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Abstract  

Genomic epidemiology has become an increasingly common tool for epidemic response. Recent 
technological advances have made it possible to sequence genomes rapidly enough to inform 
outbreak response, and cheaply enough to justify dense sampling of even large epidemics. With 
increased availability of sequencing it is possible for agile networks of sequencing facilities to 
collaborate on the sequencing and analysis of epidemic genomic data. 
 
In response to the ongoing SARS-CoV-2 pandemic in the United Kingdom, the COVID-19 
Genomics UK (COG-UK) consortium was formed with the aim of rapidly sequencing SARS-CoV-2 
genomes as part of a national-scale genomic surveillance strategy.  The network consists of 
universities, academic institutes, regional sequencing centres and the four UK Public Health 
Agencies. 
 
We describe the development and deployment of Majora, an encompassing digital infrastructure 
to address the challenge of collecting and integrating both genomic sequencing data and 
sample-associated metadata produced across the COG-UK network. The system was designed 
and implemented pragmatically to stand up capacity rapidly in a pandemic caused by a novel 
virus. This approach has underpinned the success of COG-UK, which has rapidly become the 
leading contributor of SARS-CoV-2 genomes to international databases and has generated over 
60,000 sequences to date.  
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Introduction 
 
Combining genomic sequencing of pathogens with epidemiology as part of a response to an outbreak 
has demonstrated success in epidemiological investigations of viruses such as Ebola, Yellow Fever 
and Zika ​[1]​. Pathogen genomes are useful for reconstructing a phylogenetic history of an outbreak, 
and are now being used in real-time to assist epidemic response. 
 
Established sequencing networks already exist for some infectious pathogens. As an example, the 
GenomeTrakr Network is part of the US Food and Drug Administration and connects labs across the 
United States and internationally to sequence foodborne bacterial pathogens and since 2013 the 
project has sequenced nearly 500,000 isolates. Flu viruses are also routinely sequenced, both through 
the use of Sanger and NGS techniques. In the UK, Public Health England and Public Health Wales 
both operate seasonal influenza surveillance programmes using NGS, with results reported to both 
Governments and international organisations such as the WHO and ECDC. Increasingly, public health 
agencies are developing surveillance programmes for viruses that are built on the use of NGS data. 
While genomic data is increasingly used within public health agencies for retrospective surveillance 
activities, the benefits of genomic epidemiology are yet to be fully realised for prospective and 
proactive outbreak response. This is exemplified in the current pandemic, where the initiation of 
programmes for sequencing of SARS-CoV-2 typically lagged behind planning for other parts of the 
pandemic response. The utility of genomic data has been such that this should be the last pandemic 
where genomic epidemiology is not a core part of pandemic planning. 
 
Most existing public health sequencing initiatives are built around whole genome sequencing capacity 
afforded by facilities in large hospitals and public laboratories. However, with the emergence of lower 
cost sequencing instruments such as Oxford Nanopore, genomic sequencing is now available to 
smaller regional hospitals and academic laboratories, vastly expanding the sequencing capacity for a 
hypothetical surveillance network. Such technology is small and cost-effective enough to conduct 
sequencing of small pathogen genomes in the field, in the clinic and in the classroom. However, with 
this democratisation of sequencing technologies, a new challenge emerges in how data generated 
across many different laboratories can be collated, compared and analysed to support 
outbreak/pandemic response simultaneously at local, regional, national and global levels.  
 
The COVID-19 Genomics UK (COG-UK) consortium was established in March 2020 with the aim to 
deliver large-scale and rapid whole-genome virus sequencing and analyze the sequences for local 
NHS centres and the UK government ​[2]​. COG-UK is a national partnership of NHS organisations, the 
four UK Public Health Agencies, the Wellcome Sanger Institute and over 20 academic partners. The 
work of the consortium generates reports for the UK Scientific Advisory Group for Emergencies 
(SAGE), as well as providing analyses and advice to the UK devolved administrations, such as via the 
Welsh Government Technical Advisory Group. This is the first time that genomic epidemiology has 
been used at a national scale to guide a response to a pandemic in the United Kingdom, as 
demonstrated in regular reports to the UK’s Scientific Advisory Group for Epidemics 
(https://cogconsortium.uk/news). 
 
As well as rapidly responding to the problems of how to extract and sequence SARS-CoV-2 genomes, 
another key challenge for COG-UK was how to develop an infrastructure capable of harmonising data 
from a network of sources to create one dataset for analysis. The development of this system posed 
many interesting and challenging problems from a technical standpoint. In this article we present 
several such problems, our solutions and what we have learned from the process. Our system 
provides a model (F​igure 1 ​) that may serve as a foundation to inform others who are faced with the 
challenge of designing and deploying a similar system to aid outbreak tracking in this or future 
pandemics. 
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Figure 1 ​ ​Overview of the COG-UK data flow 
(Top) A network of sampling sites (hospitals, GPs, etc.) produce samples and sample metadata which are received 
by a regional sequencing centre. The sample is extracted and sequenced and a locally run bioinformatics pipeline 
generates both a consensus viral genome and an alignment of sequenced read fragments against the SARS-CoV-2 
reference genome. (Middle) The consensus sequence and alignments are uploaded via secure file transfer to be 
stored on MRC-CLIMB. Metadata is securely transferred over HTTPS to an application programming interface (API) 
that transforms metadata into a model to be stored in a database on MRC-CLIMB. (Bottom) The core quality control 
pipeline executes every day to integrate newly uploaded samples and metadata into the single canonical dataset of 
all uploaded sequences. Once this pipeline is finished, it notifies downstream analysis pipelines through a messaging 
protocol to generate analysis artifacts like phylogenetic trees. Downstream analysis pipelines also automatically 
deposit genomes in public databases such as GISAID and INSDC/ENA. 
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Results 
We present a model of our system (F ​igure 1 ​), which can be broken down into three core 
functions: 
 

● Produce data, by connecting a network of regional sequencing sites (academic or 
government affiliated) to a network of sampling organisations, to establish a distributed, 
democratised network for sequencing SARS-CoV-2 genomes 

● Collect data by providing a system to transfer sequencing data, consensus genomes and 
sample metadata that works in the same way for every member of the consortium 

● Integrate data into a single dataset by harmonising the collected sequences and metadata 
 

An autonomous and scalable network for decentralised sequencing 
of SARS-CoV-2 genomes 
The COG-UK consortium forms a national network of organisations that in combination collect 
and sequence samples. The organisations within the consortium have a high degree of autonomy. 
This autonomy is valuable as sites can take advantage of their own local expertise to make 
decisions on protocols and methods to use for sample collection, preparation and sequencing; 
reducing the burden for an organisation that wishes to participate. Some of these sampling sites 
also have the capacity and resources to also perform their own sequencing, those that do not are 
connected to either a regional sequencing organisation, or the Wellcome Sanger Institute (WSI). 
Regional sequencing sites include academic institutions, small laboratories and public health 
agencies. Connecting sampling organisations to a local sequencing laboratory means sequenced 
genomes can be turned around within 24-48 hours of sample collection. 
 
This two-tiered sequencing model has facilitated both a prioritised, rapid regional response; as 
well as supporting lower priority, high-throughput projects such as the sequencing of every 
positive sample from the Lighthouse Laboratories. 
 
However, this autonomy comes at a cost: raising the difficult challenge of coordinating such a 
diverse network of sites; using a spectrum of methods for sample extraction, PCR, library 
preparation, sequencing and consensus-generating bioinformatics. The core problem we faced 
when tasked to build this infrastructure is ultimately one of data interoperability. With so many 
geographically dispersed sequencing operations and the four public agencies all producing data 
with a wide variety of different techniques and platforms, it was necessary to deploy an 
infrastructure to collate this data into a single, consistent, canonical data set, available for 
everyone within the consortium. 
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F ​igure 2 ​ ​COG-UK sequencing model 
Samples are sourced from two “pillars”; Pillar 1 samples are collected across the NHS and Public Health Agencies, 
Pillar 2 samples are collected at the Lighthouse Labs at particular strategic sites in the UK. Generally, Pillar 1 
samples are received by NHS labs who process them for sequencing locally, or by a university sequencing lab for a 
fast turnaround. Pillar 2 samples are shipped through to the Wellcome Sanger Institute for high-capacity sequencing. 

 

A hub model for integrating genomic and epidemiological data 
We chose to form a hub model around the Cloud Infrastructure for Microbial Bioinformatics 
(CLIMB) compute facility ​[3]​. CLIMB is not just a pragmatic choice given the affiliation of the 
authors, since first deployed in 2014, it has provided infrastructure to microbiologists to produce 
and use software for the analysis of genomic data sets, serving over 300 research groups at more 
than 85 organisations spread across the United Kingdom (including PHE and PHW). It was 
designed as a system to support microbial bioinformatics and has been used for pathogen 
outbreak analysis in the past ​[4]​. 
 
We isolated over 600 vCPUs of compute from the CLIMB infrastructure to form a ‘walled garden’ 
system named CLIMB-COVID, which was deployed in three days for the purpose of providing a 
central, replicated environment for the storage and analysis of data generated by COG-UK. 
Additionally, CLIMB offered a third party neutral territory; as it is external to any specific university, 
government or public health agency governance. This in turn has enabled cooperation across a 
diverse network of sequencing operations, and the development of a bespoke service and 
environment to meet the needs of the project. 
 
Sites participating in the consortium maintain authority over the data they generate, interpreting 
and sharing it to inform a local public health response. As part of their membership they are 
responsible for transferring the sequenced consensus FASTA file, and an alignment of the 
sequenced reads against the SARS-CoV-2 reference genome ​[5]​ as a BAM to a designated server 
hosted on the CLIMB. 
 
To assist with the on-boarding of new sites, including those with limited bioinformatics support 
we also built a reproducible Nextflow pipeline (https://github.com/connor-lab/ncov2019-artic-nf) 
that enables the processing of data for sites following the ARTIC protocols. 
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A walled garden for fast turn around and to maintain sequence integrity 
This hub model operates with a different paradigm to one suggested recently by Black et al. ​[6]​, 
which recommended that raw reads would first be uploaded to the SRA, or Illumina BaseSpace; 
and that the final step of any assembly pipeline would be automatic submission to a public 
database such as one of the International Nucleotide Sequence Database Collaboration (INSDC) 
databases, or a pathogen specific initiative such as GISAID. However this paradigm would 
introduce unnecessary delays in the processing of data and hamper real-time genomic 
surveillance efforts. In building our system the focus has been on generating actionable 
information to support public health action as rapidly as possible.  
 
Our approach instead takes sequence data for initial analysis inside a system hosted on 
MRC-CLIMB which can only be accessed by members of the consortium. This ensures the data is 
immediately usable, as sequences can be transferred to the consortium as soon as they have 
been processed locally; whereas large public databases often have a lead time up to a few days 
before accessions are indexed and resources can be downloaded, which is incompatible with the 
goal to turn around sequences within 24 hours.  
 
Having a walled garden system with defined entry points for data has enabled us to define the 
files to be uploaded, which includes consensus sequences and BAM files of read alignments as 
opposed to raw sequencing reads. This simplifies analysis within CLIMB-COVID, and also enables 
the hub to avoid storing human reads sequenced incidentally as part of SARS-CoV-2 sequencing, 
while also providing valuable data that can be used to perform additional analyses for scientific or 
quality control purposes.  
 
This model also allows our internal pipelines to be tolerant of the different error profiles we may 
expect to see given the diverse methodologies in use across the sites. Uploading the data 
centrally allows us to perform basic quality control and ensure consensus genomes are internally 
consistent before they are distributed outside the consortium, mitigating the risk of polluting 
international databases. Requiring data to be uploaded to CLIMB-COVID centrally also enforces 
an environment that fosters data sharing, as sequences can only be analysed and integrated into 
the data set if they have been shared with the consortium. 
 
 

Single, unique, shareable, perpetual identifiers for a centralised sample 
registry 
A necessary component of the hub model is maintaining a registry of all sample identifiers 
sequenced by the consortium. To avoid confusion and aid interoperability, these identifiers should 
be unique and refer to one specific sample, from a particular sampling event. Identifiers should 
not encode any metadata that could be misinterpreted or would limit the ability to share the 
identifier with others. A sample should have a suitable identifier assigned as soon as practically 
possible, and it should never be changed or re-used in future.  
 
These requirements are often easily violated in practice. Many samples in a diagnostic laboratory 
setting are automatically assigned a sequential number, or assigned a number which encodes 
information about the patient. This means that  an identifier could contain personal identifiable 
information, may not be unique within the consortium, or would need additional metadata to be 
shared to allow for disambiguation. Even when PII is not present in the identifier, sample 
identifiers generated by public health agencies or hospitals are often used for linkage purposes, 
and may be considered privileged information, limiting their usability. 
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To overcome this, we used pre-printed barcodes, that could be distributed to collecting centres 
and affixed to a sample tube as soon as practically possible. They are easy to organise and 
distribute, cause little additional burden to laboratories, and ensures that each specimen receives 
an identifier that is safe to share with the consortium. The overhead of this solution is a linkage 
table is required to map the identifier of the specimen inside the collecting organisation, to the 
COG-UK identifier on our barcode label. This linkage holds the key for accessing more detailed 
information held about a sample by public health agencies at a later date. In many cases, the 
collecting organisation was confident that their identifiers were safe to share as part of our 
standard collection process. Where this is not the case, the linkage is held separately at the 
laboratory, creating a small hurdle for obtaining linkage. 
 
 

 

Figure 3 ​ ​Example COG-UK sample label 
A reference example of a label affixed to samples within the COG-UK consortium. The label is both human and 
machine readable. This is one of many label formats, owing to the decentralised nature of the consortium. 

 
 
Although the pre-printed barcodes simplify the process of generating identifiers for samples, it 
was more difficult to deploy a scheme for uniquely identifying the patients from which the 
samples were taken from. Governments and health agencies around the world have a single, 
unique, perpetual identifier for a citizen, but they are not shareable in practice as their inclusion 
makes the dataset patient identifiable information. We considered using a pseudo-identifier 
derived from these, e.g. based on a salted hash of the identifier, but the additional operational 
complexity was considered too great for local laboratories with limited bioinformatics capacity. In 
the scenario where a sample is known to have come from a patient who has already been 
sampled, we settled for using the identifier of the first sample as the patient identifier. This has 
limitations, but is readily achievable in cases where local laboratories know whether a sample has 
been collected from a patient with previous samples, and at least allows for grouping of samples 
from the same patient when that relationship is known. 
 

A minimal metadata standard to ensure wide adoption of data collection 
For the sequenced genomes to be useful, it is essential to pair them with metadata that 
contextualises the time, place and circumstance of the collected sample. This context is what 
allows us to use genomic epidemiology to drive an effective intervention as part of a public health 
response. Without adequate metadata, sequencing genomes is just an expensive form of stamp 
collecting. 
 
There are already several well defined lists of metadata that are recommended for collection, for 
example submissions to the European Nucleotide Archive suggest following the “ENA virus 
pathogen reporting standard checklist” (ERC000033), and recently the Public Health Alliance for 
Genomic Epidemiology (PHA4GE) drafted a specification for sharing contextual data about 
SARS-CoV-2 genomes to advocate the openness and reusability of generated data sets ​[7]​. 
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Although it is straightforward to construct a list of desired pieces of metadata to collect, the real 
problem is reconciling such a standard with the reality of how data can be collected on the 
ground. 
 
Until such a time where a standard methodology, legal framework and technical infrastructure for 
data sharing between various public health agencies, hospital trusts and academic laboratories 
exists, there is a need for pragmatism. We must expect scenarios where limited metadata will 
have been collected in the first place, or a diagnostic laboratory may not have the staff or 
resources to provide enough metadata to meet the requirements of a checklist. There will likely be 
a need for data sharing agreements to be drawn that will prohibit sharing some metadata fields 
more widely. Even in the case where a wealth of metadata is available, there may be a need to 
prioritize some fields over others; as multiple fields together may permit those fields to be used in 
conjunction with other data sources to aid identification of a person (deductive disclosure).  
 
There is a balance to be struck to choose fields that can be practically collected by all 
organisations that join the consortium, and obtain enough metadata to do meaningful analysis. 
We defined a very small set of mandatory fields (T ​able 1 ​) that aimed to limit the burden on 
laboratories and ensure that basic metadata was provided in a timely fashion. For a full table of 
fields refer to T ​able 3 ​. 
 
The expertise of the analyst groups within COG-UK is focussed on viral phylodynamics, which 
looks to map how the evolution of sequenced viral genomes is linked to where and when those 
samples were collected. Our mandatory metadata fields reflect this, linking the date a sample was 
collected and the approximate geographical location it was collected in. County was a necessary 
but unfortunate compromise as the security assessments and contractual arrangements to collect 
more fine-scale location information such as outer postcode would take some time to organise. 
 
Diagnostic laboratories are required to inform public health agencies when they identify notifiable 
organisms, including SARS-CoV-2. We have used this process to allow retrieval of additional data 
relating to the patient from whom the sample was taken. Laboratories either add the COG-UK 
identifier directly to the relevant national data systems or provide this separately to the public 
health agency. Again, a pragmatic approach has been taken with a variety of secure transfer 
methods used to provide this information as systems have matured. This has allowed the majority 
of samples to be linked to records held by public health agencies, who can provide 
supplementary metadata where required and use this information in their own analyses.    

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.328328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328328
http://creativecommons.org/licenses/by/4.0/


 

 

 

Data item  Field name  Description 

Access level 
(Public, 

Consortium or 
Restricted) 

Mandatory  Implementation 

Central Sample 
ID 

central_sample_
id 

A unique 
identifier to refer 
to the sample 
within the 
consortium 

Public  Yes  Tier 1 database 
model 
(biosample) 

Date of sample 
(collected) 

collection_date  The date the 
sample was 
collected 

Public  Yes (otherwise 
received_date) 

Tier 1 database 
model 
(biosample 
collection) 

Date of sample 
(received) 

received_date  The earliest date 
that this sample 
was known to 
be checked in to 
a diagnostic or 
sequencing 
laboratory 

Public  No (unless 
collection_date 
is not provided) 

Tier 1 database 
model 
(biosample 
collection) 

UK nation  adm1  The country 
within the 
United Kingdom 
in which the 
sample was 
collected 

Public  Yes  Tier 1 database 
model 
(biosample 
collection) 

County  adm2  The county 
within the 
United Kingdom 
in which the 
sample was 
collected 

Consortium  Strongly 
recommended 

Tier 1 database 
model 
(biosample 
collection) 

Sampling 
strategy 

is_surveillance  Whether this 
sample was 
collected as part 
of a random 
surveillance 
strategy, or a 
targeted 
outbreak 
analysis 

Consortium  Yes  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

 

Table 1 ​ ​COG-UK minimally useful metadata standard 
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A unified interface for transferring and storing sequences and 
sample metadata 

A unified template for metadata collection 
It was clear from the outset that we needed to provide a unified method for metadata to be 
uploaded, regardless of whether users are providing the minimal metadata or filling in every field, 
otherwise it would be impossible to maintain a centralised sample registry. Given the diverse 
nature of informatics skills across the participating organisations, a tool to upload metadata would 
need to be easily accessible (behind a variety of firewalls) and not require installation or 
configuration of software on the user’s machine. 
 
At the middle of the intersection between intuitive and portable, spreadsheet software appears to 
have become a ​de facto​ method for clinicians and laboratory technicians to tabulate and share 
metadata. This is somewhat convenient, as spreadsheet software is almost always installed on 
computers used in diagnostic laboratories and can still generate highly portable comma or tab 
delimited versions of tabulated data. Leveraging this, we developed a CSV template of our 
minimal metadata standard. The template and associated documentation was iteratively 
developed in response to the needs of both the analysts and the feedback from participating sites 
on what can be realistically collected in a short amount of time. Organisations download a fresh 
copy of the template when samples are packaged and sent for sequencing and fill in the 
mandatory fields, and as many optional fields as they can. 
 
Providing this intuitive way for users to provide data raises the issue of how these spreadsheets 
can be error checked, collated and made accessible to analysts. It is insufficient to hope that 
users will adhere to any validators built-in to the template, and some software may not support 
included validators. Once validated, one may consider just merging all these sheets together as a 
naive database. This may be reasonable in a small scale project, but for a robust national 
real-time response, this data needs to be supported by infrastructure capable of enforcing 
validation and adding new samples immediately.  
 

Centrally managing consortium data through application programming 
interfaces (APIs) and Majora 
It would not be feasible to manually moderate uploaded metadata, so we needed a system to 
alert users about invalid data and allow us to integrate valid metadata about samples into our 
dataset as soon as possible. There should be no human intervention involved in validating, 
processing, or querying metadata. To this end, a set of application programming interfaces (APIs) 
was developed. An API allows a computer program to interface with a human, or other 
computers. Within COG-UK, metadata can be submitted and queried through a collection of API 
endpoints exposed by a program named “Majora”, from which our whole system model gets its 
name. 
 
The instance of Majora deployed for CLIMB-COVID was developed specifically for COG-UK, and 
is the brain of our digital infrastructure. It stores information about samples and files; which are 
referred to as “artifacts”. Majora also concerns itself with storing information on the “processes” 
that have been applied to these artifacts. For example, a group of sample artifacts may be pooled 
to form a library, a library is sequenced to provide signal data. Bioinformatics pipelines convert 
signal to reads, and reads to consensus genomes, and so on. By storing a record of how each 
artifact comes into being, and how artifacts are linked together through processes, it is possible 
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to traverse a tree of processes, providing a full audit trail from when a sample was collected to 
any files and analyses generated about it downstream. 
 
Majora (​https://github.com/SamStudio8/majora/​) is a Django application ​[8]​, with a set of APIs, a 
database of bespoke models and is also a web application in its own right. Users are able to 
register for an account that must be approved by their organisation's lead user. The website 
allows for easy access to limited metadata and shows the history of processes that are known 
about a sample (F ​igure 4 ​). For savvy users, bots and pipelines, a command line client has been 
developed that uses the API to access more advanced functionality. 
 
The website is protected by enforcing two factor authentication on users who wish to view any 
metadata, or use the APIs. The Majora APIs were initially secured with a rotating API key scheme 
that allowed external applications to perform actions as a user, without the user having to provide 
their actual account password. More recently, we are migrating away from these keys to a more 
straightforward, industry-standard protocol for authorization (OAuth 2.0). 
 
As Majora is the only interface a user has to the metadata stored by the consortium, we have the 
opportunity to store restricted data and control access to it. As part of this control, we have 
integrated a system into Majora whereby data agreements can be viewed and signed by 
consortium users. For example, users are able to upload the “local” identifier of a sample as it is 
referred to inside of the collecting site (which is considered to be restricted), but we do not share 
this publicly, or within the consortium. Through Majora’s agreements system, users can give 
permission for the identifiers they have uploaded to be shared specifically with public health 
agencies, allowing COG-UK sequences to be linked to wider health informatics data. This layer 
between the users and the database where metadata is stored allows us to maintain an audit trail 
of who performed what actions both on the website, and through the API; satisfying the 
requirements set out by NHS digital. 
 
The teams who determine the minimal metadata, define the templates and the developer of the 
API are closely linked, allowing the metadata collection strategy and the API to evolve with the 
changing demands of the consortium. 
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Figure 4 ​ ​Majora web application biosample view 
An example of the web interface presented by Majora to detail a biosample artifact. The downstream artifacts 
section allows users to see what processes have been applied to the biosample. In this example, the sample was 
incorporated onto a pooled sequencing library, which was sequenced and basecalled. 

A user-friendly method for uploading and validating metadata 
The COG-UK consortium includes hundreds of individuals working across tens of sites, with over 
100 users registered to access CLIMB-COVID itself. Developing and deploying robust and 
well-documented APIs is therefore critical for reducing human workloads. Because of the size and 
scale of COG-UK it is critical to plan for scenarios where an API must be able to interact with a 
human in a friendly way, to ensure that the system can be supported by what remains a small 
team. For example, informing a user who has uploaded metadata that contains inconsistencies 
which need their attention. The APIs for uploading metadata require the fields to be arranged in a 
structured text format called JSON (JavaScript Object Notation) (F ​igure 5 ​). Messages and 
validation errors are returned to the API user in the same format. Although JSON can be viewed in 
basic text readers, or pretty printed on a command line, they are not intended for human 
consumption. 
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Figure 5 ​ ​Example API request to submit a new sequencing library artifact to Majora 
All metadata from biological samples, to library pooling processes and sequencing runs are communicated to Majora 
through the various API endpoints. These interfaces take structured data in the JSON format and process them to be 
stored in the Majora’s SQL database. This example demonstrates the fields and structure of a request to add a new 
sequencing library to Majora. 

 
To address this, a web application based on the API was built. Briefly, users upload their filled out 
CSV to a Javascript-based (Nuxt) web frontend. This application transforms the CSV data into the 
JSON structure mandated by the API and automatically submits it to Majora for validation. Data is 
transferred securely as the implementation of the uploader tool and the Majora API only supports 
secure HTTP (https). The Majora API responds with any validation errors that require the user’s 
attention, and these are parsed and presented prominently in the uploader web application. Valid 
metadata is accepted immediately and can be queried by any other member of the consortium 
with access to Majora. 
 

 

Figure 6 ​ ​Screenshot of the metadata uploader demonstrating user-facing errors 
Metadata is submitted to the consortium by uploading a filled in CSV template to the metadata uploader web 
application. The uploader converts the CSV data into JSON and communicates with the Majora API. Validation errors 
are immediately returned, parsed and displayed to the user as shown here. 
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A tiered model for the storage of metadata 
There are three layers of data within Majora (Table 2). Firstly, for fast searching and filtering, 
properties common to all instances of a particular type of artifact (e.g. a biosample, or digital file) 
are explicitly defined as fields in the database. For example, all files have a name, a size and a 
hash. Database models are implemented based on decisions for the collection and storage of 
metadata by the various working groups. It is important to be aware of how much work adding or 
altering fields is: from the technical implementation, through the API, all the way to 
communicating these changes to users of the template itself. 
 
At the second level, artifacts are a composition of additional models referred to as Metrics. 
Metrics are models in their own right and can be arbitrarily attached to any artifact in Majora. 
Metrics are used to store secondary information that is common enough to warrant easy access 
but not intrinsic to every artifact of the same type. For example, a FASTQ file is a file, but not 
every file is a FASTQ. A Metric for FASTQ files could therefore annotate a file artifact with 
information specific to a FASTQ such as the number of sequences and average quality. Typically, 
Metrics are generated automatically by the API to annotate files. 
 
Thirdly, at the most basic layer, it is possible to “tag” an artifact with arbitrary key-value pairs. Due 
to the implementation it is more difficult to identify and collect artifacts based on this level of 
metadata (as the data is not backed by a real model like the first and second layers), but it allows 
for incredible flexibility. This tertiary metadata level is designed to store information that is not 
important enough to be incorporated into the primary model and is too esoteric to be part of a 
secondary metric. The most important part of this layer is its implementation permits any 
information to be added to an artifact at any time, without any configuration. 
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Tier  Implementation  Properties  Example 

Primary  Database model  ● Fast queries via 
object-relational mapping 

● Takes up space in database 
even if unused 

● Significant work to add to the 
database model, API and user 
templates 

● Biosample identifier 
● Patient sex, age 
● Digital resource file path, 

size, hash 

Secondary  Database model  ● Fast queries via 
object-relational mapping 

● Additional lookups necessary 
to link back to the primary 
database model 

● Cannot assume a primary 
model will have a supplement 

● Cycle threshold metrics 
for biosamples 

● BAM coverage metrics 
● Patient healthcare worker 

or care home status 

Tertiary  Key-value row in 
generic model 

● More difficult to manage 
artifacts based on tagged 
properties alone 

● Highly flexible 
● No work required to add new 

tags at any time 

● Locally relevant tags not 
implemented in a model 

● Additional anonymised 
patient information 

● Additional sequencing 
run information 

 

Table 2 ​ ​Three tiers of metadata within Majora 
Majora stores submitted metadata about artifacts and processes in an SQL database. Metadata is stored differently 
based on its priority. Fields that are a core part of a model (for example, a sample identifier, or the name of a file) are 
considered primary metadata and are stored in a distinct database model. Metrics such as the results of a PCR Ct 
test, or the coverage levels of a BAM are also stored in a distinct database model and are attached to primary 
models through a database foreign key. Arbitrary metadata can then be stored in key value pairs (not backed by any 
particular database model) and tagged to primary and secondary models as appropriate. 
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Harmonisation and continuous integration of uploaded sequence 
and metadata 

Elan: Autonomous, scalable, daily data integration of sequences and 
metadata 
With FASTA and BAM files uploaded by sequencing sites to CLIMB, and metadata uploaded by 
users via the API and stored within Majora, these two streams of data must be paired together, 
processed and published in some way such that they are available to everybody in the consortium 
who wishes to perform analysis. Once metadata and sequence have been uploaded for a sample, 
it waits to be pulled into the “inbound distribution” pipeline, named Elan. 
 
Elan is responsible for querying Majora and the CLIMB file system to find unprocessed samples; 
ensuring the uploaded files are valid, that the BAM contains only SARS-CoV-2 reads, conducts a 
quality check of the FASTA sequence and BAM alignments, and copies the files to an organised 
read-only location on CLIMB. If the Majora APIs are the brain of the COG-UK digital infrastructure, 
then Elan is the heart (​Figure 7 ​). The Elan pipeline is run every day and weekly reports are written 
based on data submitted by Friday, providing a natural cut-off for consortium members to aim to 
upload their metadata and sequences by. 
 
Elan (​https://github.com/SamStudio8/elan-nextflow/​) is an open-source pipeline built with the 
NextFlow workflow language ​[9]​. The configuration allows Elan to scale to handle thousands of 
samples a week by seamlessly executing jobs on additional compute nodes using a job scheduler 
(SLURM).  
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F ​igure 7 ​ ​Architecture diagram for the COG-UK Majora platform 
Local sites (grey, top left) generate consensus FASTA and alignment BAM for each sequenced sample. 
Corresponding metadata is collected and managed into a CSV using the consortium template. FASTA and BAM are 
uploaded to CLIMB using scp or rsync. Metadata is converted from CSV to JSON by the metadata uploader tool and 
passed to the Majora API to be processed (purple, right). The Elan inbound pipeline (green, left) queries the Majora 
metadata database using the Ocarina command line client (yellow, right). Elan matches Majora metadata to 
uploaded files on CLIMB (blue, left) and conducts quality control. Quality metrics are passed to Majora through 
Ocarina. Downstream pipelines such as outbound distribution pipelines (orange, center) are able to query Majora 
using Ocarina and package high quality sequences for public databases. 

 

Orchestrating data flows with human or machine readable messages  
Before the daily pipeline is run, Elan uses a web hook to send a series of automated 
announcements to a well populated Slack channel, notifying users of problems with missing 
metadata or missing files to fix before the pipeline begins. When Elan finishes, an announcement 
counting the number of new and cumulative sequences that have passed QC is broadcast (e.g. 
F ​igure 8 ​). Elan also emits machine-readable messages (F ​igure 9 ​) to notify downstream pipelines 
that there are new samples to process (specifically, we use mqtt [Message Queuing Telemetry 
Transport], but other similar protocols are available). Using machine-readable messages to 
control other pipelines reduces human workload and encourages the development of multiple 
pipelines that do their particular tasks well, rather than tasks being rolled into one monolithic 
pipeline. 
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F ​igure 8 ​ ​An automated Slack message announcing the start of Elan pipeline 
The Elan inbound distribution pipeline is operated transparently by providing a series of courtesy messages before 
and after it has run. Slack messages are sent programmatically through a web hook to announce samples that 
appear to be missing metadata or a genome sequence. The example above dated April 24th announces that Elan 
was about to process the 10,000th sample. 

 
 

 

F ​igure 9 ​ ​Screenshot of the metadata uploader demonstrating user-facing errors 
To assist orchestration of pipelines, we run a message broker service that allows different pipelines within COG-UK 
to send messages and interact with each other. This example shows Elan emitted a message to announce it has 
successfully completed, and the phylogenetics pipeline responding to say it has started as a result of the new data 
to be processed. 
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A QC-aware platform for querying sequences 
Majora is also the arbiter of quality control. As Elan processes new sequence FASTA and 
alignment BAM files, their associated quality metrics are submitted to Majora. Once the metrics 
are in place, Elan uses an API endpoint to request that Majora carry out a particular QC test and 
store the result as a QC report. 
 
Quality control tests are composed of rules and decisions based on those rules, and can be 
imported to Majora by an administrator with a formatted text file. Quality control tests can also be 
grouped together such that only a subset of tests in the same group are run, with the decision to 
execute a test or not based on the contents of the sample or sequencing metadata. For example, 
a QC group may have distinct tests for both Illumina and ONT platforms, but Majora can choose 
which test to run based on the sequencing metadata submitted by the user (F ​igure 10 ​). 
 
As Majora is aware of the QC reports for each submitted sample, the API endpoints that retrieve 
data can filter for samples that have passed (or failed) a particular QC test. For the Majora 
instance deployed on CLIMB-COVID we have two QC test groups: Basic QC is a highly tolerant 
test which must be passed in order for a sequence to be submitted for downstream pipelines 
within the consortium, and High Quality QC has a stricter threshold to determine whether 
sequences will be deposited to public databases. Storing all the quality metrics (e.g. sample cycle 
threshold value) also allows large-scale comparisons of quality control to be performed across all 
the consortium’s different sequencing sites and platforms. 
 

 

F ​igure 10 ​ ​A QC report as viewed through the Majora web application 
Quality report view for a real sequence uploaded by a COG-UK site. As part of COG-UK there are two core quality 
reports generated for every sample. Minimal QC ensures the sample passed basic quality control and is eligible for 
inclusion in the consortium data set, and the more stringent High Quality report determines whether the sequence 
will be shared in public databases. Note in this screenshot that each of the two reports have an “ONT” (Oxford 
Nanopore) and “ILL” (Illumina) entry. In this case, the Illumina tests are skipped because Majora allows tests to be 
applied based on metadata about the sample. Here, the Illumina tests are skipped because the sequencing 
metadata shows this run was completed on an Oxford Nanopore sequencer. The two forms of the same test are 
considered to be part of the same quality report group, which means that the test result is treated equally. 
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Routine analysis of the unified data set 
When each daily Elan run completes, a machine-readable signal is emitted that initiates the 
phylogenetics pipeline. This pipeline combines the complete set of non-UK SARS-CoV-2 
sequences from GISAID - updated weekly - with the complete set of COG-UK sequences that 
have passed basic quality control, with the aim of building a phylogenetic tree that captures the 
evolutionary relationships between all of the sampled viruses to date. The phylogenetics pipeline 
is written in the Snakemake workflow language ​[10]​ and executes a mixture of custom and 
established software (https://github.com/COG-UK/grapevine). 
 
The pipeline automatically generates reports that summarize the spatial, temporal and genetic 
diversity of SARS-CoV-2 viruses circulating in the United Kingdom. These reports and other 
outputs are made available to the consortium through Slack. The global tree and associated 
metadata also provide the data underlying a bespoke cluster investigation tool which allows users 
to query sequences of interest and generate reports summarising their phylogenetic and 
epidemiological context, as well as a publicly available visualisation tool. 
 

Linking and visualising consortium data with Microreact 
Microreact is a web application that facilitates interpretation of biological data by presenting 
linked data in multiple panels within a single interactive view ​[11]​. For the COG-UK project five 
panels are available. 1) A map view showing the place of sample collection; 2) A graph view 
showing the frequency of lineages over time; 3) A phylogeny derived from the analysis described 
in the section above; 4) A timeline showing distribution of samples over time; 5) A metadata table 
view. These views are generated with COG-UK data that has been processed by Elan and the 
phylogenetics pipeline.  
 
Coarse location metadata from CLIMB is cleaned and geocoded by analysts, and locations are 
linked to coloured labels with Data-flo (​https://data-flo.io ​). Data-flo provides the ability to 
manipulate data programmatically and reproducibly using declarative data flows consisting of 
modular adaptors that perform discrete steps in the overall transformation. The location metadata 
is combined with the newick phylogeny from the phylogenetics pipeline to output the COG-UK 
Microreact instance (F ​igure 11 ​), which includes both the COG-UK data and worldwide data from 
GISAID (​https://microreact.org/project/cogconsortium​).  
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F ​igure 11 ​ ​Screenshot of the COG-UK Microreact instance 

 
The tree viewer is capable of scalable rendering of hundreds of thousands of leaves​. This enables 
full interactivity between all panels such that selecting a subset of samples such as a region on 
the map, a subtree in the phylogeny or a window within the timeline is instantly reflected in all 
other panels. This enables querying the data in a visual way that can help inform public health 
intervention and scientific hypothesis generation. For example selecting a monophyletic group of 
genetically very similar samples will update the map and timeline and demonstrate if these 
samples are co-located in time and space and therefore represent a putative outbreak or 
transmission chain. 

Controlling access to metadata with view-based permissions 
Sample metadata submitted to Majora is divided into one of three access control levels: public, 
consortium and restricted (T ​able 1 ​). Most - but not all - public and consortium level data can be 
viewed through the Majora web interfaces and API. However, when it came to sharing this 
metadata downstream, we realised that combinations of these fields can in themselves produce a 
data set that requires a different level of access. It was apparent that granting a user access to a 
restricted field did not necessarily imply they should have access to all restricted fields (or indeed, 
all other fields), so it is not enough to simply associate a user with a single access control level. 
 
Rather than granting a user permission to a particular access level, or deploying a cumbersome 
case-by-case field-level permission system, we control access to metadata by predefining a set 
of named views that explicitly enumerate a subset of the metadata fields. The view itself then acts 
as a permission, with users making a case for why they should be granted permission to that 
view. Access to these views is audited; we always know who can view what data, and when they 
have used that permission to download a copy of data through a view. 
 
This has several benefits: it is trivial to report who has access to what metadata and provides a 
common set of named views that can be discussed and shared by downstream analysts. The 
data view concept also allows us to adhere to the requirements of four different UK public health 
agencies, each of which acts as a gatekeeper for restricted data from their nation.  
 
The views are implemented in Majora, with configurations loaded by an administrator for a text 
file. The serializer (which converts the model representation from the database into JSON) is then 
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configured based on the view that has been requested - ensuring that only fields in the view are 
serialized and sent to the user. Additionally, Majora allows filters to be dynamically applied to the 
data view to produce derivative data sets. For example, the mechanism through which we share 
restricted local identifiers to public health agencies will filter based on the country the sample was 
collected in, and whether a user has signed a particular agreement though Majora. This means a 
human doesn’t have to spend time sanitising data sets to be distributed.  
 

Distributing sequence and metadata outside the consortium 
An important goal for the consortium is to provide other projects and scientists outside of 
COG-UK access to the sequences and limited metadata to be able to perform analysis of their 
own. This poses another interoperability problem, as sequences and metadata must be converted 
into a format acceptable by external databases in order to be deposited. COG-UK has made a 
decision to share data in multiple ways, to ensure that different user groups are able to access the 
data generated in the simplest way possible.  
 
The Global Initiative on Sharing All Influenza Data (GISAID, ​[12]​) is an established infrastructure for 
the rapid sharing of sequence data for Influenza. As existing Influenza-focused public health 
laboratory networks were amongst the first to pivot to sequencing SARS-CoV-2 as part of the 
pandemic response, GISAID rapidly introduced a capacity for sharing SARS-CoV-2 genomes via 
its platform. The pre-existing usage of GISAID amongst public health laboratories meant that it 
quickly gained traction as the ​de facto​ database to deposit SARS-CoV-2 sequence data. There 
has been some debate in the wider scientific community about the openness of GISAID and the 
rules around data access and use, however, within the global health community GISAID is a 
trusted route for sharing data, which is designed to overcome previous issues of poor academic 
behavior, particularly in relation to data generated by LMICs. Although there are plans for GISAID 
depositions to eventually move toward a more automated API-based system, currently the data 
must be arranged according to their CSV-based template. We have written a command line client 
capable of requesting particular columns of metadata from Majora to automatically generate a 
suitable CSV and corresponding FASTA file for weekly submissions to the GISAID database. 
 
To support the objectives of Open Science, as well as meeting the obligations of the FAIR 
principles (https://www.go-fair.org/fair-principles/) we chose to archive the raw sequencing reads 
in the European Nucleotide Archive (ENA), which makes the data available internationally through 
the International Nucleotide Sequence Database Collaboration (INSDC). Making raw reads 
available is an important step for external researchers to be able to corroborate findings as well as 
analyze properties of the reads that are lost when only the consensus genomes are available. Our 
ENA submission pipeline takes care to mitigate the risk of inadvertently sharing human data 
(​https://github.com/SamStudio8/dehumanizer​). 
 
Automated submissions to GISAID and the ENA are provided as a service to members of the 
consortium. Site leads can opt their institutes into automated submissions from the Majora 
website. Accessions are shared within and outside the consortium. For raw reads, our pyENA 
command line client captures accessions as part of the submission protocol. For GISAID, some 
manual intervention is required as these cannot be extracted programmatically. 
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Discussion and Conclusion 
In this article we have described the end-to-end compute infrastructure we developed for the 
COVID-19 Genomics UK (COG-UK) consortium. Our platform addresses the needs of a 
distributed democratised network for sequencing SARS-CoV-2 genomes, providing a unified 
interface for transferring, storing and sharing sequence and metadata. The system provides a 
core platform for harmonisation and continuous integration of uploaded sequence and metadata 
which has underpinned the activities of COG-UK, analysing over 50,000 SARS-CoV-2 genomes 
since its inception. 
 
An agile approach to development allowed us to respond quickly to changes in the needs of the 
project. This was especially important given the diverse array of wet and dry laboratory protocols 
used across all the different members of the consortium. COG-UK’s success is owed in part to its 
agility to turn around a response to a novel pathogen. It would be fair to describe the 
development process as “reactive”. We did not set out to build a perfect system from the 
beginning, allowing the constraints we encountered to guide design decisions as and when they 
needed to be made.  
 
Hosting this infrastructure on CLIMB is both a pragmatic and perfect choice. CLIMB is probably 
still the largest dedicated compute infrastructure for microbial genomics in the world. The shared 
nature of the platform was critical for immediate sharing and analysis. Within three days of 
booting the first virtual machine we were receiving uploads of sequence data. Within a week, 260 
complete genomes from 7 sequencing centres had been uploaded and processed by our inbound 
distribution pipeline - already more genomes than any other country in the world other than China 
at the time. Within two months, COG-UK was responsible for half of all the international 
SARS-CoV-2 sequences deposited into GISAID. 
 
Although Black et al. ​[6]​ recently suggested it “would be easier to licence databasing software for 
the metadata database than to build it from scratch”, we had the expertise in place to rapidly 
develop appropriate software that was unlike anything on the market. Architecting our own 
database has allowed the metadata definitions, metadata templates and database to evolve 
together with the changing demands of the consortium. Our development methodology focussed 
on building a minimal viable product to address the current needs of the consortium. Although our 
agile development allowed us to move quickly, it does not compromise on functionality: our 
platform has been built from the ground up by people with domain knowledge, given the 
opportunity to start over, we would make many of the same design choices again. 
 
The infrastructure we have built from scratch covers application programming interfaces (APIs) for 
uploading metadata and sequence data to an isolated server on CLIMB, automated pipelines for 
quality control and organising data within the consortium, processes to automatically share data 
outside the consortium and the core infrastructure for the secure storage and management of 
data assets on the system. 
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F ​igure 12 ​ ​COG-UK platform timeline and performance milestones 
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The success of this system has depended on a close working relationship between analysis 
teams, sample laboratories, the template authors, the authors of the uploading tool and the author 
of the Majora API. 
 
Along with the technical pragmatism we have described in this article, future responses should 
aim to generate better identifiers and attempt to simplify data sharing (public health agencies 
could generate specific “random” identifiers for a record and share them) or invest in a secure 
salting scheme. The availability of single, unique, shareable identifiers across a geographically and 
organisationally dispersed consortium has been one of the largest obstacles to the work of the 
consortium. With so many NHS organisations composing the national service for each of the 
countries in the UK, with the exception of Wales, there is not a single centralised organisation that 
can mandate data sharing. 
 
Our difficulties in obtaining sample and patient identifiers has made it more difficult to collate 
multiple samples from the same individual and delays in security assessments and contractual 
arrangements for using granular geographic data left analysts with the unfortunate task of 
munging various different representations of counties and cities within the United Kingdom. These 
metadata issues highlight a need for future readiness, not just for technical solutions, but 
regulatory ones too. To be ready for the next pandemic, we must be able to generate suitable 
sample and patient identifiers, we must simplify access to minimally useful metadata, and enact a 
regulatory framework to share identifiers and core information like dates and postcodes in an 
effective manner. 
 
The infrastructure we have presented here is generalizable to future novel pathogens, but could 
also be expanded to cover metagenomics and environmental sampling. CLIMB-COVID is a 
proven model, evidenced by the success of the COG-UK consortium (F ​igure 12 ​). As of writing, 
COG-UK has produced 50,000 public sequences, has contributed more than 10 reports to the 
government, supported more than 50 outbreak investigations in the UK and has been used in >16 
publications.  
 
Our efforts have enabled us to go from a blank slate to an integrated infrastructure that colaesces 
the sequence and metadata from multiple sequencing centres spread across four distinct 
healthcare systems. In normal times this would be considered a considerable success - to do it in 
the middle of a pandemic is extraordinary. The template we present here should therefore be an 
example for those who have similar objectives, as well as presenting a very different vision to 
those who would suggest that data should be centralised into databases that sit apart from 
analysis tools and detailed medata. 
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Data availability 
Majora is a Django web application for tracking artifacts and processes, it is open source software 
available via github.com/SamStudio8/majora​. The Ocarina command line client reference 
implementation for using the Majora API is open source and ​freely ​distributed under the MIT 
license via github.com/SamStudio8/ocarina. The Elan inbound distribution Nextflow pipeline is 
open source and ​freely​ distributed under the MIT license via github.com/SamStudio8/elan-nextflow. 
The Swell program to calculate QC metrics from BAM depth files is open source and ​freely 
distributed under the MIT license via github.com/SamStudio8/swell. The Dehumanizer program to 
sanitize BAMs is open source and ​freely​ distributed under the MIT license via 
github.com/SamStudio8/dehumanizer. The PyENA program to upload BAMs to ENA is open 
source and ​freely​ distributed under the MIT license via github.com/SamStudio8/pyena.  
 
The Grapevine phylogenetics Snakemake pipeline is open source and available for download via 
github.com/COG-UK/grapevine. The ARTIC data processing Nextflow pipeline is open source and 
available for download via github.com/connor-lab/ncov2019-artic-nf. 
 
Consensus SARS-CoV-2 genomes are routinely deposited into GISAID and also made available 
via cogconsortium.uk/data. COG-UK data can be explored using a Microreact instance available at 
microreact.org/project/cogconsortium​. Human-filtered sequencing data for COG-UK are routinely 
deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession PRJEB37886. 
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Supplementary information 

Full COG-UK metadata specification 

 

Data item  Field name  Description 

Access level 
(Public, 

Consortium or 
Restricted) 

Mandatory  Implementation 

Sample identifiers 

Central Sample 
ID 

central_sample_i
d 

A unique 
identifier to refer 
to the sample 
within the 
consortium 

Public  Yes  Tier 1 database 
model 
(biosample) 

COG-UK 
Patient ID 

biosample_sourc
e_id 
 
 
 
 

A unique 
identifier to refer 
to the person 
who was 
sampled within 
the consortium 

Consortium  No  Tier 1 database 
model 
(biosample 
source) 

PHA sample ID  root_sample_id  If available, the 
identifier 
assigned to the 
sample by one of 
the four public 
health agencies 

Restricted  No  Tier 1 database 
model 
(biosample) 

Local sample ID  sender_sample_i
d 

The identifier 
used to refer to 
this sample at 
the laboratory 
that submitted 
the sample to the 
consortium 

Restricted  No  Tier 1 database 
model 
(biosample) 

Sample details 

Date of sample 
(collected) 

collection_date  The date the 
sample was 
collected 

Public  Yes (otherwise 
received_date) 

Tier 1 database 
model 
(biosample 
collection) 

Date of sample 
(received) 

received_date  The earliest date 
that this sample 
was known to be 
checked in to a 
diagnostic or 
sequencing 
laboratory 

Public  No (unless 
collection_date 
is not provided) 

Tier 1 database 
model 
(biosample 
collection) 

Collecting 
organisation 

collecting_org  The full name of 
the organisation 
that collected the 
sample 

Consortium  No  Tier 1 database 
model 
(biosample 
collection) 

Sampling 
strategy 

is_surveillance  Whether this 
sample was 
collected as part 

Consortium  Yes  Tier 2 database 
model (COG-UK 
biosample 
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of a random 
surveillance 
strategy, or a 
targeted 
outbreak analysis 

collection 
supplement) 

Sample type 
collected 

sample_type_col
lected 

Type of sample 
at collection 

Consortium  No  Tier 1 database 
model 
(biosample 
collection) 

Swab site  swab_site  Site of swab  Consortium  No  Tier 1 database 
model 
(biosample 
collection) 

Sample type 
received 
 

sample_type_rec
eived 

Type of sample 
received by 
sequencing lab 

Consortium  No  Tier 1 database 
model 
(biosample 
collection) 

Ct value  ct_N_ct_value  Observed cycle 
threshold value 
for Ct test N 

Consortium  No  Tier 2 database 
model (cycle 
threshold metric) 

Ct test kit  ct_N_test_kit  Kit used to 
prepare Ct test N 

Consortium  No  Tier 2 database 
model (cycle 
threshold metric) 

Ct test platform  ct_N_test_platfor
m 

Platform used to 
conduct Ct test 
N 

Consortium  No  Tier 2 database 
model (cycle 
threshold metric) 

Ct test target  ct_N_test_target  Gene target of Ct 
test N 

Consortium  No  Tier 2 database 
model (cycle 
threshold metric) 

Demographics and employment 

UK nation  adm1  The country 
within the United 
Kingdom in 
which the 
sample was 
collected 

Public  Yes  Tier 1 database 
model 
(biosample 
collection) 

County  adm2  The county 
within the United 
Kingdom in 
which the 
sample was 
collected 

Consortium  Strongly 
recommended 

Tier 1 database 
model 
(biosample 
collection) 

Outer postcode  adm2_private 
 

The outer 
postcode of the 
home address 
for the sampled 
person 

Consortium  No  Tier 1 database 
model 
(biosample 
collection) 

Age  source_age  Patient age  Consortium  No  Tier 1 database 
model 
(biosample 
collection) 

Sex  source_sex  Patient sex  Consortium  No  Tier 1 database 
model 
(biosample 
collection) 
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Healthcare 
worker 

is_hcw  Is the sample 
from a health 
care worker? 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Employing 
hospital 

employing_hospi
tal_name 

Name of the 
hospital if a 
health care 
worker who 
works in a 
hospital. 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Employing trust 
/ board 

employing_hospi
tal_trust_or_boar
d 

Name of the trust 
/ health board if 
a health care 
worker who 
works in a 
hospital. 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Care home 
worker 

is_care_home_w
orker 

Is the sample 
from a care 
home worker? 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Care home 
resident 

is_care_home_re
sident 

Is the sample 
from a care 
home resident? 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Care home ID  anonymised_car
e_home_code 

Locally assigned 
anonymous code 
(up to ten 
characters) that 
links samples 
from the same 
care home. 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Case severity and outcome 

Hospitalisation  is_hospital_patie
nt 

Is the sample 
from an admitted 
hospital patient? 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Date of 
admission 

admitted_date  Date of 
admission to 
hospital 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Admitting 
hospital 

admitted_hospit
al_name 

Name of the 
hospital if a 
hospital patient. 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Admitting trust 
or board 

admitted_hospit
al_trust_or_boar
d 

Name of the trust 
/ health board if 
a hospital 
patient. 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 
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Admitted with 
COVID-19 
diagnosis 

admitted_with_c
ovid_diagnosis 

Was the patient 
admitted with a 
(suspected) 
diagnosis of 
COVID-19? 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Critical care 
admission 

is_icu_patient  Whether patient 
has been 
admitted to ICU 
before sample 
collection 

Restricted  No  Tier 2 database 
model (COG-UK 
biosample 
collection 
supplement) 

Sequencing Library 

Library name  library_name  A unique name 
for the library. 

Public  Yes  Tier 1 database 
model (library) 

Library layout  library_layout_con
fig 

Whether the run 
has single or 
paired reads 

Public  Yes  Tier 1 database 
model (library) 

Sequencing kit  library_seq_kit  The sequencing 
kit used 

Public  No  Tier 1 database 
model (library) 

Sequencing 
protocol 

library_seq_proto
col 

The sequencing 
protocol used 

Public  No  Tier 1 database 
model (library) 

Insert length  library_layout_ins
ert_length 

Nominal length of 
sequencing 
library insert. 
(Illumina only) 

Public  No  Tier 1 database 
model (library) 

Read length  library_layout_rea
d_length 

Nominal length of 
sequencing 
library reads 
(Illumina only) 

Public  No  Tier 1 database 
model (library) 

Library Central 
Sample ID 

biosample_N_cen
tral_sample_id 

Central sample ID 
for biosample N 
included in the 
library 

Public  Yes  Tier 2 database 
model (library 
record) 

Library selection  biosample_N_libr
ary_selection 

Selection / 
enrichment 
method for 
biosample N 
included in the 
library 

Public  Yes  Tier 2 database 
model (library 
record) 

Library source  biosample_N_libr
ary_source 

Source material 
for biosample N 
included in the 
library 

Public  Yes  Tier 2 database 
model (library 
record) 

Library strategy  biosample_N_libr
ary_strategy 

Library 
preparation 
strategy for 
biosample N 
included in the 
library 

Public  Yes  Tier 2 database 
model (library 
record) 

Primer version  biosample_N_libr
ary_primers 

The version of the 
primers used for 
biosample N 

Public  No  Tier 2 database 
model (library 
record) 
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included in the 
library 

Barcode  biosample_N_bar
code 

Barcode 
adaptor/number 
for biosample N 
included in the 
library 

Public  No  Tier 2 database 
model (library 
record) 

Sequencing run 

Run name  run_name  A unique name 
for the run 

Public  Yes  Tier 1 database 
model 
(sequencing run) 

Instrument make  instrument_make  Make of 
instrument used 

Public  Yes  Tier 1 database 
model 
(sequencing run) 

Instrument 
model 

instrument_model  Model of 
instrument used 

Public  Yes  Tier 1 database 
model 
(sequencing run) 

Flowcell ID  flowcell_id  Flowcell serial 
number 

Public  No  Tier 1 database 
model 
(sequencing run) 

Flowcell type  flowcell_type  Flowcell 
description 

Public  No  Tier 1 database 
model 
(sequencing run) 

Start time  start_time  Start time of run  Public  No  Tier 1 database 
model 
(sequencing run) 

End time  end_time  End time of run  Public  No  Tier 1 database 
model 
(sequencing run) 

 

Table 3 ​ ​COG-UK full metadata standard 
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The COVID-19 Genomics UK (COG-UK) Consortium 
Funding acquisition, leadership, supervision, metadata curation, project administration, samples, logistics, 
Sequencing, analysis, and Software and analysis tools: 
 Thomas R Connor ​33, 34 ​, and Nicholas J Loman ​15​. 

 
Leadership, supervision, sequencing, analysis, funding acquisition, metadata curation, project administration, 
samples, logistics, and visualisation: 
 Samuel C Robson ​68​. 
 
Leadership, supervision, project administration, visualisation, samples, logistics, metadata curation and software 
and analysis tools:  
Tanya Golubchik ​27​. 
 
Leadership, supervision, metadata curation, project administration, samples, logistics sequencing and analysis:  
M. Estee Torok ​8, 10​. 
 
Project administration, metadata curation, samples, logistics, sequencing, analysis, and  software and analysis tools 
 William L Hamilton ​8, 10 ​. 

 
Leadership, supervision, samples logistics, project administration, funding acquisition sequencing and analysis: 
 David Bonsall ​27​. 

 
Leadership and supervision, sequencing, analysis, funding acquisition, visualisation and software and analysis tools: 
 Ali R Awan ​74​. 

 
Leadership and supervision, funding acquisition, sequencing, analysis, metadata curation, samples and logistics:  
Sally Corden ​33 ​. 

 

Leadership supervision, sequencing analysis, samples, logistics, and metadata curation:  
Ian Goodfellow ​11​. 

 
Leadership, supervision, sequencing,  analysis, samples, logistics, and Project administration:  
Darren L Smith ​60, 61​. 

 
Project administration, metadata curation, samples, logistics, sequencing and analysis: 
Martin D Curran ​14​, and Surendra Parmar ​14​. 

 
Samples, logistics, metadata curation, project administration sequencing and analysis:  
James G Shepherd ​21​. 

 
Sequencing, analysis, project administration, metadata curation and software and analysis tools:  
Matthew D Parker ​38​. 

 
Leadership, supervision, funding acquisition, samples, logistics, and metadata curation: 
Catherine Moore ​33 . 

 
Leadership, supervision, metadata curation, samples, logistics, sequencing and analysis: 
Derek J Fairley​6, 88​, Matthew W Loose ​54​, and Joanne Watkins ​33​.  

 
Metadata curation, sequencing, analysis, leadership, supervision and software and analysis tools:  
Matthew Bull ​33​ , and Sam Nicholls ​15 .  

 
Leadership, supervision, visualisation, sequencing, analysis and software and analysis tools:  
David M Aanensen ​1, 30 ​. 

 
Sequencing, analysis, samples, logistics, metadata curation, and visualisation:  
 Sharon Glaysher ​70 . 
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Metadata curation, sequencing, analysis, visualisation, software and analysis tools:  
 Matthew Bashton ​60​, and Nicole Pacchiarini ​33​.  
 
Sequencing, analysis, visualisation, metadata curation, and software and analysis tools ​: 
 Anthony P Underwood ​1, 30 ​. 

 
Funding acquisition, leadership, supervision and project administration: 
 Thushan I de Silva ​38​, and Dennis Wang ​38​. 

 
Project administration, samples, logistics, leadership and supervision ​: 
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Samples, logistics, metadata curation and project administration:  
Natasha G Jesudason ​21​, Kathy K Li MBBCh ​21​,  Rajiv N Shah ​21​, and Yusri Taha ​66​.  
 
Leadership, supervision, funding acquisition and metadata curation:  
 Kate E Templeton ​20​.  

 
Leadership, supervision, funding acquisition, sequencing and analysis:  
Simon Cottrell ​33​, Justin O’Grady ​51​, Andrew Rambaut ​19​, and Colin P Smith ​93​. 
 
Leadership, supervision, metadata curation, sequencing and analysis: 
Matthew T.G. Holden ​87​, and Emma C Thomson ​21​.  
 
Leadership, supervision, samples, logistics and metadata curation ​:  
 Samuel Moses ​81, 82 ​. 
 
Sequencing, analysis, leadership, supervision, samples and logistics:  
Meera Chand ​7​, Chrystala Constantinidou ​71​, Alistair C Darby ​46​, Julian A Hiscox ​46​, Steve Paterson ​46​, and Meera 
Unnikrishnan ​71​. 

 
Sequencing, analysis, leadership and supervision and software and analysis tools:  
 Andrew J Page ​51​, and Erik M Volz ​96​.  

 
Samples, logistics, sequencing, analysis and metadata curation:  
Charlotte J Houldcroft ​8​, Aminu S Jahun ​11​,  James P McKenna ​88​, Luke W Meredith ​11​, Andrew Nelson ​61​, Sarojini Pandey 
72​, and Gregory R Young ​60​. 

 
Sequencing, analysis, metadata curation, and software and analysis tools:  
 Anna Price ​34​,  Sara Rey ​33​, Sunando Roy ​41​, Ben Temperton ​49​, and Matthew Wyles ​38​. 

 
Sequencing, analysis, metadata curation and visualisation:  
Stefan Rooke​19​, and Sharif Shaaban ​87​. 

 
Visualisation, sequencing, analysis and software and analysis tools:  
Helen Adams ​35​, Yann Bourgeois ​69​,  Katie F Loveson ​68​, Áine O'Toole ​19​, and Richard Stark ​71​. 

 
Project administration, leadership and supervision:  
Ewan M Harrison ​1, 3 ​, David Heyburn ​33​, and Sharon J Peacock ​2, 3 

 
Project administration and funding acquisition:  
 David Buck ​26 ​, and Michaela John ​36 

 
Sequencing, analysis and project administration:  
Dorota Jamrozy ​1​,  and Joshua Quick ​15 
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Samples, logistics, and project administration:  
Rahul Batra ​78​, Katherine L Bellis ​1, 3​, Beth Blane ​3​ , Sophia T Girgis ​3​, Angie Green ​26​, Anita Justice ​28​ , Mark Kristiansen ​41 
, and Rachel J Williams ​41​. 

 
Project administration, software and analysis tools:  
Radoslaw Poplawski ​15​. 

 
Project administration and visualisation:  
Garry P Scarlett ​69​. 

 
Leadership, supervision, and funding acquisition:  
 John A Todd ​26​, Christophe Fraser ​27​, Judith Breuer ​40,41​, Sergi Castellano ​41​, Stephen L Michell ​49​, Dimitris 
Gramatopoulos ​73​, and Jonathan Edgeworth ​78​. 
 
Leadership, supervision and metadata curation:  
Gemma L Kay ​51​. 

 
Leadership, supervision, sequencing and analysis:  
Ana da Silva Filipe ​21​ , Aaron R Jeffries ​49​, Sascha Ott ​71​, Oliver Pybus ​24​, David L Robertson ​21​, David A Simpson ​6 ​, and 
Chris Williams ​33​. 

 
Samples, logistics, leadership and supervision:  
Cressida Auckland ​50​, John Boyes ​83​, Samir Dervisevic ​52​ , Sian Ellard ​49, 50 ​, Sonia Goncalves ​1​, Emma J Meader ​51​, Peter 
Muir ​2​, Husam Osman ​95​, Reenesh Prakash ​52​, Venkat Sivaprakasam ​18​, and Ian B Vipond ​2​. 

 
Leadership, supervision and visualisation  
Jane AH Masoli ​49, 50​. 

 
Sequencing, analysis and metadata curation  
Nabil-Fareed Alikhan ​51​, Matthew Carlile ​54​, Noel Craine ​33​, Sam T Haldenby ​46​, Nadine Holmes ​54​, Ronan A Lyons ​37​, 
Christopher Moore ​54​, Malorie Perry ​33​ , Ben Warne ​80​, and Thomas Williams ​19​.  
 
Samples, logistics and metadata curation:  
Lisa Berry ​72​, Andrew Bosworth ​95 ​, Julianne Rose Brown ​40​, Sharon Campbell ​67​, Anna Casey ​17​, Gemma Clark ​56​, Jennifer 
Collins ​66​, Alison Cox ​43, ​ ​44 ​, Thomas Davis ​84​, Gary Eltringham ​66​, Cariad Evans ​38, 39​ , Clive Graham ​64​, Fenella Halstead ​18​, 
Kathryn Ann Harris ​40​, Christopher  Holmes ​58​,  Stephanie Hutchings ​2​ , Miren Iturriza-Gomara ​46​, Kate Johnson ​38, 39​, 
Katie Jones ​72​, Alexander J Keeley ​38​, Bridget A Knight ​49, 50​, Cherian Koshy​90​,  Steven Liggett ​63​,  Hannah Lowe ​81​ , Anita O 
Lucaci ​46 ​, Jessica Lynch ​25, 29 ​ , Patrick C McClure ​55​, Nathan Moore ​31​ , Matilde Mori ​25, 29, 32​ , David G Partridge ​38, 39​ , 
Pinglawathee Madona ​43, 44 ​ ,  Hannah M Pymont ​2​, Paul Anthony Randell ​43, 44​ , Mohammad Raza ​38, 39​ ,  Felicity Ryan ​81​ , 
Robert Shaw ​28​, Tim J Sloan ​57​, and Emma Swindells ​65 ​. 

 
Sequencing, analysis, Samples and logistics:  
Alexander Adams ​33​, Hibo Asad  ​33​, Alec Birchley ​33​ , Tony Thomas Brooks ​41​, Giselda Bucca ​93​, Ethan Butcher ​70​, Sarah L 
Caddy ​13​, Laura G Caller ​2, 3, 12 ​, Yasmin Chaudhry ​11​, Jason Coombes ​33​, Michelle Cronin ​33​,  Patricia L Dyal ​41​, Johnathan 
M Evans ​33​, Laia Fina ​33​, Bree Gatica-Wilcox ​33​, Iliana Georgana  ​11​, Lauren Gilbert ​33​ , Lee Graham ​33​, Danielle C Groves 
38​, Grant Hall ​11​, Ember Hilvers ​33​, Myra Hosmillo ​11​, Hannah Jones ​33​, Sophie Jones ​33​, Fahad A Khokhar ​13​ , Sara 
Kumziene-Summerhayes ​33​, George MacIntyre-Cockett ​26​, Rocio T Martinez Nunez ​94​, Caoimhe McKerr ​33​, Claire 
McMurray ​15​, Richard Myers ​7​, Yasmin Nicole Panchbhaya ​41​, Malte L Pinckert ​11​ , Amy Plimmer ​33​ , Joanne Stockton ​ 15​ , 
Sarah Taylor ​33​ , Alicia Thornton ​7​ , Amy Trebes ​26​ , Alexander J Trotter ​51​ ,Helena Jane Tutill ​41​ ,Charlotte A Williams ​41​ , 
Anna Yakovleva ​11​ and Wen C Yew ​62​. 
 
Sequencing, analysis and software and analysis tools:  
Mohammad T Alam  ​71​, Laura Baxter ​71​, Olivia Boyd ​96​ , Fabricia F. Nascimento ​96​,  Timothy M Freeman ​38​, Lily 
Geidelberg ​96​, Joseph Hughes ​21​, David Jorgensen ​96​, Benjamin B Lindsey ​38​, Richard J Orton ​21​ , Manon Ragonnet-Cronin 
96​ Joel Southgate ​33, 34, ​ and Sreenu Vattipally ​21​. 

 
Samples, logistics and software and analysis tools:  
Igor Starinskij  ​23​. 
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Visualisation  and software and analysis tools:  
Joshua B Singer ​21​ , Khalil Abudahab ​1, 30 ​, Leonardo de Oliveira Martins ​51​ , Thanh Le-Viet ​51​ ,Mirko Menegazzo ​30​ ,Ben 
EW Taylor ​1, 30​, and Corin A Yeats ​30​.  

 
Project Administration:  
Sophie Palmer  3​, Carol M Churcher ​3​ , Alisha Davies ​33​, Elen De Lacy ​33​, Fatima Downing ​33​,  Sue Edwards ​33 ​, Nikki 
Smith  ​38​ , ​Francesc​ Coll ​97​ , Nazreen F Hadjirin ​3  ​and Frances Bolt ​44, 45​. 

 
Leadership and supervision:  
Alex Alderton ​1​,  Matt Berriman ​1​, Ian G Charles ​51​, Nicholas Cortes ​31​, Tanya Curran ​88​, John Danesh ​1​, Sahar Eldirdiri ​84​, 
Ngozi Elumogo ​52​, Andrew Hattersley ​49, 50 ​, Alison Holmes ​44, 45​, Robin Howe ​33​, Rachel Jones ​33​, Anita Kenyon ​84​, Robert 
A Kingsley ​51​, Dominic Kwiatkowski ​1, 9 ​, Cordelia Langford ​1​, Jenifer Mason ​48​, Alison E Mather ​51​, Lizzie Meadows ​51​, Sian 
Morgan ​36​, James Price ​44, 45 ​,  Trevor I Robinson ​48​, Giri Shankar​ 33​ , John Wain ​51​, and Mark A Webber ​51​. 
 
Metadata curation:  
Declan T Bradley ​5, 6 ​, Michael R Chapman ​1, 3, 4 ​ , Derrick Crooke ​28 ​, David Eyre ​28​, Martyn Guest ​34​ , Huw Gulliver ​34​, Sarah 
Hoosdally ​28​, Christine Kitchen ​34​, Ian Merrick ​34​, Siddharth Mookerjee ​44, 45​,  Robert Munn ​34​ , Timothy Peto ​28​, Will 
Potter​ 52​, Dheeraj K Sethi ​52​, Wendy Smith ​56​ , Luke B Snell ​75, 94​, Rachael Stanley ​52​ , Claire Stuart ​52​ and Elizabeth 
Wastenge ​20​. 

 
Sequencing and analysis:  
Erwan Acheson ​6​ , Safiah Afifi ​36​ , Elias Allara  ​2, 3 ​ , Roberto Amato ​1​, Adrienn Angyal ​38​, Elihu Aranday-Cortes ​21​ , Cristina 
Ariani ​1​, Jordan Ashworth ​19​, Stephen Attwood ​24​, Alp Aydin ​51​, David J Baker ​51​, Carlos E Balcazar ​19​, Angela Beckett 68 
Robert Beer ​36​, Gilberto Betancor ​76​,  Emma Betteridge ​1​ , David Bibby ​7 ​, Daniel Bradshaw​7​ ,  Catherine Bresner  ​34​, 
Hannah E Bridgewater ​71​ , Alice Broos ​21​, Rebecca Brown ​38 ​, Paul E Brown ​71​, Kirstyn Brunker ​22​ , Stephen N Carmichael 
21​ , Jeffrey K. J. Cheng ​71​, Dr Rachel Colquhoun ​19​, Gavin Dabrera ​7​ , Johnny Debebe ​54​, Eleanor Drury ​1​, Louis du Plessis ​24 
, Richard Eccles ​46​, Nicholas Ellaby ​7​, Audrey Farbos ​49​, Ben Farr ​1​, Jacqueline Findlay​ 41​ , Chloe L Fisher ​74​, Leysa Marie 
Forrest ​41​, Sarah Francois ​24​, Lucy R. Frost​ 71​, William Fuller​34​ , Eileen Gallagher​ 7​, Michael D Gallagher ​19​ , Matthew 
Gemmell ​46​, Rachel AJ Gilroy ​51​, Scott Goodwin ​1​, Luke R Green ​38​, Richard Gregory ​46​ , Natalie Groves ​7​, James W 
Harrison ​49​, Hassan Hartman ​7 ​, Andrew R Hesketh ​93​,Verity Hill ​19​, Jonathan Hubb ​ 7​, Margaret Hughes ​46​ , David K 
Jackson ​1​ , Ben Jackson ​19​, Keith James ​1​ ,Natasha Johnson ​21​ ,Ian Johnston ​1​, Jon-Paul Keatley​ 1​, Moritz Kraemer ​24​, 
Angie Lackenby ​7​, Mara Lawniczak ​1​ , David Lee​ 7​, Rich Livett ​1​, Stephanie Lo ​1​, Daniel Mair ​21​, Joshua Maksimovic ​36​, 
Nikos Manesis ​7 ​, Robin Manley ​49​, Carmen Manso ​7​, Angela Marchbank ​34​ , Inigo Martincorena ​1​ , Tamyo Mbisa ​7​, 
Kathryn McCluggage ​36​, JT McCrone ​19​, Shahjahan Miah ​7​ , Michelle L Michelsen ​49​, Mari Morgan ​33​, Gaia Nebbia 
78​,Charlotte Nelson ​46​ ,Jenna Nichols ​21​ ,Paola Niola ​41​ , Kyriaki Nomikou ​21​ ,Steve Palmer ​1 ​, Naomi Park ​1​, Yasmin A Parr 
1​ , Paul J Parsons ​38​ , Vineet Patel ​7​ , Minal Patel ​1​ ,Clare Pearson ​2, 1​, Steven Platt ​7​ ,Christoph Puethe ​1​, Mike Quail 

1​,Jayna Raghwani ​24​ , Lucille Rainbow ​46 ​,Shavanthi Rajatileka ​1​, Mary Ramsay ​7​ , Paola C Resende Silva ​41, 42​, Steven 
Rudder 51, Chris Ruis ​3​ , Christine M Sambles ​49​, Fei Sang ​54​, Ulf Schaefer​7​, Emily Scher ​19​, Carol Scott​ 1​ ,Lesley Shirley ​1​, 
Adrian W Signell ​76​, John Sillitoe ​1​ ,Christen Smith ​ 1​ ,Dr Katherine L Smollett ​ 21​ ,Karla Spellman ​36​ ,Thomas D Stanton ​19​, 
David J Studholme ​49​ ,Grace Taylor-Joyce ​71​ ,Ana P Tedim ​51​, Thomas Thompson ​6​, Nicholas M Thomson ​51​, Scott 
Thurston ​1 ​, Lily Tong ​21​, Gerry Tonkin-Hill ​1​, Rachel M Tucker ​38​ , Edith E Vamos ​4​, Tetyana Vasylyeva​24​, Joanna 
Warwick-Dugdale ​49​ , Danni Weldon ​1​, Mark Whitehead ​46​, David Williams ​7​, Kathleen A Williamson ​19​,Harry D Wilson 
76​,Trudy Workman ​34​, Muhammad Yasir​51​, Xiaoyu Yu ​ 19​, and Alex Zarebski ​24​.  

 
Samples and logistics:  
Evelien M Adriaenssens ​51​, Shazaad S Y Ahmad ​2, 47​ , Adela Alcolea-Medina ​59, 77​, John Allan ​60​, Patawee Asamaphan ​21​, 
Laura Atkinson ​40​,  Paul Baker ​63​, Jonathan Ball ​55​, Edward Barton ​64​, Mathew A Beale ​1​, Charlotte Beaver​1​, Andrew Beggs 
16​, Andrew Bell ​51​, Duncan J Berger ​1​, Louise Berry. ​56​, Claire M Bewshea ​49​, Kelly Bicknell ​70​, Paul Bird ​58​, Chloe Bishop ​ 7​ , 
Tim Boswell ​56​, Cassie Breen ​48​, Sarah K Buddenborg​1​, Shirelle Burton-Fanning ​66 ​, Vicki Chalker ​7​,  Joseph G Chappell ​55​, 
Themoula Charalampous  ​78, 94 ​, Claire Cormie​3​, Nick Cortes ​29, 25​, Lindsay J Coupland ​52​, Angela Cowell ​48​ , Rose K 
Davidson ​53 ​, Joana Dias ​3​, Maria Diaz ​51​ , Thomas Dibling​1​, Matthew J Dorman ​1​, Nichola Duckworth ​57​, Scott Elliott​70​, 
Sarah Essex ​63​, Karlie Fallon ​58​ , Theresa Feltwell ​8​, Vicki M  Fleming ​56​, Sally Forrest ​3​, Luke Foulser​1​, Maria V 
Garcia-Casado ​1​, Artemis Gavriil  ​41​, Ryan P George ​47​, Laura Gifford ​33​, Harmeet K Gill ​3​, Jane Greenaway ​65​, Luke 
Griffith ​53​, Ana Victoria Gutierrez​51​, Antony D Hale ​85​, Tanzina Haque ​91​, Katherine L Harper ​85​, Ian Harrison ​ 7​ , Judith 
Heaney ​89​, Thomas Helmer ​58​, Ellen E Higginson ​3​ , Richard Hopes ​2​, Hannah C Howson-Wells ​56​, Adam D Hunter ​1​, 
Robert Impey​ 70​, Dianne Irish-Tavares ​91​, David A Jackson ​1​ , Kathryn A Jackson ​46​, Amelia Joseph ​56​, Leanne Kane ​1​, Sally 
Kay ​1​, Leanne M Kermack ​3​, Manjinder Khakh ​56​, Stephen P Kidd ​29, 25,31​, Anastasia Kolyva ​51​, Jack CD Lee ​40​, Laura 
Letchford ​1​ , Nick Levene ​79​, Lisa J Levett ​89​, Michelle M Lister ​56​, Allyson Lloyd ​70​, Joshua Loh ​60​ , Louissa R 
Macfarlane-Smith ​85​, Nicholas W Machin ​2 , 47 ​, Mailis Maes ​3​, Samantha McGuigan ​1​, Liz McMinn ​1​, Lamia 
Mestek-Boukhibar ​41​, Zoltan Molnar ​6​, Lynn Monaghan ​79​, Catrin Moore ​27​, Plamena Naydenova ​3​, Alexandra S 
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Neaverson ​1​, Rachel Nelson ​1​, Marc O Niebel ​21​ , Elaine O'Toole​48​ , Debra Padgett ​64​, Gaurang Patel ​1​ , Brendan AI Payne 
66​, Liam Prestwood ​1​, Veena Raviprakash ​67​, Nicola Reynolds ​86​, Alex Richter ​16​, Esther Robinson ​95​, Hazel A Rogers ​1​, 
Aileen Rowan ​96​, Garren Scott ​64​, Divya Shah ​40​, Nicola Sheriff ​67​, Graciela Sluga, Emily Souster​1​, Michael 
Spencer-Chapman ​1​, Sushmita Sridhar ​1, 3 ​, Tracey Swingler ​53​, Julian Tang​58​, Graham P Taylor​96​, Theocharis Tsoleridis ​55​, 
Lance Turtle​46​, Sarah Walsh ​57​, Michelle Wantoch ​86​, Joanne Watts ​48 ​, Sheila Waugh ​66​, Sam Weeks ​41​, Rebecca 
Williams ​31​, Iona Willingham​56​, Emma L Wise ​25, 29, 31 ​,  Victoria Wright ​54​, Sarah Wyllie ​70​,  and Jamie Young ​3​. 
 
Software and analysis tools  
Amy Gaskin ​33​, Will Rowe ​15​, and Igor Siveroni ​96​.  
 
Visualisation:  
Robert Johnson ​96​.  
 
1​ Wellcome Sanger Institute, ​2​ Public Health England, ​3​ University of Cambridge, ​4​ Health Data Research UK, Cambridge, ​5 ​ Public Health Agency, 
Northern Ireland ,​6​ Queen's University Belfast ​7 ​ Public Health England Colindale, ​8​ Department of Medicine, University of Cambridge, ​9​ University 
of Oxford, ​10​ Departments of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust; Cambridge, UK, ​11 
Division of Virology, Department of Pathology, University of Cambridge, ​12​ The Francis Crick Institute, ​13 ​Cambridge Institute for Therapeutic 
Immunology and Infectious Disease, Department of Medicine, ​14 ​Public Health England, Clinical Microbiology and Public Health Laboratory, 
Cambridge, UK, ​15 ​ Institute of Microbiology and Infection, University of Birmingham, ​16 ​University of Birmingham, ​17​ Queen Elizabeth Hospital, ​18 
Heartlands Hospital, ​19​ University of Edinburgh, ​20​ NHS Lothian, ​21​ MRC-University of Glasgow Centre for Virus Research, ​22​ Institute of 
Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, ​23​ West of Scotland Specialist Virology Centre, ​24​ Dept Zoology, 
University of Oxford, ​25 ​University of Surrey, ​26 ​ Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, ​27 
Big Data Institute, Nuffield Department of Medicine, University of Oxford, ​28​ Oxford University Hospitals NHS Foundation Trust, ​29​ Basingstoke 
Hospital, ​30​ Centre for Genomic Pathogen Surveillance, University of Oxford, ​31​ Hampshire Hospitals NHS Foundation Trust, ​32​ University of 
Southampton, ​33​ Public Health Wales NHS Trust, ​34 ​Cardiff University, ​35​ Betsi Cadwaladr University Health Board, ​36​ Cardiff and Vale University 
Health Board, ​37​ Swansea University, ​38 ​ University of Sheffield, ​39​ Sheffield Teaching Hospitals, ​40​ Great Ormond Street NHS Foundation Trust, ​41 
University College London, ​42​ Oswaldo Cruz Institute, Rio de Janeiro ​43​ North West London Pathology, ​44​ Imperial College Healthcare NHS Trust, ​45 
NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, ​46 ​University of Liverpool, ​47​ Manchester University 
NHS Foundation Trust, ​48​ Liverpool Clinical Laboratories, ​49​ University of Exeter, ​50 ​ Royal Devon and Exeter NHS Foundation Trust, ​51​ Quadram 
Institute Bioscience, University of East Anglia, ​52​ Norfolk and Norwich University Hospital, ​53​ University of East Anglia, ​54​ Deep Seq, School of Life 
Sciences, Queens Medical Centre, University of Nottingham, ​55 ​Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, 
56 ​ Clinical Microbiology Department, Queens Medical Centre, ​57​ PathLinks, Northern Lincolnshire & Goole NHS Foundation Trust, ​58​ Clinical 
Microbiology, University Hospitals of Leicester NHS Trust, ​59​ Viapath, ​60​ Hub for Biotechnology in the Built Environment, Northumbria University, 
61 ​ NU-OMICS Northumbria University, ​62 ​ Northumbria University, ​63 ​ South Tees Hospitals NHS Foundation Trust, ​64​ North Cumbria Integrated 
Care NHS Foundation Trust, ​65​ North Tees and Hartlepool NHS Foundation Trust, ​66 ​Newcastle Hospitals NHS Foundation Trust, ​67​ County Durham 
and Darlington NHS Foundation Trust, ​68 ​Centre for Enzyme Innovation, University of Portsmouth, ​69​ School of Biological Sciences, University of 
Portsmouth, ​70​ Portsmouth Hospitals NHS Trust, ​71​ University of Warwick, ​72 ​ University Hospitals Coventry and Warwickshire, ​73​ Warwick Medical 
School and Institute of Precision Diagnostics, Pathology, UHCW NHS Trust, ​74 ​Genomics Innovation Unit, Guy's and St. Thomas' NHS Foundation 
Trust, ​75 ​ Centre for Clinical Infection & Diagnostics Research, St. Thomas' Hospital and Kings College London, ​76​ Department of Infectious Diseases, 
King's College London, ​77 ​Guy's and St. Thomas’ Hospitals NHS Foundation Trust, ​78​ Centre for Clinical Infection and Diagnostics Research, 
Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, ​79 ​Princess Alexandra Hospital Microbiology Dept. ,​ 80​ Cambridge 
University Hospitals NHS Foundation Trust, ​81​ East Kent Hospitals University NHS Foundation Trust, ​82 ​University of Kent, ​83 ​ Gloucestershire 
Hospitals NHS Foundation Trust, ​84​ Department of Microbiology, Kettering General Hospital, ​85​ National Infection Service, PHE and Leeds Teaching 
Hospitals Trust, ​86​ Cambridge Stem Cell Institute, University of Cambridge, ​87​ Public Health Scotland, 88 Belfast Health & Social Care Trust, ​89 
Health Services Laboratories, ​90​ Barking, Havering and Redbridge University Hospitals NHS Trust, ​91​ Royal Free NHS Trust, ​92​ Maidstone and 
Tunbridge Wells NHS Trust, ​93 ​University of Brighton, ​94​ Kings College London, ​95​ PHE Heartlands, ​96​ Imperial College London, ​97​ Department of 
Infection Biology, London School of Hygiene and Tropical Medicine. 
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