype data in a minimum of five individuals in each of the seven populations. The vcf file 

was also filtered for monomorphic and non-biallelic sites, totaling 2,003,833 SNPs. A vcf file 

was used as an input for the analyses described below apart from the SFS and diversity 

estimates, which were estimated using genotype likelihoods in ANGSD.  

 

Demographic history 

We computed demographic history, that is changes in effective population sizes (Ne) through 

time and ecotype splits within a region and splits of the different pelagic ecotypes, using the 

program SMC++ (42). Details of the analysis procedure, run on autosome scaffolds which 

were more than 10 Mbp, and on a vcf file not filtered for any MAF, are provided in the 

Supplementary text. Briefly, the repeated regions and excessive coverage regions were 

included as a mask file so that they were not misidentified as very long runs of homozygosity. 

The analysis was run both using all regions and taking out all the regions under selection, as 

identified with Flink (see below). Regions under selection were defined as 50kb around each 

outlier SNPs. Regions under selection were included in the mask file when they were taken 

out from the dataset. Population size histories and splits times between ecotypes in each 

region and between the pelagic populations were estimated using the default settings, a 

generation time of 21.1 years for the species (79) and two different mutation rates. Mutation 

rates were i) 9.10e-10 substitutions per site per year that is 1.92e-8 substitution per 

nucleotide per generation (80) and ii) 1.21e-9 substitution rate per site per year (81) that is 

2.56e-8 substitution per nucleotide per generation. Results were plotted in R v. 3.6.1 (82) 

(Supplementary text). 
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Diversity and population structure statistics 

We estimated the unfolded site frequency spectrum (SFS), the 2D-SFS, nucleotide diversity, 

Watterson’s Theta and Tajima’s D for each population using ANGSD (see details in the 

Supplementary text). We calculated nucleotide diversity and Watterson’s Theta for each site 

and then we estimated both the latter and Tajima’s D using a sliding-window size of 50 kb and 

a step size of 10 kb. We estimated pairwise weighted FST using vcftools (78) using a sliding-

window size of 50 kb and a step size of 10 kb. 

 

Admixture analyses 

We reconstructed the relationships of the coastal and pelagic ecotypes from the different 

regions as a Maximum Likelihood bifurcating tree using TreeMix version 1.13 (44) 

(Supplementary text). We ran TreeMix using one individual Tursiops aduncus 

(SRX2653496/SRR5357656 (83)) as a root. Reads of this T. aduncus individual were mapped 

to the common bottlenose dolphin reference genome assembly as described above and 

processed as described earlier for our data. As we had one individual for this species, we used 

one randomly chosen individual from each of our populations. We ran TreeMix with three 

different sets of individuals to check consistency of the results when including different 

individuals. We first ran TreeMix ten times for each value of m (migration events) ranging 

from 0 to 10 (-noss -global -k 1000). We estimated the optimal number of migration events 

to 1 using the optM R package (https://cran.r-project.org/web/packages/OptM/index.html). 

We then ran TreeMix 100 times for 0 (as null model) and 1 migration event and obtained a 

consensus tree and bootstrap values using the BITE R package (84). The residual covariance 

matrix was estimated for each m value and the consensus tree using TreeMix. 

 

We then estimated F4-statistics to test whether geographic pairs of pelagic and coastal 

ecotypes had evolved independently (45, 46). The F4-statistics can be used to test whether a 

given tree describes accurately the relationships among four test populations and to detect 

admixture events (see Supplementary text for details). F4-statistics were computed for each 

possible combination of population using the fourpop function in TreeMix version 1.13 (44).  

We accounted for linkage disequilibrium by jackknifing in windows of 1,000 SNPs. This block 

jackknife was used to obtain a Standard Error (SE) on the estimate of the F4-statistics and test 

for significance using a Z-score. 
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Ancient ancestry analyses 

Ancient tracts introgressed into the coastal ecotype from a divergent lineage after splitting 

from the pelagic source population, or differentially sorted from structure in an ancestral 

population will contain clusters of private alleles, the density of which will depend upon the 

divergence time of the introgressing and receiving lineages (49, 85) (Supplementary figure 13, 

Supplementary text). We therefore set out to screen for genomic tracts of consecutive or 

clustered private (i.e. relative to the allopatric pelagic individuals) alleles in each of the 

individuals from the coastal ecotype. To ensure the results are comparable despite variation 

between samples in coverage at some sites, we randomly sampled a single allele at each site 

from each diploid modern genome in all scaffolds longer than 1Mb using ANGSD. For the 

outgroup we used all variants found in a dataset consisting of all non-allopatric pelagic 

samples (Supplementary figure 13). We then used a Hidden Markov Model (HMM) to classify 

1 kb windows into ‘non-ancient’ and ‘ancient’ states based on the density of private alleles 

(47), see details in Supplementary text. We considered windows inferred as ancient as those 

with posterior probabilities of P>0.8 (47, 49). We also estimated the mean TMRCA of the 

ancient and non-ancient (ingroup) windows with the corresponding segments in the outgroup 

dataset.  

 

Patterns of structuration across the genome 

We used localPCA (52) to describe the three major patterns of relatedness (“corners”) among 

populations on four PCs for each scaffold longer than 10 Mbp using the default options (two 

PCs and two MDS coordinates), the R codes available on github and bins of 100 SNPs. We 

plotted the pairwise plots of the first four PCs for each of the three corners. 

 

Selection analyses 

We used Flink (41) to test for selection to coastal vs. pelagic habitat. Flink is an extension of 

Bayescan (53), respectively describing selection and drift, which takes linkage among loci into 

account. Specifically, it applies a hidden Markov Model to identify the effect of selection at 

linked markers using correlation in the loci specific elements along the genome. Flink was run 

grouping the populations into two groups: coastal and pelagic. Each group was composed by 

the three populations from each region. Scaffolds were grouped into super-scaffolds, so that 

each contains at least 50,000 SNPs. In Flink, the function estimate was run, and parameters 
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settings are described in the Supplementary text. The number of iterations was set to 

500,000, the burnin to 300,000 and the thinning to 100. We considered a locus under 

selection when it is within the 1% FDR threshold. 

 

To get further insights into the results obtained by Flink, we plotted the raw genotypes of all 

the SNPs, SNPs under homogenising selection in the coastal populations, SNPs under 

divergent selection between ecotypes, and SNPs under both homogenising selection in the 

coastal populations and divergent between ecotypes (defined as the SNPs under parallel 

selection) in R (see details in the Supplementary text). We also plotted a neighbor-joining 

distance tree and a PCA for the SNPs under each type of selection. To determine the origin of 

the SNPs under selection, we defined how many were also polymorphic in the pelagic 

populations, and compared the 2DSFS between all pairs of populations, estimated in ANGSD 

(see details in Supplementary text). Then, we defined how many SNPs under the different 

types of selection were found in ancient tracts. We compared the results with 100 random 

samples of the same number of putatively neutral SNPs found in ancient tracts.  

 

We identified the genes associated with the SNPs under parallel selection using the reference 

genome annotation file. We describe how we determined the putative functions of the genes 

under selection in the Supplementary text. 
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Figure 1. Sampling location and genetic ancestry of each coastal and pelagic common 

bottlenose dolphin populations. a) Map of sample locations of the common bottlenose 

dolphin ecotypes, in the North-East Atlantic (NEA), North-West Atlantic (NWA) and North-

East Pacific (NEP) and b) ancestry proportions for each of the 57 individuals inferred in 

NGSAdmix(40) for a number of clusters, K=4, identified as the highest level of structure using 

the Evanno method(75). 
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Figure 2. Demographic history of common bottlenose dolphin populations. a) Changes in 

effective population size through time inferred for each common bottlenose dolphin 

population using SMC++ using a mutation rate of 2.56e-8 substitution per nucleotide per 

generation(81) and a generation time of 21.1 years(79). b) Split time between ecotypes in 

each region estimated using SMC++. Populations are North-East Atlantic coastal (NEAc), 

North-East Atlantic pelagic (NEAp), North-East Pacific coastal (NEPc), North-East Pacific 

pelagic (NEPp), North-West Atlantic coastal (NWAc) and North-West Atlantic pelagic (NWAp). 

c) Tajima D estimated for each population, the violin plots indicate the kernel probability 

density of the data, the box indicates the interquartile range and the horizontal marker the 

median of the data.  

 

 

Figure 3. Admixture among populations of common bottlenose dolphins. F4-statistics of the 

form F4(pelagicx, coastalx; pelagicy, coastaly) or F4(pelagicx, pelagicy; coastalx, coastaly). All the 

SE estimations are less than 1e-4 and all F 4-statistics were significant based on Z-scores 

greater than 3, which is the equivalent of a significance of P <0.0026 
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Figure 4. Patterns of selection within and between common bottlenose dolphin ecotypes. 

a) Boxplots of the genomic patterns of selection within coastal (C) and pelagic (P) ecotypes 

and between the two ecotypes (CvsP), proportion of neutral, homogenizing and divergent 

loci. b) Patterns of selection (divergent: yellow, homogenising: blue) inferred using Flink from 

one scaffold grouping between coastal and pelagic population (top panel), among pelagic 

populations (middle panel) and among coastal populations (lower panel) for one scaffold 

ensemble. The y-axis indicates the locus-specific FDR for divergent (orange) and 

homogenising (blue) selection, respectively. The black dashed line shows the 1% FDR 

threshold, above which we consider the locus under selection. 
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Figure 5. Patterns of genetic variation of the 7,165 SNPs under parallel selection to coastal 

habitat, i.e. under both homogenising selection among coastal population and divergent 

selection between ecotypes. These SNPs are scattered across the genome. a) Plot of the 

homozygote reference genotypes in blue, heterozygote in green and homozygote for the 

alternated allele in red. b) Principal component analysis and (c) Neighbor-joining distance tree 

showing the genetic structure of the common bottlenose dolphin samples for this particular 

SNP set. 
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