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Protein functions are largely determined by the final details of their tertiary structures, and the structures could be
accurately reconstructed based on inter-residue distances. Residue co-evolution has become the primary principle
for estimating inter-residue distances since the residues in close spatial proximity tend to co-evolve. The widely-used
approaches infer residue co-evolution using an indirect strategy, i.e., they first extract from the multiple sequence
alignment (MSA) of query protein some handcrafted features, say, co-variance matrix, and then infer residue co-
evolution using these features rather than the raw information carried by MSA. This indirect strategy always leads to
considerable information loss and inaccurate estimation of inter-residue distances. Here, we report a deep neural net-
work framework (called CopulaNet) to learn residue co-evolution directly from MSA without any handcrafted features.
The CopulaNet consists of two key elements: 8) an encoder to model context-specific mutation for each residue, and
88) an aggregator to model correlations among residues and thereafter infer residue co-evolutions. Using the CASP13
(the 13th Critical Assessment of Protein Structure Prediction) target proteins as representatives, we demonstrated
the successful application of CopulaNet for estimating inter-residue distances and further predicting protein tertiary
structure with improved accuracy and efficiency. Head-to-head comparison suggested that for 24 out of the 31 free
modeling CASP13 domains, ProFOLD outperformed AlphaFold, one of the state-of-the-art prediction approaches.

P roteins play critical roles in a wide-range of biological
processes including catalyzing metabolic reactions,
responding to stimuli, and transporting molecules,

and these biological activities are largely determined by pro-
tein tertiary structures [1]. Protein tertiary structures can
be experimentally determined using nuclear magnetic res-
onance, X-ray crystallography, and cryogenic electron mi-
croscopy [2]; however, these technologies are usually costly
and time-consuming and cannot keep pace with the rapid ac-
cumulation of protein sequences [3]. Thus, the computa-
tional approaches for predicting protein structures purely from
residue sequences are highly desirable [4, 5].

Major progresses have been made during previous
years in protein structure prediction and inter-residue con-
tacts/distances have played important roles. Most of the recent
protein structure prediction approaches, such as AlphaFold
[6] and trRosetta [7], employ roughly the same three-step
diagram: 8) estimating inter-residue contacts/distances; 88)
constructing an energy function based on the estimated
contacts/distances; and 888) building the tertiary structure
such that the energy is minimized. This diagram has been
shown to be successful when the estimated inter-residue
contacts/distances are sufficiently accurate.

The state-of-the-art approaches to estimating the inter-
residue contacts/distances share the same cornerstones: con-
structing multiple sequence alignment (MSA) for target pro-
tein and then exploiting MSA using the principle of residue
co-evolution [8–10]. The rational underlying this principle is
that two residues in close spatial proximity always tend to co-
evolve; thus, in turn, the co-evolution could be exploited to ac-
curately estimate contacts/distances between residues. Here,

the co-evolution relationship is inferred from residue correla-
tions shown in MSA.This principle, however, is always hin-
dered by the indirect correlations among residues: the indi-
rect correlations could lead to transitivity in residue spatial
proximity and thereafter incorrect estimation of inter-residue
distances. To extract the direct correlations, a variety of di-
rect coupling analysis (DCA) methods have been proposed
using precision matrix (the inverse of covariance matrix) or
Potts model [11–15]. Currently the DCA technique is widely
used for estimating inter-residue contacts, especially com-
bined with deep neural networks for further refinement. For
example, both AlphaFold [6] and RaptorX [16] rely on the
inter-residue contacts predicted by CCMpred, a DCA-based
approach using the Potts model [17].

Although theDCA technique has been shown to be effective
in estimating inter-residue distances, it still suffers from sev-
eral drawbacks. An outstanding drawback is the considerable
information loss after transforming MSAs into handcrafted
features, say covariance matrices. In fact, the DCA technique
is founded on the premise that the direct correlations between
two residues can be modeled using pair-wise statistics such
as covariance [9, 10]. However, this premise does not always
hold. We demonstrated this possibility using two artifactual
proteins %1 and %2 as counterexamples (Figure 1). In protein
%1, two residues '1 and '2 are close, whereas in protein %2,
they are far from each other. Despite the substantial differ-
ence in the constructed MSAs for %1 and %2, the covariance
matrices calculated from these MSAs are completely identi-
cal, causing the DCA technique to give identical distance es-
timations for proteins %1 and %2. In fact, for these two MSAs,
any statistic of a single residue, or pairwise statistics of two
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Figure 1 | The limitation of the covariance-based methods in estimating inter-residue distances (a) Two artifactual proteins %1
and %2. In protein %1, two residues '1 and '2 are close, whereas in protein %2, they are far from each other. (b) The MSAs constructed
for the two proteins show considerable difference. (c) The covariance matrices calculated from these two MSAs are totally identical;
thus, the covariance-based methods give the same estimation of inter-residue distances for protein %1 and %2. This is contradict to the
real inter-residue distances. (d) Unlike the covariance matrices, the conditional joint-residue distribution % ('1, '2 |'3) could effectively
distinguish these two MSAs

residues, cannot distinguish them. Thus, a more effective way
to extract direct correlation from MSAs is highly desirable.

Unlike covariance matrices, the conditional joint-residue
distribution could effectively describe the direct correla-
tion between residues (Fig. 1d). Here, we report an ap-
proach (called ProFOLD) for inter-residue distance estimation
through learning the conditional joint-residue distributions di-
rectly fromMSAs rather than the handcrafted features such as
covariance matrices.

The core of our approach is a novel deep neural network
framework CopulaNet, which consists of three key elements:
an MSA encoder, a coevolution aggregator, and a distance es-
timator. TheMSA encoder processes each homologue protein
in MSA individually, and embeds each residue to represent its
context-specific mutations observed from the homologue pro-
tein. For any two residues, the aggregator first calculates the
outer product of their embeddings for each homologue pro-
tein, then aggregates the out products acquired from all homo-
logue proteins using average pooling, and finally yields a mea-
sure of the coevolution between the two residues. Based on
the obtained residue coevolution, we use a two-dimensional
residual network to estimate distance for any residue pairs.
Further, ProFOLD transforms the estimated distances into a
potential function, and searches the tertiary structural confor-
mation with the minimal potential.

We demonstrated the concept of ProFOLD using protein
T0992-D1 as an example, applied it to predict structures for
the CASP13 target proteins as representatives, and compared
it with the state-of-the-art prediction approaches.

Results and discussions
Approach summary
The ProFOLD approach is summarized in Figure 2. Using a
CASP13 target protein T0992-D1 as an example, we demon-
strate the concept and main steps of ProFOLD for protein
structure prediction.

Protein T0992-D1 consists of a total of 107 residues (only

the first 13 residues are shown here for the sake of clear de-
scription). For this protein, we first identify its homologues
through searching it against protein sequence databases in-
cluding uniclust30, uniref90 and metaclust50. The obtained
homologue proteins (2807 in total) are organized into an
MSA. Next, we apply CopulaNet to infer inter-residue dis-
tances directly from the constructed MSA. Here, we infer the
distribution of inter-residue distance over pre-defined 37 bins,
rather than a single distance value. Four examples of these
distributions are shown in Supplementary Figure 1. In the
case of residues LEU32 and TYR70, the most likely distance
interval was predicted to be (7.5Å, 8Å), which covers the true
distance 7.83Å. Finally, we transform the estimated distance
distributions into a potential function, and then search for the
structure conformation with the minimal potential. ProFOLD
reports the structural conformation with sufficiently low po-
tential as the final prediction result (shown in the lower-right
corner of Fig. 2), which has a TMscore of 0.84 with the native
structure.

The core of our ProFOLD approach is CopulaNet, a deep
neural network specially designed to learn inter-residue dis-
tances directly from MSA. CopulaNet achieve this objective
using three key modules, namely, MSA encoder, coevolution
aggregator, and distance estimator, which are described as
below.

MSA encoder aims to model the mutations of each residue
in the target protein. Here, we represent the MSA with  ho-
mologue proteins as  alignments, each of which consists of
a homologue protein aligned with the target protein. Based
on each individual alignment, the MSA encoder identifies the
mutations of each residue of the target protein, and embeds
the mutations into a vector of 64 features.

As a residue’s mutation is highly related to its neighboring
residues, the encoder needs to consider a residue of interest
together with its neighbors. For this end, we design the en-
coder as 1D convolutional residual network [18], which uses
multiple convolution layers to embed a residue together with
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Figure 2 | Predicting protein tertiary structure using ProFOLD. Here, we use protein T0992-D1 as an example to describe the main
steps of ProFOLD. Only the first 13 residues are shown here for the sake of clear description. First, we search homologue proteins
(2807 in total) for this protein and construct MSA accordingly. Then we apply CopulaNet to infer residue co-evolution directly from
the MSA. CopulaNet uses an MSA encoder to model the mutation information for each residue of the target protein, and then uses a
co-evolution aggregator to measure the residue co-mutations. According to the acquired residue co-evolutions, the distance estimator
estimates inter-residue distances. Finally, we transform the estimated distance distributions into a potential function, and then search
for the structure conformation with the minimal potential. ProFOLD reports the structural conformation with sufficiently low potential as
the final prediction result (TMscore: 0.84)

its neighbors.
Coevolution aggregator aims to measure the residue co-

mutations. For any two residues, the aggregator first calcu-
lates the outer product of their embedding features. As the em-
bedding features of a residue encode its mutations, the outer
product of two residues’ embedding features could effectively
measure the strength of co-mutations between them. Next,
to calculate the average outer product obtained from all ho-
mologue proteins, we introduce an average-pooling layer into
the aggregator. Further details of outer product and average-
pooling are shown in the Methods section and Supplementary
Figure 2.

Distance estimator aims to estimate inter-residue distances
according to the acquired residue co-evolutions. Previous
studies have revealed structure-related patterns existing in the
inter-residue distances. Specifically, two contacting parallel
V-strands often form a diagonal line, whereas two contacting
anti-parallel V-strands form an anti-diagonal line. In contrast,
two contacting helices usually form a dashed line [19]. Here,
we apply a 2D-ResNet to learn these patterns, and thereafter
assign these patterns to the estimated inter-residue distances.

As performed by trRosetta [7], we divide the distance
range into 37 intervals, i.e., (0Å, 2.5Å), (2.5Å, 3.0Å),
(3.0Å, 3.5Å), · · · , (19.5Å, 20.0Å), and (20.0Å, +∞). This
way, we transform the distance estimation problem into a clas-
sification problem, which predicts distance interval for each
two residues. As results, we obtain a distance distribution over
37 intervals instead of a single estimated distance value (see

Supplementary Figure 1 for examples).
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Figure 3 | Precision of the predicted inter-residue contacts.
Here, we show the precision of the top !/5, !/2 and ! long-range
residue contacts, where ! represents protein length. Here the
phrase “long-range" refers to two residues with sequence separa-
tion over 24 residues. For all CASP13 target proteins, ProFOLD
outperformed the state-of-the-art approaches. In particuler, for the
31 FM domains, ProFOLD achieved precision of 0.808, 0.673 and
0.536 for top !/5, !/2 and ! long-range residue contacts, which
is significantly higher than AlphaFold, by 0.117, 0.100 and 0.088,
respectively

Estimating inter-residue distances using CopulaNet
Using CopulaNet, ProFOLD estimated inter-residue distances
for all 104 CASP13 protein domains. For the sake of fair com-
parison, we evaluated these estimations in terms of precision
of the predicted inter-residue contact rather than inter-residue
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distances. Specifically, for two residues, we summed up the
predicted probabilities for their distance below 8 Å, and used
the sum as the predicted probability for the two residue be-
ing in contact. As shown in Figure 3, on the 31 FM domains,
ProFOLD achieved prediction precision of 0.808, 0.673 and
0.536 for top !/5, !/2 and ! long-range residue contacts,
which is significantly higher than A7D (AlphaFold), the win-
ner group of CASP13, by 0.117, 0.100 and 0.088, respectively.
On the other 61 TBM and 12 FM/TBM domains, ProFOLD
also outperformed the state-of-the-art approaches (see further
details in Supplementary Table 1).

We further analyzed the contributions of CopulaNet’s com-
ponents for estimating inter-residue distances. As mentioned
above, the uniqueness of CopulaNet lies at the use of a learn-
able “encoder and aggregator" framework, rather than tra-
ditional statistical models, to model residue co-evolutions.
The obtained residue co-evolutions are further fed into a 2D
ResNet to assign the structure-related patterns to inter-residue
distances. To examine the contributions by these components,
we disabled the 2D ResNet in ProFOLD and thus obtained a
variant called ProFOLD w/o R.

As shown in Figure 4, even using the “encoder and aggrega-
tor" framework alone, the variantProFOLDw/o R still showed
a high precision (0.367) of top ! predicted inter-residue con-
tacts on the CASP13 FM targets. The application of the 2D
ResNet in ProFOLD further improved the precision by 0.169.
These results clearly suggested that the main contribution to
the estimation of inter-residue distances comes from the learn-
able “encoder and aggregator" framework.

In addition, on both CASP13 FM targets and validation
dataset, the performance of ProFOLD w/o R increases with
the receptive field size, implying that encoding more neigh-
bors surrounding residues will greatly facilitate distance esti-
mating. In the study, we used an MSA encoder with a recep-
tive field size of 33 (16 1D convolution layers with kernel size
3).

Predicting protein tertiary structures using ProFOLD
We applied ProFOLD to predict protein tertiary structures and
compared it with the state-of-the-art approaches including Al-
phaFold (A7D group in CASP13) [6], trRosetta[7], top server
groups, and top human groups reported by the CASP13 orga-
nizer. The prediction results of AlphaFold, top human groups
and top server groups were downloaded from CASP13 data
archive (https://predictioncenter.org/download_
area/CASP13/predictions_trimmed_to_domains/).
The prediction results of trRosetta were obtained through
re-running it using identical MSA to ProFOLD. The details
of these prediction results are summarized in Supplementary
Figure 3.

As shown in Figure 5a and Supplementary Table 2, on
the 31 FM CASP13 datasets, ProFOLD outperformed the
state-of-the-art approaches. Specifically, when setting the
cut-off of high-quality structures as TMscore over 0.70, Pro-
FOLD predicted high-quality structures for 18 out of the 31
domains, whereas AlphaFold and trRosetta predicted high-
quality structure for only 12 and 7 domains, respectively.
Moreover, the average TMscore of ProFOLD’s prediction re-
sults is 0.658, which is much higher than that of trRosetta
(0.582) and A7D (0.580). Head-to-head comparison clearly

demonstrated the advantages of ProFOLD over AlphaFold:
for 24 out of the 31 FM domains, ProFOLD outperformed Al-
phaFold (Figure 5b). ProFOLD also outperformed trRosetta
on these FM targets (Supplementary Fig. 4).

We also evaluated ProFOLD on the 61 TBM and 12
TBM/FM target proteins. For these proteins, although simi-
lar template structures are available, ProFOLD predicted their
structures in pure ab initio mode without any reference to
the template structure information. As shown in Supplemen-
tary Table 2, for these targets, the average TMscore of Pro-
FOLD’s prediction results is 0.785, which is extremely close
to the state-of-the-art template-modeling approach Zhang-
server (0.787). These results clearly illustrated that the struc-
tural information carried by templates might not be necessary
for protein structure prediction. Using the accurate estimation
of inter-residue distances by CopulaNet, ProFOLD could pre-
dict high-quality protein structures without aids of template
structures.

We further examined the possible factors that may affect the
successful application of ProFOLD. Previous studies have al-
ready shown that the quality of predicted structures is highly
related to "eff, the number of effective homologue proteins
recorded in MSA. As shown in Figure 6a, the correlation co-
efficient between "eff and the quality of predicted structures
by ProFOLD is as high as 0.69. Therefore, as long as the "eff
of a target protein exceeds 20, TMscore of the predicted struc-
ture for this protein is expected to be over 0.60 with high confi-
dence. For proteins T0953s2-D3, T0981-D2, T0991-D1, and
T0998-D1, ProFOLD could not predict high-quality struc-
tures. The reason might be the fact that for these proteins,
"eff is as small as less than 20. How to improve CopulaNet
and ProFOLD to suit the MSAs with only a few homologue
proteins remains a future study.

When the native structure of a target protein is already
known, we can easily measure a predicted structure through
comparing it with the native structure. However, thing will
become challenging when the native structure is not avail-
able. For ProFOLD, an interesting and important question
is whether we can judge the quality of its prediction results
in advance. Here, we provide an effective measure, the aver-
age probability of top ! predicted contacts (denoted as PPC),
which is calculated from the estimated inter-residue distances.
As shown in Figure 6b, the correlation efficient between PPC
and the TMscore of the predicted structures is 0.82. This
strong correlation enables us to judge the quality of predicted
structure in advance. Specifically, for the target proteins with
PPC over 0.60, the TMscore of their predicted structures are
expected to be over 0.60 with high confidence.

Contribution analysis of ProFOLD’s components
To better understand the contribution of the ProFOLD compo-
nents, we built variants of ProFOLD through disabling each
component individually and then compared these variants
with ProFOLD. In particular, we first disabled the 2D ResNet
in distance estimator and thus obtained a variant called Pro-
FOLD w/o R. Next, we further disabled the MSA encoder and
obtained another variant called ProFOLD w/o E+R. Without
MSA encoder to consider the neighboring residues surround-
ing a residue, ProFOLD w/o E+R captures the correlation be-
tween two residues without consideration of other residues;
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(a) CASP13 FM targets (31 domains)
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Figure 4 | Precision of the predicted inter-residue contacts by the variant ProFOLD w/o R. (a) For the 31 CASP13 FM targets, the
precision increases with the receptive field size and finally reaches 0.367. (b) On the validation set with 1820 proteins, the precision
also increases with the receptive field size and finally reaches 0.420. Even using the “encoder and aggregator" framework alone, the
variant ProFOLD w/o R still outperformed CCMpred on the two datasets (0.215 and 0.365, respectively)
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(b) Head-to-head comparison of ProFOLD and AlphaFold

Figure 5 | Quality of the predicted tertiary structures for CASP13 FM target proteins. (a) ProFOLD predicted more high-quality
structures than the state-of-the-art approaches. When setting the cut-off of high-quality structures as TMscore over 0.70, ProFOLD
predicted high-quality structures for 18 out of the 31 domains, whereas AlphaFold and trRosetta predicted high-quality structure for
only 12 and 7 domains, respectively. (b) Head-to-head comparison clearly demonstrated the advantages of ProFOLD over AlphaFold:
for 24 out of the 31 FM domains, ProFOLD outperformed AlphaFold

thus, ProFOLD w/o E+R has roughly the same power to the
covariance matrix for distance estimation.

Using protein T1022s1-D1 as an example, we showed the
qualitative comparison of the variants in Figure 7. When nei-
ther MSA encoder and 2D ResNet is used, the variant Pro-
FOLD w/o E+R performed poorly and failed to generate high-
quality distance estimations. This result is consistent with
the previous observation on the low performance of the ap-
proaches based on covariance matrix [11]. When equipped
with the MSA encoder module, the variant ProFOLD w/o R
could generate relatively accurate distance estimations. When
both MSA encoder and 2D ResNet are used, ProFOLD gave
distance estimations extremely close to the real distance val-
ues. These results emphasized the importance of considering
neighboring residues in encoding step as well as using the 2D

ResNet to learn structure-related patterns existing in the inter-
residue distances.

To investigate the effect of outer product in coevolution ag-
gregator, we built a variant of ProFOLD (calledProFOLDw/o
OP) through disabling the outer product operation. Specifi-
cally, we modified ℎ(8, 9) in equation (2) to be the concate-
nation of only 5 (8) and 5 ( 9) without 6(8, 9). As shown in
Supplementary Figure 5, for the short-range residue contacts
(between two residues with sequence distance from 6 to 11
residues), ProFOLDw/o OP showed roughly the same predic-
tion precision as ProFOLD. This is reasonable as the convo-
lution modules in MSA encoder has already effectively mod-
eled the short range relationship. In contrast, for the long-
range residue contacts, the prediction accuracy of ProFOLD
w/o OP decreased sharply to be significantly lower than Pro-

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.327585
http://creativecommons.org/licenses/by-nc-nd/4.0/


F. Ju et al.

0 2 4 6 8 10
Logarithm of Meff

0.0

0.2

0.4

0.6

0.8

1.0

TM
sc

or
e 

of
 th

e 
pr

ed
ic

te
d 

st
ru

ct
ur

es

CC = 0.69

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Average probability of top L predicted contacts(PCC)

0.0

0.2

0.4

0.6

0.8

1.0

TM
sc

or
e 

of
 th

e 
pr

ed
ic

te
d 

st
ru

ct
ur

es

CC = 0.82

(b)

Figure 6 | Correlation between quality of the predicted structures and (a) "eff, (b) the average probability of top ! predicted
contacts (PPC). For the CASP13 FM target proteins, the correlation coefficient between "eff and TMscore of the predicted structures
by ProFOLD is as high as 0.69. The correlation efficient between PPC and TMscore of the predicted structures is 0.82.

(a) ProFOLD w/o E+R (b) ProFOLD w/o R (c) ProFOLD

Figure 7 | Comparison of the predicted inter-residue distances (bottom left) with the ground-truth distances (upper right)
for protein T1022s1-D1. (a) ProFOLD w/o E+R performed poorly and failed to generate high-quality distance estimations. (b) When
equipped with the MSA encoder module, the variant ProFOLD w/o R could generate relatively accurate distance estimations. (c) When
both MSA encoder and 2D ResNet are used, ProFOLD gave distance estimations extremely close to the real distance values

FOLD. This result clearly demonstrated the importance of the
outer product operation in modeling the long-range residue
contacts, which cannot be achieved using the convolutional
network alone.

Efficiency of ProFOLD for protein structure prediction
As described above, ProFOLD learns residue co-evolutions
directly from MSA rather than the handcrafted features such
as covariance matrix. AnMSAmight have ten of thousands of
homologue proteins, whereas the size of covariance matrix is
fixed and only determined by the target protein length. Thus,
it is interesting to investigate whether ProFOLD could accom-
plish protein structure prediction within reasonable time on an
average computer.

The CopulaNet uses MSA encoder and coevolution aggre-
gator to process homologue protein sequences. Unlike the
final distance estimator processing 2D information of inter-
residue coevolution, MSA encoder processes 1D sequences
only. Moreover, the outer product operations could be effi-
ciently accomplished using the fast matrix multiplication pro-
vided by the existing deep neural network frameworks [20].

Thus, compared with distance estimator, both MSA encoder
and coevolution aggregatormodules use only a small amount
of computations, making the entire running time insensitive
to the number of homologue proteins.

Moreover, CopulaNet processes each homologue protein
individually; thus, the number of homologue proteins in MSA
has little effect on the amount of computer memory required
for training and predicting.

As results, for target proteins with less than 500 residues,
ProFOLD could finish the whole structure prediction process
within 3 hours on an average laptop computer (Intel CPU 2.8G
Hz, 16G memory).

Conclusion
The results presented here for protein structure prediction us-
ing the ProFOLD approach have highlighted the special fea-
tures of learning residue co-evolutions directly from MSA.
The abilities of our approach have been clearly demonstrated
using CASP13 target proteins as representatives with im-
proved quality of the predicted structures. Using Copu-
laNet to model the conditional joint-residue distribution, Pro-
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FOLD could accurately estimate the inter-residue distances
and thereafter predict protein structures. The improved effi-
ciency of ProFOLD is an additional advantage, due mainly to
the succinct architecture of CopulaNet. It should also be men-
tioned that the basic idea and architecture of CopulaNet can
be readily modified to calculate conditional joint distribution
in other fields besides residue co-evolution.

Although in the proof-of-concept study we demonstrated
the application of CopulaNet in ab initio prediction of pro-
tein structures, the estimated inter-residue distances could
also be used to assist template-based prediction approaches.
For example, DeepThreader[21] improves threading by in-
corporating inter-residue distances into scoring function.
EigenThreader[22] and CEThreader[23] align target proteins
with templates by considering eigenvector decomposition of
the predicted inter-residue contacts. These approaches might
benefit from the accurate estimation of inter-residue distances
provided by CopulaNet.

As CopulaNet attempts to learn residue co-evolution from
MSA, it requires that MSA should have sufficient homologue
proteins. For the MSAs with only a few homologue proteins,
CopulaNet usually cannot accurately estimate inter-residue
distances. How to reduce the requirement of the number of
homologue proteins remains a future study.

Theoretical analysis suggests a possible failure case of our
approach. Consider three residues A8 , A 9 , and A: in the target
protein, where both A8 and A 9 are in contact with A: but there is
no contact between A8 and A 9 . If the sequence distance between
A8 and A: (and between A 9 and A: ) is sufficiently long, MSA
encoder cannot perfectly model the effect of A: on A8 and A 9 ,
thus perhaps causing ProFOLD to incorrectly report a contact
for residue A8 and A 9 . The increase of receptive field size in
MSA encoder will partially alleviate this problem; however,
when receptive field size is already large, further increase of it
will bring limited gains. A perfect way to model long-distance
influence among residues is another future study.

In summary, our work on learning residue co-evolution di-
rectly from MSA together with recent developments in con-
structing high-quality MSAs will undoubtedly contributed to
more accurate prediction of protein tertiary structures.

Methods
Architecture of CopulaNet CopulaNet consists of three key
modules, i.e.,MSA encoder, co-evolution aggregator, and dis-
tance estimator.

MSA encoder embeds residue mutations using a 1D con-
volutional residual network [18]. The residual network has 8
residual blocks, and each residual block consists of two batch-
norm layers, two 1D convolution layers with 64 filters (with
kernel size of 3) and exponential linear unit (ELU) [24] non-
linearities (Supplementary Figure 6).

Co-evolution aggregator measures the co-mutations be-
tween two residues. Before presenting the design of co-
evolution aggregator module, we describe the notations first.

Consider a target protein with ! residues C1C2 · · · C! , and
a pre-built MSA containing  homologue proteins. By ap-
plying MSA encoder on the :-th homologue protein in MSA,
we obtain a total of � × ! embedding features, denoted as
-: ∈ R�×! , where � represents the number of output chan-
nels of MSA encoder. For residue C8 in the target protein, its

embedding features calculated from all homologue proteins
are aggregated together. The aggregated embedding features,
denoted as 5 ∈ R�×! , are calculated as follows.

5 (8) = 1
"eff

 ∑
:=1

F:-: (8), (1)

where F: denotes the weight of the :-th homologue protein,
and "eff =

∑ 
:=1 F: represents the sum weight of all homo-

logue proteins. Following the convention [14], we calculate
the weight F: as the inverse of the number of similar homo-
logue proteins that share at least 80% sequence identity with
the :-th homologue, and thus "eff represents the number of
effective homologue proteins in the MSA.

For two residues C8 and C 9 in target protein, the co-evolution
aggregator measures their co-mutations using aggregated co-
evolution features ℎ(8, 9) ∈ R� , where � denotes the num-
ber of output channels of co-evolution aggregator. ℎ(8, 9) is a
concatenation of the aggregated embedding features and their
outer products:

ℎ(8, 9) = CONCAT
(
5 (8), 5 ( 9), 6(8, 9)

)
. (2)

Here, 6(8, 9) ∈ R�×� represents the aggregated outer prod-
ucts of the embedding features for residue C8 and C 9 , which is
calculated as below.

6(8, 9) = 1
"eff

 ∑
:=1

F: [-: (8) ⊗ -: ( 9)], (3)

where “⊗” represents the outer product operation.
To summarize, the aggregated co-evolution features con-

sists of�×2 aggregated embedding features and�×� aggre-
gated outer product features. In this study, the output channel
size � of MSA encoder is set as 64. Thus, the co-evolution
aggregator generates a total of 4224 (64 × 2 + 64 × 64) ag-
gregated co-evolution features for any two residues in target
protein. An example of the outer product operation is shown
in Supplementary Figure 2.

Distance estimator aims to estimate inter-residue distances
according to the obtained residue co-evolutions using a 2D-
ResNet with 72 residual blocks. Each block consists of two
batch-norm layers, two 2D dilated convolution layers, and ex-
ponential linear unit (ELU) nonlinearities.

The further details of CopulaNet, including hyperparame-
ters, and training process, are provided in Supplementary text.

Approximating the conditional joint-residue distribution
using CopulaNet
Consider a target protein with ! residues. The alignment
of a homologue protein with target protein might have inser-
tions, deletions, andmutations. As our objective is to describe
residue co-mutations, we follow the conventions to discard
the insertions [9]. Thus, a homologue protein can be rep-
resented as a !-long sequence composing of residues and a
special character ‘-’ representing deletion. Assume each ho-
mologue protein is a random variable ' = A1A2 · · · A! sampled
from the joint distribution %(A1, A2, ..., A!). In this subsection,
we will show that for residues A8 and A 9 , CopulaNet could per-
fectly approximate the conditional joint-residue distribution
%(A8 , A 9 |other residues).
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As mentioned above, from the :-th homologue protein, the
MSA encoder extracts the mutations for the 8-th residue in the
target protein and embeds these mutations into a vector -: (8)
using a CNN. Previous studies have already suggested that, al-
though in principle CNN has the ability to describe long range
relationship, it focuses on neighboring residues rather than
distant pairs [25]. Thus, to be more precise, we rewrite -: (8)
as -: (8, #8), where #8 represents the neighboring residues of
the 8-th residue with significant effects on its mutation. Ac-
cordingly, we rewrite the aggregated embedding feature 5 (8)
as 5 (8, #8), and rewrite the aggregated outer product 6(8, 9)
as 6(8, #8 , 9 , # 9 ):

6(8, #8 , 9 , # 9 ) =
1
"eff

 ∑
:=1

F: [-: (8, #8) ⊗ -: ( 9 , # 9 )] . (4)

Outer product could effectively capture the correlation be-
tween two variables. To understand how outer product works,
we showed in Supplementary Figure 2 the outer product of
two one-hot feature vectors as an illustrative example. In this
case, the 3rd entry of the one-hot vector 5 (8, #8) is 1, and the
1st entry of the one-hot vector 5 ( 9 , # 9 ) is 1. Thus, the outer
product of them has 1 at the (3, 1)-th entry, which clearly re-
veal the correlation between these vectors. In practice, instead
of the simple one-hot feature vectors, more informative real-
value feature vectors are used.

Through averaging over all homologue proteins, the aggre-
gated outer product 6(8, #8 , 9 , # 9 ) could perfectly approxi-
mate the joint distribution %(G8 , #8 , G 9 , # 9 ). Similarly, Cop-
ulaNet also has the ability to approximate the joint distribu-
tion %(#8 , # 9 ). The ratio of these two joint distributions pro-
vides a perfect approximation to the conditional joint-residue
distribution %(G8 , G 9 |#8 , # 9 ). The approximation extent will
be increased when using large neighborhood (See Results and
discussion section for details).

Benchmark dataset
In this study, we prepared a benchmark dataset (contain-
ing 31,247 protein domains) using the same pipeline to Al-
phaFold [6]. We randomly divided this dataset into two parts,
a training dataset containing 29,427 proteins, and a validation
dataset containing 1,820 proteins.

We tested our methods on CASP13 targets, which consists
of 104 domains derived from 71 official targets (the first target
was released on May 1, 2018). The 104 domains are officially
split into three categories: FM (31 domains), FM/TBM (12
domains) and TBM (61 domains).

MSA generation and representation
ProFOLD takes multiple sequence alignment as its only input.
For a target protein, we first search its homologue proteins by
running DeepMSA [26] (with default parameters) against se-
quence databases uniclust30 (version 2017-10), uniref90 (ver-
sion 2018-03) and metaclust50 (version 2018-01). All these
sequence databases were released before independent test sets
and thus there is no overlap between themwith the test dataset.

In the study, we represent the obtained MSA as a collection
of sequence pairs. Each sequence pair contains the target pro-
tein and a homologue protein. We construct two equal-length
strings by adding gaps in aligned sequences so that matching

characters are aligned in successive positions (Fig. 2). Then
we encode each position with a binary vector of 41 elements,
including 20 elements for target protein and 21 elements for
homologue protein. Here, 20 elements are one-hot vector that
represents 20 amino acid types, and a special character ‘-’ is
introduced to represent gaps.

Structure determination using distance potential
In the study, we build protein tertiary structures from the pre-
dicted inter-residue distances in a similar way to trRosetta[7].
Specifically, we first convert the estimated inter-residue dis-
tance distributions into a smooth potential function using
the DFIRE [27] paradigm. Then, we use MinMover in
PyRosetta[28] to search for the tertiary structure with the
minimal potential, yielding (centroid) models. Finally, these
coarse-grained models are refined into full-atom models by
executing FastRelax in Rosetta.

Data availability
The datasets used in this study is available via http://
protein.ict.ac.cn/ProFOLD.

Code availability
We developed a web server that is available through http:
//protein.ict.ac.cn/ProFOLD. All source codes and
models of ProFOLD are publicly available through http:
//protein.ict.ac.cn/ProFOLD.

References
[1] C. Branden and J. Tooze. Introduction to protein

structure. 2 ed. (Garland Science, New York, 1999).
[2] K. A. Dill and J. L. MacCallum. The protein-folding

problem, 50 years on. Science 338 no. 6110, pp. 1042–
1046 (2012).

[3] A. Roy, A. Kucukural and Y. Zhang. I-TASSER:
a unified platform for automated protein structure and
function prediction. Nature Protocols 5 no. 4, pp. 725–
738 (2010).

[4] J. Yang et al. The I-TASSER suite: protein structure
and function prediction. Nature Methods 12 no. 1, pp.
7–8 (2015).

[5] B. Kuhlman and P. Bradley. Advances in protein
structure prediction and design. Nature Reviews Molec-
ular Cell Biology 20 no. 11, pp. 681–697 (2019).

[6] A. W. Senior et al. Improved protein structure predic-
tion using potentials from deep learning. Nature pp. 1–
5.

[7] J. Yang et al. Improved protein structure prediction us-
ing predicted interresidue orientations. Proceedings of
the National Academy of Sciences .

[8] D. Altschuh et al. Correlation of co-ordinated amino
acid substitutions with function in viruses related to to-
bacco mosaic virus. Journal of Molecular Biology 193
no. 4, pp. 693–707 (1987).

[9] M. Weigt et al. Identification of direct residue contacts
in protein–protein interaction by message passing. Pro-
ceedings of the National Academy of Sciences 106 no. 1,
pp. 67–72 (2009).

[10] D. De Juan, F. Pazos and A. Valencia. Emerging
methods in protein co-evolution. Nature Reviews Ge-
netics 14 no. 4, pp. 249–261 (2013).

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327585doi: bioRxiv preprint 

http://protein.ict.ac.cn/ProFOLD
http://protein.ict.ac.cn/ProFOLD
http://protein.ict.ac.cn/ProFOLD
http://protein.ict.ac.cn/ProFOLD
http://protein.ict.ac.cn/ProFOLD
http://protein.ict.ac.cn/ProFOLD
https://doi.org/10.1101/2020.10.06.327585
http://creativecommons.org/licenses/by-nc-nd/4.0/


ProFOLD

[11] F. Morcos et al. Direct-coupling analysis of residue co-
evolution captures native contacts across many protein
families. Proceedings of the National Academy of Sci-
ences 108 no. 49, pp. E1293–E1301 (2011).

[12] D. S. Marks et al. Protein 3D structure computed from
evolutionary sequence variation. PLoS ONE 6 no. 12, p.
e28 766 (2011).

[13] D. S. Marks, T. A. Hopf and C. Sander. Protein struc-
ture prediction from sequence variation. Nature Biotech-
nology 30 no. 11, p. 1072 (2012).

[14] D. T. Jones et al. PSICOV: precise structural contact
prediction using sparse inverse covariance estimation on
large multiple sequence alignments. Bioinformatics 28
no. 2, pp. 184–190 (2012).

[15] M. Ekeberg et al. Improved contact prediction in pro-
teins: using pseudolikelihoods to infer potts models.
Physical Review E 87 no. 1, p. 012 707 (2013).

[16] J. Xu. Distance-based protein folding powered by deep
learning. Proceedings of the National Academy of Sci-
ences 116 no. 34, pp. 16 856–16 865 (2019).

[17] S. Seemayer, M. Gruber and J. Söding. CCM-
pred—fast and precise prediction of protein residue–
residue contacts from correlated mutations. Bioinfor-
matics 30 no. 21, pp. 3128–3130 (2014).

[18] K. He et al. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2016), pp. 770–
778.

[19] Z. Qi et al. ISSEC: Inferring contacts among protein sec-
ondary structure elements using deep object detection.
BMC Bioinformatics (in press).

[20] A. Paszke et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neu-
ral information processing systems (2019), pp. 8026–
8037.

[21] J. Zhu et al. Protein threading using residue co-variation
and deep learning. Bioinformatics 34 no. 13, pp. i263–
i273 (2018).

[22] D. W. Buchan and D. T. Jones. EigenTHREADER:
analogous protein fold recognition by efficient contact
map threading. Bioinformatics 33 no. 17, pp. 2684–2690
(2017).

[23] W. Zheng et al. Detecting distant-homology protein
structures by aligning deep neural-network based con-
tact maps. PLoS Computational Biology 15 no. 10, p.
e1007 411 (2019).

[24] D.-A. Clevert, T. Unterthiner and S. Hochreiter.
Fast and accurate deep network learning by exponential
linear units (elus). arXiv preprint arXiv:1511.07289 .

[25] W. Luo et al. Understanding the effective receptive field
in deep convolutional neural networks. In D. D. Lee
et al. (eds.), Advances in Neural Information Process-
ing Systems 29, pp. 4898–4906 (Curran Associates, Inc.,
2016).

[26] C. Zhang et al. DeepMSA: constructing deep multiple
sequence alignment to improve contact prediction and
fold-recognition for distant-homology proteins. Bioin-
formatics 36 no. 7, pp. 2105–2112 (2020).

[27] H. Zhou and Y. Zhou. Distance-scaled, finite ideal-gas
reference state improves structure-derived potentials of
mean force for structure selection and stability predic-
tion. Protein Science 11 no. 11, pp. 2714–2726 (2002).

[28] S. Chaudhury, S. Lyskov and J. J. Gray. PyRosetta: a
script-based interface for implementing molecular mod-
eling algorithms using rosetta. Bioinformatics 26 no. 5,
pp. 689–691 (2010).

Acknowledgements
We would like to thank the National Key Research and De-
velopment Program of China (2018YFC0910405), and the
National Natural Science Foundation of China (31671369,
31770775) for providing financial supports for this study and
publication charges.

Author contributions
FJ, JZ and DB conceived the study. FJ designed and imple-
mented the neural network, and performed the computation.
FJ, JZ, BS, TL, WZ, and DB analyzed the experimental re-
sults. FJ, LK and DB established the mathematical frame-
work. FJ and DB wrote the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Additional information
Supplementary information is available for this paper at
https://.
Correspondence and requests for materials should be ad-
dressed to.
Reprints and permissions information is available at http:
//www.nature.com/reprints.

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.327585doi: bioRxiv preprint 

https://
http://www.nature.com/reprints
http://www.nature.com/reprints
https://doi.org/10.1101/2020.10.06.327585
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Results and discussions
	Conclusion
	Methods

