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Additional results

• Figure S1 shows different gene expression patterns across the two groups, G1: Ductal cells predicted as

Ductal and , G2: Ductal cells predicted as Acinar, allowing differentiation between the two populations

of cells. On the contrary, when DE analysis was performed on the groups, G1: randomly chosen subset

of Ductal cells and , G2: remaining Ductal cells, (Figure S3) we neither observe meaningful clustering

nor descriptive gene expression patterns necessary for differentiation. We can see the same results on

the PBMC dataset on Figure S2 and Figure S4

• Table S1 shows the comparison between two cases, Batched: when JIND and JIND+ are evaluated
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on datasets containing batch effects versus, Integrated: when JIND and JIND+ are run after Seurat

integration on the same datasets.

3



Datasets
PBMC

10x_v3-10x_v5
Pancreas

Bar16-Mu16
Pancreas

Bar16-Seg16
Batched Integrated Batched Integrated Batched Integrated

JIND
raw 0.971 0.968 0.958 0.946 0.987 0.946
rej 0.07 0.06 0.05 0.10 0.05 0.08
eff 0.986 0.985 0.974 0.979 0.997 0.979

JIND+
raw 0.974 0.971 0.959 0.961 0.992 0.961
rej 0.03 0.03 0.03 0.09 0.02 0.05
eff 0.985 0.978 0.971 0.980 0.997 0.980

Table S1: Comparing performances of JIND and JIND+ when the source and target batches are integrated with Seurat
(Integrated) versus when Seurat integration is not performed (Batched). raw is the inital accuracy of the classifier, rej is
the percentage of cells rejected by the classifier and eff is the effective accuracy after rejecting unconfident predictions.
Best raw accuracy rates among the two cases (batched or integrated) are boldfaced.

Methods Datasets Human-Hemato Mouse Cortex
Metrics/#Genes 1000 3000 5000 7000 1000 3000 5000 7000

NN
raw
rej
eff

0.923
0.06
0.945

0.938
0.06
0.957

0.928
0.06
0.950

0.933
0.06
0.954

0.975
0.05

0.988

0.976
0.05

0.990

0.982
0.05

0.991

0.981
0.06

0.997

JIND
raw
rej
eff

0.922
0.07
0.944

0.939
0.06
0.957

0.927
0.06
0.948

0.931
0.06
0.953

0.976
0.06

0.989

0.970
0.03

0.982

0.982
0.05

0.991

0.981
0.06

0.996

JIND+
raw
rej
eff

0.919
0.04
0.933

0.931
0.04
0.945

0.927
0.04
0.943

0.932
0.04
0.948

0.976
0.02

0.985

0.970
0.03

0.950

0.976
0.04

0.984

0.978
0.04

0.990

Table S2: Impact of choosing different number of genes for training the prediciton model. NN is the neural network
based prediction model used by JIND and doesn’t perform any batch alignment. JIND performs adversarial training to
minimize distributional mismatch between source and target batches. JIND+ further fine-tunes assuming the confident
predictions are correct on the target batch. raw is the inital accuracy of the classifier, rej is the percentage of cells
rejected by the classifier and eff is the effective accuracy after rejecting unconfident predictions.
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Methods Datasets PBMC
10x_v3-10x_v5

Pancreas
Bar16-Mur16

Pancreas
Bar16-Seg16

Metrics Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

JIND
raw
rej
eff

0.971
0.07
0.986

0.972
0.07
0.988

0.958
0.05
0.974

0.881
0.39
0.987

0.987
0.05
0.997

0.86
0.44

0.9948

JIND+
raw
rej
eff

0.974
0.03
0.985

0.974
0.03
0.984

0.959
0.03
0.971

0.8805
0.27
0.979

0.992
0.02
0.997

0.901
0.23
0.984

Table S3: Comparison position of ReLU activation w.r.t encoder. Case 1: When ReLU activation is a part of the
classifier subnetwork and is applied on the latent code produced by the encoder subnetwork. Case 2: When ReLU
activation is a part of encoder subnetwork applied before at the end of encoder to produce the latent code. JIND performs
adversarial training to minimize distributional mismatch between source and target batches. JIND+ further fine-tunes
assuming the confident predictions are correct on the target batch. raw is the inital accuracy of the classifier, rej is the
percentage of cells rejected by the classifier and eff is the effective accuracy after rejecting unconfident predictions.
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(a) First half of the DEG

Ductal classified as:
Ductal (G1) or Acinar (G2)
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(b) Second half of the DEG
Figure S1: Heatmap for all differentially expressed genes between two groups on PBMC 10x_v5 dataset. Monocytes
FCGR3A cells predicted by JIND+ as: Monocytes FCGR3A cells (G1) or Monocytes CD14 cells (G2). The clustering
of the cells is calculated with the entire set of genes. The results of this DE analysis can be found on the Supplementary
Excel File.
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Monocyte_FCGR3A classified as:
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Figure S2: Heatmap for all differentially expressed genes between two groups on PBMC 10x_v5 dataset. Monocytes
FCGR3A cells predicted by JIND+ as: Monocytes FCGR3A cells (G1) or Monocytes CD14 cells (G2). The results of
this DE analysis can be found on the Supplementary Excel File.
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Heatmap between ductal classified as ductal (G1)
 and  ductal (G2) 
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Figure S3: Heatmap for all differentially expressed genes among two randomly chosen groups of Acinar cells present
in Pancreas Mur16 dataset. The results of this DE analysis can be found on the Supplementary Excel File.
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Heatmap between ductal classified as Monocyte_FCGR3A (G1)
  Monocyte_FCGR3A (G2) 
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Figure S4: Heatmap for all differentially expressed genes among two randomly chosen Monocyte FCGR3A cells
present in PBMC 10x_v5 dataset. The results of this DE analysis can be found on the Supplementary Excel File.
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Neural Network based Prediction Model

Encoder Classifier

Figure S5: NN-based prediction model employed by JIND for cell identification. The network consists of two
subnetworks, an encoder and a classifier, which are jointly trained. The input to the model is a vector (of dimension
5000 by default) containing the gene expression data for a cell, and the output consists of a probability vector indicating
the likelihood of the cell belonging to each of the K classes.
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