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Abstract

Group-level brain connectome analysis has attracted increasing interest in neuropsy-

chiatric research with the goal of identifying connectomic subnetworks (subgraphs) that

are systematically associated with brain disorders. However, extracting disease-related

subnetworks from the whole brain connectome has been challenging, because no prior

knowledge is available regarding the sizes and locations of the subnetworks. In addition,

neuroimaging data is often mixed with substantial noise that can further obscure infor-

mative subnetwork detection. We propose a likelihood-based adaptive dense subgraph

discovery (ADSD) model to extract disease-related subgraphs from the group-level

whole brain connectome data. Our method is robust to both false positive and false

negative errors of edge-wise inference and thus can lead to a more accurate discovery of

latent disease-related connectomic subnetworks. We develop computationally efficient

algorithms to implement the novel ADSD objective function and derive theoretical re-

sults to guarantee the convergence properties. We apply the proposed approach to a

brain fMRI study for schizophrenia research and identify well-organized and biologically
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meaningful subnetworks that exhibit schizophrenia-related salience network centered

connectivity abnormality. Analysis of synthetic data also demonstrates the superior

performance of the ADSD method for latent subnetwork detection in comparison with

existing methods in various settings.

Keywords: brain connectome, densest subgraph, likelihood-based criterion, network topol-

ogy, permutation test, schizophrenia

1 Introduction

Brain connectome analysis has become a powerful tool to understand the neurophysiology

and neuropathology of brain diseases at a circuit level. These analyses focused on investigat-

ing patterns of functional and/or structural inter-connections between neural populations in

the central nervous system associated with symptomatic phenotypes. Mounting evidence has

shown that major neuropsychiatric disorders, including schizophrenia, Alzheimer’s disease,

and autism among others, are associated with disrupted structural and functional connec-

tivity patterns (Fornito et al., 2012).

Recent advances in neuroimaging statistics have facilitated group-level statistical analysis

of structural and functional brain connectome data and the identification of disease-related

brain connectome patterns (Biswal et al., 2010, Cao et al., 2019, Chen et al., 2019). In these

analyses, the brain is often depicted as a graph (Bullmore and Bassett, 2011), where each

node corresponds to a brain region of interest (ROI) and an edge represents the connectivity

linking any two nodes. An edge can represent functional connectivity based on functional

magnetic resonance imaging (fMRI) data at rest or task, structural connectivity measur-

ing white matter track connections, and weighted connection metric integrating multimodal

brain connectivity (Bowman et al., 2012). These multivariate edges are the variables of inter-

est in brain connectome analysis, which are constrained by the nodes in a weighted adjacency

matrix and thus exhibit network topological properties (Chen et al., 2020). Statistical in-

ference for multivariate edge variables in an adjacency matrix remains challenging because

of the need to account for multiple testing corrections and network topological structures

simultaneously. Many statistical graph models have been developed and successfully applied
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to brain connectome data analysis yielding important findings (Vogelstein et al., 2012, Du-

rante et al., 2018, Ghoshdastidar and von Luxburg, 2018, Ginestet et al., 2017, Higgins et al.,

2019, Kundu et al., 2018, Lukemire et al., 2017, Mejia et al., 2019, Simpson et al., 2019, Xia

and Li, 2017, Xia and Li, 2018 among many).

The current study focuses on extracting informative/signal subgraphs that are likely

related to brain diseases from the whole brain connectome (Vogelstein et al., 2012). Our

overarching goal is to accurately capture underlying signal subnetworks, such that the ex-

tracted subnetworks i) cover a high proportion of true positive edges (i.e., high sensitivity);

(ii) include a few false positive edges (i.e., low false discovery rate (FDR)); and iii) are com-

posed of highly organized network topological structures (i.e., biologically interpretable). In

practice, however, this task is challenging because it is difficult to simultaneously balance

the sensitivity and false positive findings while constraining all positive edges in organized

subgraphs. The ‘dense’ subnetwork detection then becomes attractive because a subgraph of

a small number of nodes in an organized network topological structure covering most signal

edges can also lead to low FDR and high sensitivity. Although less discussed in the statis-

tical literature, dense subgraph discovery in the field of computer science research has been

carefully worked out (Lee et al., 2010), and thus may suit our needs for statistical analysis

of brain connectome data.

Dense subgraph discovery methods are designed to identify a subgraph with a maximal

density among all possible subgraphs, in short, the densest subgraph, in a binary graph.

These methods rely on the assumption that the overall graph is non-random and there

exists some subgraph where the edge ratios are much higher than the rest of the graph.

Goldberg (1984) reduces the problem to a sequence of max-flow/min-cut computations,

which requires a logarithmic number of min-cut calls. Asahiro et al. (1996) propose a simple

and fast greedy algorithm that is showed to have a 2-approximation guarantee by Charikar

(2000). Nevertheless, existing dense subgraph discovery algorithms may not be directly

applicable to our analysis due to the substantial noise in the group level brain connectome

data. As demonstrated in Figure 1a, there may exist an enormous amount of false positive

and false negative errors in edge-wise inference results that give rise to the difficulty of

detecting dense subgraph using existing methods. Specifically, due to the noise, existing
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dense subgraph discovery algorithms tend to either identify over-sized subgraphs that may

include a large proportion of false positive edges with low importance levels (high FDR) or

detect over-conservative small-sized subgraphs that may not sufficiently cover signal edges

(low sensitivity, Tsourakakis et al., 2013). Moreover, the computational cost of many these

dense subgraph density discovery algorithms is expensive, which may lead to intractable

computational time for commonly used statistical inference methods for brain connectome

analysis (e.g., permutation tests). Hence, we are motivated to integrate modern statistical

techniques into dense graph discovery and mitigate these challenges for brain connectivity

network analysis.

We propose a likelihood-based adaptive dense subgraph discovery (ADSD) model to ex-

tract informative connectomic subnetworks accurately. The new objective function is robust

to edge-wise false positive and false negative noise by introducing a tuning parameter to

balance the area density and degree density (Tsourakakis et al., 2013). We optimize the

tuning parameter objectively by maximizing the widely used likelihood function in statis-

tical network/graph model (e.g. stochastic block model, Holland et al., 1983, Zhao et al.,

2012, Zhang et al., 2017). We develop efficient algorithms to implement the joint objective

function of the ADSD. We further derive theoretical results which guarantee the approxima-

tion properties for any fixed graph and consistency for large graphs based on the proposed

algorithm. We can perform permutation tests to yield statistical significance of extracted

subgraphs (Ge et al., 2012, and Zalesky et al., 2010). We perform extensive simulation

studies to validate the proposed model and theoretical conclusions. The results demonstrate

improved accuracy of informative subgraph detection in various settings. Our method is

then applied to a resting state fRMI (rfRMI) brain connectomic study for schizophrenia

research. The results of our real data analysis reveal for the first time systematic aberrant

salience network centered connectivity patterns in schizophrenia patients using whole brain

connectome network analysis. Although some of our findings coincide with previous studies

using seed voxel-based method, our analysis is more comprehensive and less biased, because

it does not require pre-selected seed sets or focuses on exclusively known networks.
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2 Methods

2.1 Background: group-level inference for multivariate edges in a

graph space

Let G = (V,E) be an undirected graph, where V = {vi}ni=1 is a set of nodes representing

brain areas and ROIs, and E = {eij}ni<j denotes the set of edges between pairs of nodes (i.e,

connections between brain areas). G′ = (V ′, E ′) is a subgraph of G if V ′ ⊂ V and E ′ ⊂ E.

Then, G(S) = (S,E(S)) is a ‘nodes-induced’ subgraph if S ⊂ V and E(S) = {(u, v) ∈

E|u, v ∈ S} being edges in E with endpoints in S. We use (Yk, Xk)Kk=1 to represent the group-

level multivariate edge data in a graph space G = (V,E), where k = 1, · · · , K is the subject

index. Yk
n×n represents the brain connectome data in a binary/weighted adjacency matrix

for subject k, and Xk is the corresponding vector of covariates (clinical and demographic

variables). We assume that the location of nodes and edges are identical across subjects

after spatial normalization. Thus, our goal is to perform statistical analysis and identify

phenotype-related subnetworks with high sensitivity and well-controlled FDR (Lukemire

et al., 2017, Kundu et al., 2018, Xia and Li, 2018, Vogelstein et al., 2012, Durante et al.,

2018). Figure 1a demonstrates the procedure of group-level inference for brain connectome

data.

Let W = {wij}ni,j=1 denote the edge-wise inference matrix based on graph G, where each

off diagonal entry wij represents the edge-wise statistical inference results on edge eij (e.g.,

test statistics tij and p values − log(pij)). For each edge eij, we denote a corresponding latent

indicator variable δij such that δij = 1 if edge eij is associated with the phenotype of interest

and δij = 0 otherwise. We consider the edge-wise inference results as our input data (Chen

et al., 2020).

The goal of group-level brain network analysis is to identify a set of subnetworks {Ĝc}

(Ĝc = (V̂c, Êc)) that are associated with a phenotype of interest, such that

1. Pr(δij = 1|eij ∈ Ĝc) > Pr(δij = 1|eij 6∈ Ĝc) (dense subgraph);

2. The false discovery rate (FDR),
∑

i<j I(δij=0|eij∈Ĝc))∑
i<j I(eij∈Ĝc))

, is low;

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.07.330027doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.330027
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Motivation for informative subgraph extraction: (a) demonstrates the process of
obtaining edge-wise inference matrix from the population level connectome data; (b)
illustrates the commonly used community detection results (e.g. using stochastic block
model) cannot detect any informative subgraph; (c) shows the results of existing dense
subgraph discovery results; (d) describes a desirable informative subgraph detection
procedure which can identify an organized and biologically interpretable topological
structure consisting of informative edges. The results in (d) are based on the ADSD
method (see details in the Results section).

(a) Edge-wise inference for
group-level connectome data

(b) Subgraph extraction by SBM
with K = 30

(c) Subgraph extraction by conventional
dense subgraph discovery

(d) Subgraph extraction by ADSD
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3. The sensitivity,
∑

i<j I(δij=1|eij∈Ĝc)∑
i<j I(δij=1)

, is high;

4. Ĝc is a well defined community (e.g., a node-induced subgraph that Ĝc = G(V̂c)).

In practice, the task above is challenging. For example, the mass univariate methods

including both FDR and family-wise error rate (FWER) controlling models apply an uni-

versal threshold on all edges, and yield a set of unrelated ‘significant’ edges. Thus, they

can neither address the trade-off between sensitivity and false positive findings by leveraging

the information of network or yield findings with an organized and biologically interpretale

network topological structure. The network based statistics (NBS) method allows edges bor-

row strengths from each other, yet it yields an unorganized subgraph (Zalesky et al., 2010,

Fornito et al., 2012). Moreover, the signal subnetwork detected by NBS includes all nodes

in G almost surely, i.e., G(Vc) = G, when n is larger than a handful of nodes (Erdős and

Rényi, 1960), and thus less interpretable.

We also notice that the proportion of true positive edges
∑
I(δij=1)

|E| in G is often small in

our motivated brain connectome data (e.g., around 5%), which may lead to the difficulty of

applying the commonly used network models (Chen et al., 2018). Figure 1b shows the results

of the application of stochastic block models (SBM) which miss the network topological

structure. Therefore, it is highly desirable to extract a ‘dense’ subgraph which is a node-

induced subgraph G(S0), such that the edge density ρs is much higher than the overall

density ρ:

ρs > kρ, k > 1, with ρs ,

∑
i<j,i,j∈S0

I(δij = 1)

|E(S0)|
and ρ ,

∑
i<j I(δij = 0)

|E|
,

and G(S0) includes most edges. The detected informative subgraph can either directly

become the subnetwork of interest or intermediate results for further refined network analysis

(e.g., using SBM).

2.1.1 Dense Subgraph Discovery

The conventional dense subgraph aims to detect a node-induced subgraph with maximized

density. Two popular definitions of density function are also referred as average degree and
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edge ratio (Asahiro et al., 1996, Charikar, 2000, Lee et al., 2010):

f1 =

∑
i<j,i,j∈S0

I(δij = 1)

|S0|
and f2 =

∑
i<j,i,j∈S0

I(δij = 1)

|E(S0)|

The edge ratio agrees with our goal for informative subgraph detection. However, the imple-

mentation of dense subgraph discovery is not trivial. The direct optimization of edge ratio f2

tends to detect a high-density subgraph with a tiny size (See Lemma 2 in supplementary for

details). Meanwhile, it has been known the optimization of f1 can lead to the detection of

an over-sized subgraph (Tsourakakis et al., 2013), which may cause a high false positive rate

for statistical inference. Figure 1c shows the results of conventional dense graph discovery

by optimizing f1. To address these challenges, we propose a likelihood based method for

dense subgraph discovery.

2.2 Adaptive dense subgraph discovery

We consider G = (V,E,W ) as our input data that stores edge-wise inference results in

a weighted adjacency matrix W . Our goal is to extract a phenotype-related informative

subgraph G(S) induced by nodes set S in the sense that E(wij|eij ∈ E(S)) � E(wij|eij /∈

E(S)) while maximally reducing false negative findings and improving the sensitivity.

To address the challenges in conventional dense subgraph discovery and improve the

balance of the trade-off, we propose an adaptive density function:

arg max
S⊂V

f(S;λ) :=
|W (S)|
|S|λ

(1)

where λ ∈ [1, 2] is a tuning parameter, such that when λ = 1 and 2, f(S;λ) density function

reduces to f1 and f2, respectively.

To better illustrate the impact of the tuning parameter λ on the FDR and sensitivity, we

transform the objective function (1) to:

arg max
S⊂V

{
log f2(S) + γ log

|W (S)|
|W (G)|

}
(2)

with γ ∈ [0, 1]. The optimal solution is approximated by f(S;λ) for large graphs with
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γ = 2
λ
− 1. The first term in (2) is the true discovery rate (1 − FDR), while the second

term is the sensitivity (power). In that, λ functions similarly to the tuning parameter in the

shrinkage methods (e.g., LASSO) since f1 is related to the loss function and f2 implements

the rule of parsimony. Increasing λ leads to a low FDR, while decreasing λ can improve the

sensitivity. Therefore, our objective function is tailored for the four items of our overarching

goal in the previous subsection.

In practice, both G(S) and λ need to be estimated, and λ is critical to balance the

trade-off between FDR and sensitivity. We propose an iterative procedure to optimize the

objective function (1) in subsection 2.2.1 and estimate λ in subsection 2.2.2. We name this

new procedure adaptive dense subgraph discovery (ADSD).

2.2.1 Optimization with a known λ

We implement the objective function (1) using a greedy algorithm. The greedy algorithm

has been the most commonly used technique to implement objective functions for dense

subgraph discovery (Asahiro et al., 1996, Charikar, 2000). Generally, a greedy algorithm

removes a node with the minimum-degree at each iteration, and then selects the optimal

dense subgraph from the process of node removal. The detailed procedure is described by

Algorithm (3).

Algorithm 1 Optimizing objective function (2) with a given λ

1: procedure Algorithm
S1 ← V

2: for k=1 to n− 1 do
3: let v be the node in G(Sk) with smallest degree: v = arg mini∈Sk

degG(Sk)
(i);

4: Sk+1 ← Sk/{v};
5: end for
6: Output the subgraph with largest objective function among G(S1), ..., G(Sn−1);
7: end procedure

We denote the optimal dense subgraph based on our objective function (1) with a given

λ by

S∗λ = arg max
S⊂V

f(S;λ),
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and the output of greedy algorithm as:

S̃λ = arg max
S1,...,Sn−1

f(S;λ).

A major advantage of the greedy algorithm is the low computational complexity, which

is critical for our application. Although our greedy algorithm may not provide the exact

solution, Charikar (2000) proved the greedy algorithm has a 2-approximation as to f1(·),

that is f1(S̃1) ≥ 2f1(S
∗
1), where S̃1 is the densest subgraph by greedy algorithm and S∗1 is the

true maximizer for f1(·). In Section 3, we prove the theoretical approximation properties of

S̃λ with regard to the maximization f(S∗;λ) for various values of λ.

2.2.2 Likelihood-based method for λ estimation

Clearly, the performance of our greedy algorithm (3) relies on the unknown parameter λ

(e.g. λ = 1 and 2 lead to the optimization f1(·) and f2(·) alone respectively). We propose a

data-driven approach to automatically determine λ by maximum likelihood estimation. In

statistical literature, the likelihood function of network/graph data has been well studied

(Zhang et al., 2017). For example, a binary graph with K block can be defined by:

Aij|θi = a, θj = b ∼ Bernoulli(πab)

where An×n is a binary adjacency matrix, θ = (θ1, ..., θn) is a latent vector of node labels,

and π = (πab)
K
a,b=1 is a K × K symmetric probability generating matrix for generative for

edges within and between blocks/communities.

We adopt the likelihood function of SBM because the dense subgraph structure in our

ADSD model can be considered as a special case of the block diagonal structure in SBM.

Specifically, in our model the graph G = (V,E) includes an underlying true informative

subgraph G(S0) and all other nodes are singletons. The number of communities of SBM is

K = n − ns + 1, where n = |V | and ns = |S0|. We further assume the planted partition

model that the parameters of Bernoulli distributions for edges between blocks are identical

in SBM.
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To construct the likelihood function for ADSD, we first binarize the input data matrix

W using a threshold r and let Aij = {W (r)}ij = I(Wij > r). We denote θ(S) as a vector

of node labels concerning the node set S for a dense subgraph G(S), where an element

θi(S) = 1 if i ∈ S and θi(S) = 0 for i ∈ V/S. Then, the membership of edges regarding the

nodes-induced subgraph G(S) can be defined consequently as θij(S) = θi(S)θj(S).

We let all edges in A follow a Bernoulli distribution with parameters πij that

πij =

 πs both i, j ∈ S0

π0 o.w.

Using the mixture model representation, πij = θij(S0)πs + (1 − θij(S0))π0. The likelihood

function based on A = W (r) is:

When the membership of informative subgraph is given, the MLE of the edge probabilities

can be obtained by:

π̂MLE
s =

|A(S0)|
|E(S0)|

and π̂MLE
0 =

|A| − |A(S0)|
|E| − |E(S0)|

.

In practice, S0 is unknown and can be estimated by S̃λ from the Algorithm (3) with a

given λ. The likelihood function based on S̃λ is in the form:

Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ), A) =
∏

i<j,i,j∈S̃(λ)

(π̂MLE
s )aij(1− π̂MLE

s )1−aij

×
∏

i<j,i∈V/S̃(λ) or j∈V/S̃(λ)

(π̂MLE
0 )aij(1− π̂MLE

0 )1−aij

where θ(S̃λ) is the node label vector associated with S̃λ.

Therefore, λ can be estimated by two steps. First, for any λ ∈ [1, 2], we can extract a

dense subgraph S̃λ by the greedy algorithm (3). Next, λ̂ is determined by the combination

of λ and S̃λ that maximizes the likelihood function:

λ̂ = arg max
λ

Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ), A),
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The final result of dense subgraph discovery based on the MLE determined λ̂ is θ̂ = θ(S̃λ̂).

We further consider the threshold r in Aij = {W (r)}ij = I(Wij > r) as a random

variable following a distribution g(r) rather than a fixed value in order to avoid an arbitrary

selection. We integrate the likelihood with respect to r based on the prior distribution g(r),

and thus our optimization is invariant to the selection of r. g(r) can be a discrete distribution

with a support {r1, ...., rm} and corresponding probability {g(r1), ..., g(rm)}. In practice, the

performance of our algorithm is robust to the prior distribution, given the reasonable support

of r is used. By integrating r out, the likelihood function becomes:

Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ),W ) =

∫
Lλ

(
π̂MLE
s , π̂MLE

0 ;θ(S̃λ),W (r)
)
g(r)dr

The general algorithm for ADSD is described in the Algorithm (2). Since Algorithm

(3) is nested within the overall Algorithm (2), the low computational cost of Algorithm (3)

is critical for the overall computational efficiency of ADSD. The complexity of the ADSD

algorithm is O(Mn2) where M is a sufficient searching range of λ. The resulting subgraph

G(Ŝλ̂) from our ADSD model can be further investigated for more delicate latent topological

structures and statistically tested by permutation tests with family-wise error rate control

(Zalesky et al., 2010, Chen et al., 2015) and we include the details in the supplementary

materials.

Algorithm 2 The complete ADSD algorithm

1: procedure Algorithm λ← 1
2: while λ ≤ 2 do
3: return the densest subgraph S̃(λ) of W from Algorithm (3)
4: for r = r1 to rm do
5: calculate the likelihood: Lλ(π̂

MLE
s , π̂MLE

0 ;θ(S̃λ),W (r))
6: end for
7: integrate w.r.t. λ:

Lλ(W ) =
∑m

i=1 Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ),W (ri))g(ri)
8: end while
9: Output λ̂ and S̃λ̂ with maximized Lλ(W )

10: end procedure
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3 Theoretical results

The theoretical work for conventional dense graph discovery has been well-established (Lee

et al., 2010). For example, Charikar (2000) showed that the commonly used greedy algorithm

proposed by Asahiro et al. (1996) has a 2-approximation bound. In this article, we aim

to extend the theoretical results for our new ADSD algorithms in 2 which generalizes the

traditional objective function by introducing the parameter λ. Specifically, we discus the

approximation bounds for ADSD with a full range of λ values in the following theorem 1.

Theorem 1 (Exact property of Algorithm 3). For a given graph G = (V,E), with S∗λ and

S̃λ defined in section 2, the Algorithm (3) has a ρ(λ, n)-approximation, especially f(S∗λ;λ) ≤

ρ(λ, n)f(S̃λ;λ) with

ρ(λ, n) =



c(λ) if λ ≥ 2

2c′(λ)n(λ−1)(2−λ) if 1 < λ < 2

2n1−λ if 0.5 < λ < 1

2nλ, if 0 < λ ≤ 0.5

where c(λ) = 2λ−1 and c′(λ) = 1 ∨ 21−λ.

The theorem 1 provides the performance of Algorithm (3) by guaranteeing the closeness

of objective function in S∗λ and S̃λ. However, an optimal optimization may not result from a

perfect recovery of informative subgraph for randomness (i.e. S∗λ 6= S0 for all λ). Hence, we

further prove the asymptotic consistency of S̃λ from Algorithm (3) in following theorem 2.

When the observed graph is generated from some underlying model with true informative

subgraph S0, there exist an λ such that S̃λ tends to S0 with probability 1 asymptotically.

Theorem 2 (Asymptotic property of Algorithm 3). Assume the graph G = (V,E) including

an informative subgraph G(S0) = (S0, E(S0)) is generated from the special SBM we defined

in section 2.2.2, such that the edges are drawn from independent Bernoulli distributions

with parameter πij = πij(S0) = θij(S0)πs + (1 − θij(S0))π0, where θij(S) = θi(S)θj(S),

θi(S) = I(i ∈ S) and πs > π0. Let |S0| = O(|V |1/2+ε) as n→∞ for any ε > 0.
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Then, there exist some λ such that we will get exact recovery with probability 1 in Algo-

rithm (3), i.e. as n→∞,

P(∀i, θi(S̃λ) = θi(S0))→ 1.

Theorem 2 provides the existence of parameter λ for a consistent estimator as the size of

graph goes to infinity. We use the following Theorem 3 to demonstrate the performance of

Algorithm (2) by illustrating the selected λ based on our likelihood-based criterion will lead

to an estimator with negligible proportion of incorrect assignment for nodes.

Theorem 3. Assume the graph G = (V,E) includes an informative subgraph G(S0) =

(S0, E(S0)), such that the edges generate from independent Bernoulli distributions with pa-

rameter πij = πij(S0) = θij(S0)πs + (1− θij(S0))π0, where θij(S) = θi(S)θj(S), θi(S) = I(i ∈

S) and πs > π0. Let |S0| = O(|V |1/2+ε) as n→∞ for any ε > 0.

Then, as n→∞, the adaptive greedy algorithm with likelihood-based criterion results in

an estimate θ̂ = θ(S̃λ̂) with:

λ̂ = arg max
λ

sup
πs,π0

L(πs, π0;θ(S̃λ);A)

has incorrect assignment with probability converging to zero, i.e.

Ne(θ̂) =
n∑
i=1

I(θ̂i 6= θi(S0)) = op(n).

The detailed derivations and proofs for the above three theorems are provided in the

supplementary materials.

4 Results

We apply the proposed ADSD method to the neuroimaging data collected from patients with

schizophrenia and healthy controls. This data set includes 104 patients with schizophrenia

(SZ) (age 36.88 ± 14.17, 62 males and 41 females, 1 other) and 124 healthy controls (HC)
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(age 33.75 ± 14.22, 61 males and 63 females). There are no systematic differences in age

(test statistic 1.64, p value 0.10) or gender (test statistic 1.67, p value 0.10) between the two

groups. The imaging acquisition and preprocessing details are described in Adhikari et al.

(2019). A brain connectivity-based atlas is used to denote 246 regions of interest (ROIs)

as nodes in a brain connectome graph (Fan et al., 2016). The functional connection (edge)

between a pair of nodes for each subject is calculated by the covariation between averaged

time series from the two corresponding brain ROIs. The Fisher’s Z transformed Pearson

correlation coefficient then is applied for each edge. We perform non-parametric group level

testing on each edge, although alternative inference methods can be used as well.

We focus on the input matrix W reflecting the importance levels (− log(pij)) on all edges,

as demonstrated in Figure 2a. We first apply the greedy algorithm (e.g., Charikar’s method

that is equivalent to the proposed greedy algorithm with an ad-hoc λ = 1) for dense subgraph

extraction. The results in Figure 2b seem to be an over-inflated subnetwork without clear

biological interpretation and a large set of false positive edges. We also applied other popular

subgraph detection methods, for example, breadth first search in network-based statistics,

stochastic block model, and various community detection methods (Zalesky et al., 2010,

Amini et al., 2013, Newman and Girvan, 2004). However, these algorithms either detect a

subgraph including all brain regions or yield no findings. In contrast, by implementing our

ADSD method (2), we obtain a subnetwork Ŝ = S̃λ̂ with λ̂ = 1.2. We note that the detected

subgraph is robust to the prior distribution of G(r) as long as a reasonable support is used.

The computation is efficient, and it takes 2.21 seconds to implement the ADSD algorithm

on a Mac with CPU Core i5 and memory 8GB. We further calculate the p-value of the network

based on permutation test (Zalesky et al., 2010, Chen et al., 2015, Chen et al., 2020). The

p-value for the network is significant p < 0.001 with family wise error rate adjustment.

The results show a subnetwork with reduced functional connectivity in patients with

schizophrenia compared to healthy controls (see in Figures 3), which is consistent with the

current knowledge that schizophrenia is possibly a degenerative disorder and associated

with hypoconnectivity (Li et al., 2019). This subnetwork is centered around the well-known

salience network (SN) which is primarily composed of bilateral insular gyri (INS) and ante-

rior cingulate cortices (ACC). The salience network contributes to complex and integrative
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brain functions including emotions, cognition, and self-awareness (Uddin, 2015). Numerous

previous studies have reported that decreased functional connectivity in the salience network

is related to several core symptoms of schizophrenia using seed voxel methods (Palaniyap-

pan et al., 2012). Our findings are well aligned with these established results. In addition

to SN, our subnetwork extracted by ADSD involves several other brain regions including

bilateral superior temporal gyri (STG), superior frontal gyri (SFG), precentral gryi (PCL),

inferior parietal lobe left (IPL), and orbitofrontal cortex right (OrG). These regions have

been identified to associate with auditory perceptual abnormalities (STG, IPL), voluntary

movement (PCL), and sensory and cognition (SFG, OrG) (Fornito et al. (2012)). Jointly,

our detected subnetwork reveals a comprehensive and systematic brain connectivity aber-

rance in patients with schizophrenia, which is related to the impaired capability to integrate

and comprehend information (e.g., multiple external stimuli) and to respond appropriately.

The detected schizophrenia-related brain connectome subnetwork is biologically plausible. It

provides evidence to combine prior isolated findings, and thus enhances our understanding

of the complex brain connectomic patterns and clinical symptoms.

Thus, our novel analytic approach revealed a neural sub-network that has been previously

shown to both differentiate healthy controls and patients with schizophrenia and has been

critically linked to core symptoms of the disorder. Since our results do not depend on the

arbitrary selection of seed voxels and pre-specified networks of interest, our results are subject

to less selection bias and thus more reliable and comprehensive.

5 Simulation

In the simulation study, we generate multiple brain connectivity data sets under several

settings. We consider a graph G with |V | = 100, where an informative subgraph in a

community structure with two possible sizes |S0| = 15 and 30. We generate 60 connectivity

matrices for 30 controls and 30 cases. We assume that most edges in the informative subgraph

are differentially expressed between cases and healthy controls. We let the connectivity

weights of edges inside the informative subgraph follow a normal distribution with mean µ1

and variance σ2, while all other edges have normal µ0 and σ2 for the case group. In the
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Figure 2: Results of data example: (a) is the input matrix W ; (b) shows the results of
existing dense graph discovery; (c) demonstrates the results by applying ADSD; (d)
illustrates refined topological structure based on results of ADSD.

(a) Input W (b) Detected densest subgraph by λ = 1

(c) Detected densest subgraph by ADSD (d) Enlarged subgraph with labels
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Figure 3: (a) illustrates the enlarged and labeled informative subgraph in t-statistics
detected by ADSD which indicates decreased functional connectivity of SZ. (b) is a 3D
demonstration of the subgraph: red nodes represent superior frontal gyrus (SFG) +
orbitofrontal cortex right (OrG); yellow nodes are precentral gryi (PCL); green nodes are
superior temporal gyrus (STG)+inferior parietal lobe left (IPL); blue nodes represent
insular gyrus (INS); navy nodes represents cingulate cortex (CG).
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control group, we let all edges follow a normal distribution of µ0 and σ2. Specifically,

xcaseij(s)|{i < j, i, j ∈ S0} ∼ N(µ1, σ
2), xcaseij(s)|{i < j, i or j /∈ S0} ∼ N(µ0, σ

2),

and

xcontrolij(s′) |{i < j, i, j ∈ V } ∼ N(µ0, σ
2),

where xcaseij(s) represents the edge linking node i and j for the sth subject in case group, and

xcontrolij(s′) defines the edge weight for the s′th subject in control group.

We apply various standard effect sizes (i.e., signal-to-noise ratios - SNRs) by setting

σ = 1, and µ0 = 0, µ1 = 0.4, 0.6, 0.8. We further consider a more realistic scenario by letting

the proportion q1 of edges inside informative-subgraph be non-differentially expressed (i.e.

N(µ0, σ
2) for both cases and controls). Similarly, we set a q2 proportion of edges outside

informative-subgraph are differentially expressed (i.e. N(µ1, σ
2) for cases and N(µ0, σ

2) for

controls). (q1, q2) represent the practical non-perfect distribution of informative edges in

the overall graph. In the simulation data, two sets of parameters (q1, q2) = (0.8, 0.1) and

(0.9, 0.05) are used.

We compare the ADSD method with the two most popular dense subgraph discovery

methods including Greedy algorithm with λ = 1 and Goldberg’s algorithm. The results are

evaluated by node-assignment accuracy in terms of true positive rate (TP) and true negative

rate (TN) defined as follows:

TP =

∑n
i=1 I(θi = θ̂i = 1)∑n

i=1 I(θi = 1)
, TN =

∑n
i=1 I(θi = θ̂i = 0)∑n

i=1 I(θi = 0)

The mean and standard errors of TP and TN for three methods across 30 replicates for all

settings are displayed in the following Tables 1 and 2.

Table 1 demonstrates results with (q1, q0) = (0.8, 0.1). When the subnetwork size is 15,

the Charikar’s greedy algorithm and Goldberg’s algorithm have extremely high values of true

positive rate and low true negative rate for all small and large effect sizes/SNR. This indi-

cates that the conventional algorithms tend to detect over-sized dense subgraphs consisting

of a high proportion of false positive edges when the subgraph is small and SNR is medium-
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large. This phenomenon is common in brain connectome data analysis in practice: the size

of disease-related subnetwork is relatively small (the proportion of non-null distribution is

small) with medium edge-wise effect sizes which can be disturbed by false positive and posi-

tive signals. If a universal threshold is used for all edges (e.g., BH-FDR and FWER cutoffs),

then the most true positive edges will be missed along with the topological structure due to

the control of false positive findings. In contrast, the proposed ADSD approach is robust to

the noise and can accurately extract the informative subgraph. With increasing strengths

of signal (i.e., larger informative subnetwork size and SNR), the traditional dense graph

discovery algorithms are comparable to ADSD and they all outperform edge-wise inference

(e.g., FDR and FWER). Table 2 shows the results with higher accuracy of subnetworks

(q1, q0) = (0.9, 0.05). The ADSD can more accurately recover the dense subgraph when the

SNR is small-medium and robust to false positive and false negative edges. Similarly, all

three methods show comparably perfect performance when the subnetwork size and/or SNR

are large.

In summary, the simulation results clearly show that likelihood-based ADSD approach

is more robust to both false positive and false negative noise and can better capture smaller

subnetworks with a high sensitivity and a low false positive rate. These properties are critical

for the brain connectome analysis in practice because the real data sets are often mixed with

substantial noise and include a small proportion of signal edges.

6 Discussions

In this article, we compare brain connectome matrices between diagnostic groups (e.g.

schizophrenia and healthy subjects) to understand connectivity patterns altered by psy-

chiatric illness. As in our motivation data example, however, disease-related subnetworks

can be overwhelmed by substantial noise in the connectome data and thus difficult to ex-

tract. The noise heavily influences statistical inference by introducing enormous edge-wise

false positive and negative errors that are constrained in a weighted adjacency matrix, and

thus impose difficulty in understanding the network topology of disease-related brain circuits

and in yielding valid statistical inference.
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Table 1: The node-assignment accuracy of three methods under varied SNRs and subgraph
size with (q1, q0) = (0.8, 0.1)

ADSD Greedy Goldberg

15

0.4
TP 0.7400 (0.1604) 0.9900 (0.0238) 0.9767 (0.0382)
TN 0.5812 (0.2151) 0.1029 (0.0455) 0.1194 (0.0450)

0.6
TP 0.8833 (0.1152) 1 (0) 0.9900 (0.0238)
TN 0.9129 (0.1500) 0.0729 (0.0301) 0.0865 (0.0339)

0.8
TP 0.9633 (0.0536) 1 (0) 0.9900 (0.0238)
TN 0.9929 (0.0114) 0.0647 (0.0325) 0.0776 (0.0346)

30

0.4
TP 0.9167 (0.0695) 0.9967 (0.0100) 0.9833 (0.0197)
TN 0.8900 (0.0700) 0.3286 (0.1700) 0.3307 (0.1736)

0.6
TP 0.9967 (0.0100) 0.9967 (0.0100) 0.9833 (0.0197)
TN 0.9914 (0.0139) 0.9864 (0.0245) 0.9807 (0.0474)

0.8
TP 1 (0) 1 (0) 0.9867 (0.0163)
TN 1 (0) 1 (0) 1 (0)

Table 2: The node-assignment accuracy of three methods under varied SNRs and subgraph
size with (q1, q0) = (0.9, 0.05)

ADSD Greedy Goldberg

15

0.4
TP 0.7900 (0.1387) 0.9967 (0.0145) 0.9867 (0.0267)
TN 0.7929 (0.2046) 0.1653 (0.0607) 0.1924 (0.0666)

0.6
TP 0.9767 (0.0382) 0.9933 (0.0200) 0.9833 (0.0357)
TN 0.9935 (0.0102) 0.7435 (0.3866) 0.7929 (0.3515)

0.8
TP 1 (0) 0.9933 (0.0200) 0.9833 (0.0289)
TN 0.9994 (0.0026) 1 (0) 1 (0)

30

0.4
TP 0.9500 (0.0489) 0.9633 (0.0378) 0.9600 (0.0374)
TN 0.9586 (0.0686) 0.9557 (0.0686) 0.9443 (0.0868)

0.6
TP 1 (0) 1 (0) 0.9867 (0.0163)
TN 0.9979 (0.0051) 1 (0) 1 (0)

0.8
TP 1 (0) 1 (0) 0.9867 (0.0163)
TN 1 (0) 1 (0) 1 (0)
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To overcome these challenges, we develop a novel ADSD method to reliably and robustly

identify signal subgraphs (related to the phenotypes of interest) from the whole brain con-

nectome network. The overall brain connectome inference network is often over-sized with a

small proportion of signal edges which are not compatible with existing statistical network

models. Therefore, it is desirable to detect a dense subnetwork maintaining most signal edges

in a clique with a much smaller number of nodes (nodes induced subnetwork) and discarding

a large proportion of false positive edges from the overall network. Dense graph discov-

ery has been a popular research topic in network analysis for a couple of decades. Dense

graph discovery methods are distinct from existing statistical methods for network analysis

(e.g. various versions of community detection) because they focus on a network with a far

fewer number of connections than a highly connected network consisting of communities.

The dense graph discovery method is well suited for our application because the number

of edges from the non-null distribution is relatively small (Efron, 2012). A key limitation

of the current dense graph discovery methods is sensitive to noise. Due to the substantial

noise in brain connectome data, the existing dense graph discovery methods tend to extract

over-sized dense subgraphs which can lead to a high FDR, potentially incorrect biological

findings, and low replicability. The proposed ADSD method integrates the concept of shri-

nakge into dense graph discovery by introducing a balance parameter to include the most

informative edges into the subgraph (high sensitivity) while maintaining a low FDR. The

balance parameter can be estimated based on the likelihood function which is commonly

used in network statistics. We develop efficient algorithms to implement the objective func-

tion that is compatible with computationally intensive inference methods (e.g., permutation

tests and bootstraps) . In the current research, we apply permutation test based statistical

inference on the dense subgraph. Both the simulation and data example results show that

the proposed method is robust to the false negative and positive edges and can accurately

detect the target dense subgraph with high sensitivity and low false positive rates. Therefore,

our goal of brain connectome analysis can be well met by applying ADSD.

Our work makes several contributions to the field: first, the ADSD objective function and

algorithms provide new dense subgraph detection tools for noisy, weighted, large, and less

dense graphs, which may have wide applications in data mining and knowledge discovery.
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Secondly, we derive theoretical results to provide the bounds for the approximation of ADSD

algorithms in a full range of the balance parameter. The asymptotic property of subgraph

detection and balance parameter estimation are also developed. Last, the biological findings

are novel, integrative, and clinically meaningful. Although part of these findings has been

found in previous studies, only edge-wise results (i.e. links between regions to a fixed seed)

are reported without fully investigating the interactive nature of network-level inference.

In this article, the hypo-connections in the salience network centered subnetwork groups

in patients with schizophrenia are detected for the first time by whole brain connectome

network analysis with explicit network topology. The reported network reveals the novel

links between aberrant functional connectivity networks and impaired capability to inte-

grate information from multiple sources (cognition deficits) in patients with schizophrenia,

which may assist to further understand the underlying biological mechanism for multiple

schizophrenic disorder symptoms.

In summary, we develop a likelihood-based adaptive dense graph detection method to

extract the dense subgraph from a large and noisy network (weighted and/or binary). Our

ADSD method outperforms existing dense subgraph discovery methods when the overall

graph includes a small proportion of edges with high importance levels, and thus is well-

suited for group-level brain connectome analysis. ADSD can also serve as a screening step

for group level network analysis to effectively extract a dense subnetwork from a large overall

network for further analysis. In addition, ADSD can be applied to other biological network

data (e.g. interactive networks of genomics and proteomics data) and yield findings revealing

latent and complex co-expression subnetworks. Therefore, ADSD can become a new useful

tool for statistical analysis of large and less dense networks.
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7 Appendix A

7.1 Permutation Tests

We could evaluate the significance of detected subgraph by permutation testing (Zalesky

et al., 2010). For an undirected graph G = (V,E), the edge permutation permutes the

order of edges. The edge-permuted graph according to a permutation π is given by Gπ =

(V, π(E)), with {eij ∈ E} = {eπ(i),π(j) ∈ Eπ}. For the randomness of permutation, we have

{eij ∈ E} ⊥ {eij ∈ Eπ}. Therefore, the organized pattern of G does not exist for Gπ, and

the edge-permuted graph Gπ becomes a random graph with probability being the proportion

of connected edges in G (i.e. ρ =
∑

i<j I(δij=0)

|E| ). Hence, the significance of the topological

pattern of G can be evaluated among random graphs with identical proportion of connected

edges Gπ.

In a weighted graph G = (V,E,W ) with |V | = n, let φ(·) be the half-vectorization of a

symmetric matrix. Denote π as a permutation of
(
n
2

)
elements, and Pπ is the corresponding

permutation matrix. Then, the weight matrix of the edge-permuted graph Gπ = (V,Eπ,Wπ)

is given by Wπ = φ−1(Pπφ(W )).

A true informative subgraph includes edges with higher average level of importance (i.e.

p-values) which can not be extract from a random graph. Hence, we propose a network

level statistic such that it prefers subgraphs with more informative edges (larger subgraphs

that can not be generated by random) and averagely higher level of significant edges (smaller

subgraphs by excluding less non-significant edges). For a graph G with informative subgraph

G(S), let

z̄G = −2
∑

i,j∈G(S)

logpij/2|E(S)|.

We propose the test statistic based on Fisher’s combination test and Chernoff bound of χ2

the cumulative distribution function:

TG = |E(S)|(z̄G − 1− log(z̄G))

The whole procedure of the permutation testing is as follows:
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Algorithm 3 Permutation testing of extracted subgraph

1: procedure Algorithm
2: calulate the test statistic on G with informative subgraph G(S) and denote as: T0
3: for m = 1 to M do
4: generate permutation matrix Pm on

(
n
2

)
elements

5: observe weight matrix of edge-permuted graph Gm: Wm = φ−1(Pmφ(W ))
6: perform Algorithm 2 to detect a informative subgraph and denote the nodes set

as Sm
7: calculate the test statistic on Gm with informative subgraph Gm(Sm) as: Tm
8: end for
9: p0 is the percentile of T0 in {Tm}Mm=1;

10: if p0 is smaller than α then
11: G(S) is a significant subgraph of G.
12: end if
13: end procedure

7.2 Related work in densest subgraph

Due to noise, dense graph discovery algorithms tend to either identify over-sized subgraphs

that may include a large proportion of false positive edges with low importance levels (high

false positive discovery rate) or detect over-conservative small-sized subgraphs that may not

sufficiently cover edges with high importance levels (low sensitivity, Tsourakakis et al., 2013).

The two following lemmas are constructed to demonstrate the cases where conventional dense

discovery methods may lead to detecting trivial-sized subgraphs. The generative mechanism

is considered to be the same as stated previously.

Lemma 1 (Densest subgraph regarding average degree f1). Assume that a graph G =

(V,E) with an induced dense subgraph G(S0) = (S0, E(S0)) is generated by the same joint

distribution as Theorem 3 with n1/2+ε . ns ≤ cn. Let πs > π0 > ε1 and cπ0 − c2(πs − π0) >

2c1n
−ε be some positive constant ε1 and c1. Then, denoting the densest subgraph as S̃1, we

have

P
(
|S̃1| > n− n2ε

)
→ 1

Lemma 2 (Densest subgraph regarding edge ratio f2). Assume that a graph G = (V,E) with

an induced dense subgraph G(S0) = (S0, E(S0)) is generated by the same joint distribution

as Theorem 3 with n1/2+ε . ns ≤ cn. Let πs > π0 > ε1. Then, for the densest subgraph S̃2,
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we have

P
(
|S̃2| <

2 log(n)

log(1/πs)

)
→ 1

almost surely as n→∞.

Note for lemma 2, the upper bound is relatively small compared with the size of graph.

For example, for n = 1000 and πs = 0.5, 2 log n/ log(1/πs) ≈ 19.93, and for n = 10000

and πs = 0.7, 2 log n/ log(1/πs) ≈ 51.65. The proofs for these two lemmas are included in

the appendix. Therefore, the direct application of conventional dense subgraph discovery

algorithms to our network data may miss the underlying important findings of disease-related

subnetworks.

7.3 Proofs

Before we prove the Theorem 1, we first establish the following Lemma 3 by applying the

idea of proof in Charikar (2000) with density function f1(S) directly.

Lemma 3. The greedy algorithm will give a 2n|λ−1| approximation, i.e. f(S∗) ≤ 2n|λ−1|v.

Proof. For an undirected graph, we assign the edge eij to either node i or j. Denote the

number of edges assigned to node i as d(i). Then,

∑
i∈S∗

d(i) ≥ |E(S∗)|,

since all edges in E(S∗) will be assigned to node i or j which will be included in
∑

i∈S∗ d(i).

Consider a specific way to assign edges. Let the node gets assigned when it is removed in

the greedy algorithm. In other words, d(i) equals the degree of node i in the iteration that

it is removed in greedy algorithm. Assume the subgraph at the iteration that i is removed is

G(S ′) such that at this iteration the nodes set changes from S ′ → S ′/{i}. Therefore, since

the node i is deleted for the smallest degree, we will have the degree of i is smaller than the

average degree in this iteration:

d(i) ≤ 2
|E(S ′)|
|S ′|

.
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Case 1: For λ < 1,

d(i) ≤ 2
|E(S ′)|
|S ′|

≤ 2
|E(S ′)|
|S ′|λ

≤ 2
|E(S̃)|
|S̃|λ

= 2v,

⇒ f(S∗) =
|E(S∗)|
|S∗|λ

≤
∑

i∈S∗ d(i)

|S∗|λ
≤ 2v

|S∗|
|S∗|λ

≤ 2vn1−λ.

Case 2: For λ > 1,

d(i) ≤ 2
|E(S ′)|
|S ′|

≤ 2
|E(S ′)|
|S ′|λ

× |S ′|λ−1 ≤ 2
|E(S̃)|
|S̃|λ

× |S ′|λ−1 = 2vnλ−1,

⇒ f(S∗) =
|E(S∗)|
|S∗|λ

≤
∑

i∈S∗ d(i)

|S∗|λ
≤ 2vnλ−1

|S∗|
|S∗|λ

≤ 2vnλ−1.

7.3.1 Proof of theorem 1

Case 1: λ ≥ 2. The subgraph with only two nodes has f(S;λ) = 1/2λ, otherwise all

elements in this 2 × 2 matrix should be zero and inductively the raw graph have no edges

(all elements in the corresponding matrix should be zero). Thus, f(S̃;λ) ≥ 1/2λ.

On the other hand, when λ ≥ 2,

f(S∗;λ) =
|E(S∗)|
|S∗|λ

≤ |S
∗|2

2|S∗|λ
≤ 1

2
.

Hence, f(S̃;λ) ≥ 21−λf(S∗;λ) and c(λ) = 2λ−1.

Case 2: 1 < λ < 2. Assume there exists λ > 0 such that f(S∗;λ) ≤ 2naf(S̃;λ) and we

want to find such λ. It suffices to show

f(S∗;λ) =
|E(S∗)|
|S∗|λ

≤ |S
∗|2

2|S∗|λ
≤ 2

1

2λ
na

since from case 1, f(S̃;λ) has a lower bound 1/2λ. It’s automatically true for |S∗| ≤

(22−λna)1/(2−λ) = 2na/(2−λ).
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For |S∗| > 2na/(2−λ), from the proof of case 2 in lemma 3, we have

f(S∗;λ) =
E(S∗)

|S∗|λ
≤
∑

i∈S∗ d(i)

|S∗|λ
≤ 2f(S̃;λ)nλ−1|S∗|1−λ

≤ 2f(S̃;λ)nλ−1(2na/(2−λ))1−λ

Let 2f(S̃;λ)nλ−1(2na/(2−λ))1−λ = 2f(S̃;λ)na, we will get a = (λ− 1)(2− λ).

Hence, f(S∗;λ) ≤ 2n(λ−1)(2−λ)(1 ∨ 21−λ)f(S̃;λ), then c′(λ) = 1 ∨ 21−λ.

Case 3: For 0.5 < λ < 1, the claim is automatically true from lemma 3.

Case 4: 0 < λ < 0.5

f(S∗;λ) =
|E(S∗)|
|S∗|λ

≤ |E(V )|
|S∗|λ

=
|E(V )|
|S∗|λ|V |λ

× |V |λ

≤f(S̃;λ)
|V |λ

|S∗|λ
≤ 2f(S̃;λ)nλ

7.3.2 Proof of theorem 2

Part 1. Let C = {S1, S2, ..., Sn−1} be the sequence of subgraphs generated by deleting the

smallest-degree node in Algorithm 1. We first prove the true subgraph S0 is included in C

up to a permutation with high probability as n→∞. Denote n = |V | and ns = |S0|.

At stage k(< n− ns) of Algorithm 1, for i ∈ S0, and i′ ∈ V/S0, we have

di =
ns∑
j=1

Xij +
n−k+1∑
j=ns+1

Yij and di′ =
n−k+1∑
j=1

Yi′j

where Xij ∼ Bernouli(πs), Yij ∼ Bernouli(π0), and Yi′j ∼ Bernouli(π0)

From chernoff bound, for i ∈ S0, i
′ ∈ V/S0 and δ ∈ (0, 1)

P(di ≤ (1− δ)(nsπs + (n− k − ns)π0)) ≤ exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
,

and

P(di′ ≥ (1 + δ)(n− k)π0) ≤ exp

[
− δ2

2 + δ2
(n− k)π0

]
.
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Hence, there exist ε0(δ) > 0, such that

P(di − di′ ≥ ε0(δ)) ≥ 1− exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
− exp

[
− δ2

2 + δ2
(n− k)π0

]
.

At stage k(< n− ns) of Algorithm 1, the event of deleting a node outside S0 is:

∩i∈S0 ∩i′∈Sk/S0 {di ≥ di′} = ∩i∈S0 [∪i′∈Sk/S0{di < di′}]c

Then,

P
(
∩i∈S0 ∩i′∈Sk/S0 {di ≥ di′}

)
≥ 1−

∑
i∈S0

P
(
∪i′∈Sk/S0{di < di′}

)
≥1−

∑
i∈S0

∑
i′∈Sk/S0

P(di < d′i)

≥1− ns(n− k − ns)
{

exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
+ exp

[
− δ2

2 + δ2
(n− k)π0

]}

Using similar argument, the class C includes the true subgraph up to a permutation Q:

P(Q(S0) ∈ C) = P
(
∩n−ns−1
k=1 ∩i∈S0 ∩i′∈Sk/S0{di ≥ di′}

)
≥1− (n− ns − 1)ns(n− k − ns)×{

exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
+ exp

[
− δ2

2 + δ2
(n− k)π0

]}
→1 as n→∞ and ns = O(n1/2+ε).

Part 2. We then establish the true subgraph can be selected from C by density function

f(S;λ) for some λ. For k < n− ns, from the proof of part 1, S0 ⊂ Sk with high probability.

From Chernouff bounds,

P
(
2|A(Sk)| − 2|A(S0)| ≤ (1 + δ)[(n− k − 1)2 − (n− ns − k − 1)2]π0

)
≥1− exp

[
− δ2

2 + δ2
[(n− k − 1)2 − (n− ns − k − 1)2]π0

]
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and

P
(
2|A(S0)| > (1− δ)n2

sπs
)
≥ 1− exp

[
−δ

2

2
n2
sπs

]
.

Thus, with high probability,

|A(Sk)| − |A(S0)|
|A(S0)|

<
1 + δ

1− δ
∗ [(n− k − 1)2 − (n− ns − k − 1)2]π0

n2
sπs

On the other hand,

|A(Sk)|
(n− k − 1)λ

≤ |A(S0)|
(ns)λ

⇔ |A(Sk)| − |A(S0)|
|A(S0)|

≤ (n− k − 1)λ

(ns)λ
− 1,

hence, it suffices to have

1 + δ

1− δ
∗ [(n− k − 1)2 − (n− ns − k − 1)2]π0

n2
sπs

≤ (n− k − 1)λ

(ns)λ
− 1.

For πs > π0, there exist corresponding δ and λ to make the inequality holds.

For k > n− ns, we could use similar argument and the claim is true.

7.3.3 Proof of theorem 3

We implement the proof of SBM under maximum likelihood fitting by Choi et al. (2012)

that constrain stochastic block model with K . n1/2 communities and the average degree

M & (log(n))3+δ. The growth restriction on K is utilized to bound the number of possible

choices of assignment. Although the restriction is not satisfied in our model, the assumption

such that all edges outside the dense subgraph are considered as singletons makes the number

of possible assignments being the same as K = 2. The restriction on average degree is also

automatically satisfied for fixed πs and π0.

Next, we prove the conclusion is valid when the assignment is maximized over a smaller

class of possible solutions, which is generated by different values of λ.

The Theorems 1 and 2 in Choi et al. (2012) also hold in our model because the maxi-

mization over a subset of parameter space is smaller than over the whole space. For their

theorem 3, from the proof of our theorem 2, the true assignment is in the subset that we
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maximized with probability converging to 1, i.e. θ(S0) ∈ {θ(S̃λ), λ ∈ (0, 2)}. Then theorem

3 holds with probability converging to 1, i.e. L̄P (θ(S0))- L̄P (θ̂) = op(M). Hence, our claim

is true.

7.3.4 Proof of Lemma 1

It’s equivalent to show

P
(
∀m < n− n2ε, f1(Sn−m) > f1(G)

)
≤ 2 exp(−n2ε).

Consider the case ns = cn for some constant 0 < c < 1. We first establish ∀m < n− n2ε,

P
(
|Sn−m|
m

>
|G|
n

)
≤ 2 exp(−n2ε).

Case 1: Consider subgraph Sn−m with m > ns. We have

E(|Sn−m|) =

(
ns
2

)
πs +

((
m

2

)
−
(
ns
2

))
π0,

and E(|Sn|) =

(
ns
2

)
πs +

((
n

2

)
−
(
ns
2

))
π0.

Then, from chernoff bound, we have

P(|Sn−m| > (1 + δ)E(|Sn−m|)) ≤ exp

(
− δ2

2 + δ2
E(|Sn−m|)

)
,

and P(|Sn| < (1− δ)E(|Sn|)) ≤ exp

(
−δ

2

2
E(|Sn|)

)
,

where the second probability is even smaller if we consider the correlation between |Sn−m|

and |G|.

Hence, if we choose δ = nε/n, each of the above probability is bounded by exp(−n2ε) ,

in this case, when

nE(|Sn−m|)
mE(|G|)

× 1 + nε/n

1− nε/n
≤ 1,
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we have

P
(
|Sn−m|
m

>
|G|
n

)
≤ 2 exp(−n2ε).

Since 1+nε/n
1−nε/n

≈ 1 + c1n
−1+ε, it’s equivalent to have

mE(|G|)
nE(|Sn−m|)

− 1 ≥ c1n
−1+ε.

Then,

LHS ≥ 1

n3
[mE(|G|)− nE(|Sn−m|)]

=
1

n3

{
m

[(
ns
2

)
πs +

((
n

2

)
−
(
ns
2

))
π0

]
− n

[(
ns
2

)
πs +

((
m

2

)
−
(
ns
2

))
π0

]}
=

1

2n3
[ns(ns − 1)(πs − π0)(m− n) + π0(n−m)mn]

=
1

2n3
(n−m)[π0mn− (πs − π0)ns(ns − 1)].

In order to have LHS ≥ c1n
−1+ε, under condition n − m > n2ε, it’s sufficient to have

cπ0 − c2(πs − π0) > 2c1n
−ε.

Case 2: Consider m ≤ ns. If

m(m− 1)

2
<

1

4

n(n− 1)

2
π0,

in other words, m < c2n for some c2, we have max |Sn−m| ≤ 1
4
E(|G|), then let δ = 3/4,

P
(
|Sn−m|
m

>
|G|
n

)
≤ exp(−nε).

If c2n ≤ m ≤ ns = cn, using similar argument as Case 1, the claim is true.

The result is true if we take union among all possible m.The case with ns = o(n) is

automatically true. Hence, the claim is proved.
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7.3.5 Proof of Lemma 2

Since C = {S1, S2, ...., Sn−2} is the sequence of subgraphs selected by Greedy Algorithm,

for any subgraph in the sequence Si, the next subgraph Si−1 is generated by deleting the

node with smallest degree. Without loss of generality, we assume the node deleted from

Si is node u. Then, degSi
(u) ≤ 2 |A(Si)|

|Si| , and also, |A(Si−1)| = |A(Si)| − degSi
(u). Hence,

|A(Si−1)| ≥ (1− 2/|Si|)|A(Si)|, and then

f2(Si−1) = 2
|A(Si−1)|

|Si−1|(|Si−1| − 1)
≥ 2
|Si| − 2

|Si|
|A(Si)|

(|Si| − 1)(|Si| − 2)
= f2(Si).

Therefore, the sequence {S1, S2, ...., Sn−2} has nondecreasing values of objective function f2,

i.e. f2(Sn−2) ≤ ... ≤ f2(S2) ≤ f2(S1). The maximizer of f2(·) has the same value of objective

function for all smaller subgraphs in the sequence {S1, S2, ...., Sn−2}.

On the other hand, the smallest subgraph Sn−2 can only be two cases: (0, 0; 0, 0) or

(0, 1; 1, 0), which has f2(Sn−2) being 0 or 1, respectively. We don’t consider the case with

f2(Sn−2) = 0 in general, since from the nondecreasing property, we conclude all subgraphs in

the sequence has objective function being 0. For f2(Sn−2) = 1, the nondecreasing property

results that the maximizer of f2(·) and all smaller subgraphs have objective function being

1.

Therefore, the densest subgraph must be a clique generated from the graph G. Based on

the results in Grimmett and McDiarmid (1975), for any random graph G(n, p), the size of

largest clique Kn(p) in this random graph satisfy,

Kn(p)

log(n)
→ 2

log(1/p)
,

almost surely as n→∞

Since the largest clique generated from the graph G with informative subgraph G(S0)

is smaller than generated from random graph G(n, πs) with high probability. The densest

subgraph returned by Greedy Algorithm in f2 is bounded by 2 log(n)/ log(1/πs).
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8 Appendix B: Region Names

8.1 Region names

In the following tables, we list the region names and coordinates of subgraph extracted from

the data of schizophrenia research.
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Web Table 1: Region names and coordinates for the nodes in the detected subgraph

Abbreviation Region Names x y z

SFG.R.7.1 Superior Frontal Gyrus 7 16 54
SFG.L.7.5 Superior Frontal Gyrus -6 -5 58
SFG.R.7.5 Superior Frontal Gyrus 7 -4 60
OrG.R.6.1 Orbital Gyrus 6 47 -7
PCL.L.2.1 Paracentral Lobule -8 -38 58
PCL.R.2.1 Paracentral Lobule 10 -34 54
STG.L.6.2 Superior Temporal Gyrus -54 -32 12
STG.R.6.2 Superior Temporal Gyrus 54 -24 11
STG.L.6.3 Superior Temporal Gyrus -50 -11 1
STG.R.6.3 Superior Temporal Gyrus 51 -4 -1
STG.R.6.4 Superior Temporal Gyrus 66 -20 6
STG.L.6.5 Superior Temporal Gyrus -45 11 -20
STG.R.6.5 Superior Temporal Gyrus 47 12 -20
STG.L.6.6 Superior Temporal Gyrus -55 -3 -10
STG.R.6.6 Superior Temporal Gyrus 56 -12 -5
IPL.L.6.6 Inferior Parietal Lobule -53 -31 23
INS.L.6.1 Insular Gyrus -36 -20 10
INS.R.6.1 Insular Gyrus 37 -18 8
INS.L.6.2 Insular Gyrus -32 14 -13
INS.L.6.3 Insular Gyrus -34 18 1
INS.R.6.3 Insular Gyrus 36 18 1
INS.L.6.4 Insular Gyrus -38 -4 -9
INS.R.6.4 Insular Gyrus 39 -2 -9
INS.L.6.5 Insular Gyrus -38 -8 8
INS.R.6.5 Insular Gyrus 39 -7 8
INS.L.6.6 Insular Gyrus -38 5 5
INS.R.6.6 Insular Gyrus 38 5 5
CG.L.7.2 Cingulate Gyrus -3 8 25
CG.R.7.2 Cingulate Gyrus 5 22 12
CG.L.7.3 Cingulate Gyrus -6 34 21
CG.R.7.3 Cingulate Gyrus 5 28 27
CG.L.7.5 Cingulate Gyrus -5 7 37
CG.R.7.5 Cingulate Gyrus 4 6 38
CG.L.7.6 Cingulate Gyrus -7 -23 41
CG.R.7.6 Cingulate Gyrus 6 -20 40
CG.L.7.7 Cingulate Gyrus -4 39 -2
CG.R.7.7 Cingulate Gyrus 5 41 6
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