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Abstract  10 

Courtship displays are dramatic examples of complex behaviors that vary within and among 11 

species. Evolutionary explanations for this diversity rely upon genetic variation, yet the 12 

heritability of complex phenotypes is seldom investigated in the field. Here, we estimate 13 

genomic heritability of advertisement song and body condition in a wild population of singing 14 

mice. The heritability of song exhibits a systematic pattern, with high heritability for spectral 15 

characteristics linked to vocal morphology, intermediate heritability for rhythmic patterns, and 16 

lower but significant heritability for measures of motivation, like song length and rate. 17 

Physiological measures of condition, like hormonal markers of adiposity, exhibited intermediate 18 

heritability. Among singing mice, song rate and body condition have a strong phenotypic 19 

correlation; our estimate suggests a comparable genetic correlation that merits further study. 20 

Our results illustrate how advances in genomics and quantitative genetics can be integrated in 21 

free-living species to address longstanding challenges in behavior and evolution.  22 
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Introduction  23 

A fundamental challenge in evolutionary biology is to understand the origins of phenotypic 24 

diversity. The concept of heritability (h2)—the proportion of phenotypic variance due to genetic 25 

differences in a population (Falconer, 1981; Visscher et al., 2008)—is crucial to this 26 

understanding because it predicts a trait’s evolutionary response to selection (Falconer, 1981; 27 

Fisher, 1930; Lande, 1976; Price et al., 1991; Visscher et al., 2008). Traits of high heritability are 28 

more responsive to selection than traits of low heritability (Falconer, 1981; Lande, 1976), 29 

knowledge long exploited by livestock and agriculture breeders (Cassell et al., 2009; Dudley and 30 

Lambert, 2010; Hill and Kirkpatrick, 2010; Visscher et al., 2008) and famously illustrated by the 31 

rapid, repeated adaptation of highly heritable beak size in Darwin’s finches (Grant and Grant, 32 

1993, 1995).  33 

Few traits pose such interesting and challenging examples of phenotypic evolution as male 34 

sexual signals. Advertisement displays are present across diverse taxonomic groups (Wiens 35 

and Tuschhoff, 2020), vary dramatically within and among species (within: Dubuc et al., 2014; 36 

Izzo and Tibbetts, 2015; Karin et al., 2018; between: Ingram et al., 2016; Vanhooydonck et al., 37 

2009), and evolve under both natural and sexual selection (Andersson, 1981; Endler, 1992). 38 

Heritable variation is not merely a substrate for this diversity but underlies common explanations 39 

for exaggerated male traits. Models of signal evolution by female choice assume heritable 40 

variation of male display, for example, but a popular subset also predicts genetic correlations 41 

between sexual display and male fitness or condition—correlations that are interpreted to 42 

indicate that females use displays to gauge the heritable fitness of males (Andersson, 1986; 43 

Hamilton and Zuk, 1982; Kirkpatrick and Ryan, 1991; Rowe and Houle, 1996). 44 

Of course, not all variation in displays is heritable: sexual displays are complex, encompassing 45 

both stable structural elements and the dynamic behaviors that animate them. Relative to stable 46 

morphological elements of display, behavioral components are often highly specific to social 47 
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and environmental contexts. For example, animals increase signaling effort (e.g. display rate or 48 

duration) in the presence of an audience, a widespread phenomenon that has been 49 

documented in vocalizing hyraxes (Demartsev et al., 2014), courting betta fish (Doutrelant et al., 50 

2001), and many other taxa (reviewed in Zuberbühler, 2008). Behavioral components may also 51 

rely on male body condition (Cotton et al., 2004; Johnstone, 1993; Rowe and Houle, 1996), 52 

particularly if they are energetically expensive to produce (Chappell et al., 1995; Ophir et al., 53 

2010) or incur the expense of fight or flight (Bachmann et al., 2017; Zuk and Kolluru, 1998). 54 

Different facets of display may thus reflect varying degrees of heritability. Even if selection 55 

pressures are consistent across these dimensions of display, sexual signals may evolve not as 56 

a single phenotype but as discrete components that undergo different rates of evolution (e.g. 57 

acoustic characteristics of frog calls, Cocroft and Ryan, 1995). Investigating the nature and 58 

extent of heritable variation underlying sexual signals is thus especially important to our broader 59 

understanding of how complex traits evolve. 60 

Although heritability is essential to understanding evolution, it is challenging to study. By 61 

definition, heritability is highly population-specific – and its measures are sensitive to genetic 62 

variation and environmental circumstances (Falconer, 1981; Visscher et al., 2008; Waldmann, 63 

2001; but see contrary evidence in Dochtermann et al., 2019; Waldmann, 2001). Despite its 64 

obvious value, our understanding of the quantitative genetics of wild populations has been 65 

limited due to the difficulties of ascertaining genetic relatedness in the field (Gienapp et al., 66 

2017). One popular surrogate for heritability, especially in behavioral ecology, is repeatability,  67 

which eliminates the need for a priori knowledge of relatedness altogether (Bell et al., 2009; 68 

Boake, 1989; Dingemanse et al., 2002). Repeatability is facile and offers an upper bound 69 

estimate for heritability (Boake, 1989), but because direct extrapolation of repeatability to 70 

heritability can vary in reliability (e.g. can underestimate heritability, Dohm, 2002; St-Hilaire et 71 

al., 2017), its most appropriate use may be limited to hypothesis generation. Conversely, 72 
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rigorous pedigree analysis, long the standard for quantitative genetics, is labor-intensive and 73 

impractical for many species that are either long-lived or difficult to track (Gienapp et al., 2017).  74 

Recent advances in genomics and quantitative genetics afford new opportunities for assessing 75 

heritability in non-model and wild populations. In traditional pedigree analysis, pedigrees are 76 

fitted into animal models, linear (or generalized linear) mixed models first developed for animal 77 

breeding programs (Henderson, 1950; Hill and Kirkpatrick, 2010) and later applied to 78 

evolutionary questions (Kruuk, 2004; Lynch et al., 1998). The advent of reduced representation 79 

next-generation sequencing techniques, such as RAD-seq (Peterson et al., 2012), allows 80 

researchers to estimate population genome-wide relatedness without need for pedigree, 81 

marking a significant turning point for researchers interested in the quantitative genetics of wild 82 

populations. Genomic relatedness matrices (GRM) are estimated by identity-by-descent 83 

inference (Mousseau et al., 1998; Ritland, 1996) and can then be fitted into mixed models in lieu 84 

of pedigrees, resulting in estimates of “SNP-based” or “genomic” heritability. Researchers in 85 

human genetics, biostatistics, and quantitative genetics have developed computational tools 86 

that accommodate complex genomic models, which has led to important insights into complex 87 

human traits (e.g. Yang et al., 2010). Researchers in ecology and evolution have recently begun 88 

to apply these methods in non-model species to investigate heritable variation in the wild 89 

(Gervais et al., 2020, 2019; Perrier et al., 2018). 90 

Here, we apply SNP-based methods to investigate patterns of heritability in singing behavior 91 

and body condition in a Costa Rican population of Alston’s singing mice (Scotinomys teguina). 92 

Singing mice are small, diurnal, and insectivorous muroid rodents of the family Cricetidae, 93 

eponymously named for their stereotyped advertisement songs (Hooper, 1972; Fig. 1). 94 

Scotinomys song makes a particularly interesting model for the study of signal evolution, being 95 

both acoustically complex and ecologically important. By the standards of muroid rodent 96 

vocalizations, songs are loud and long (7-10 s; Hooper and Carleton, 1976), comprising a 97 

rapidly repeated series of stereotyped, tonal frequency sweeps notes that span both audible 98 
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and ultrasonic (> 20kHz) frequencies. This suite of acoustic traits characterizes a notable 99 

departure from the short and simple ancestral ultrasonic vocalizations typical of most muroid 100 

rodents (Miller and Engstrom, 2007, 2012) and makes song detectable over long distances. 101 

Indeed, singing mouse song seems designed for that purpose, playing roles in both mate 102 

attraction and male-male competition (Fernández-Vargas et al., 2011; Hooper and Carleton, 103 

1976; George, 2014; Pasch et al., 2011a, 2013). Interestingly, aspects of singing effort are 104 

predicted by male body condition (Burkhard et al., 2018; Pasch et al., 2011a), providing a 105 

putative mechanism for signaling decisions and female preferences.  106 

 

Table 1: Trapping summary. Elevation taken at GPS waypoint. 

Site Latitude  Longitude Elevation (m) Sampled mice  

Robles 9°33'7.13"N  83°47'44.57"W 2580 4 

QERC 9°33'9.44"N  83°48'22.88"W 2227 134 

PH 9°54’9.55"N  83°81’0.23"W 2221 6 

PC 9°58’8.55"N  83°79’9.22"W 2577 1 

MH 9°58’0.62"N  83°79’9.35"W 2521 20 

      

 

Figure 1: Singing behavior of a wild population of Alston’s singing mice (Scotinomys teguina). (A) Still from a video 

of a singing male mouse. (B) Typical grassland and forest habitat characterizing San Gerardo de Dota, Costa Rica. 

(C) Example spectrogram of an advertisement song. Lower panels: left and middle depict a close-up of a single note 

at 5 s during the song. Left, spectrogram detail of note with minimum and maximum frequency labeled. A quadratic 

curve was fit to each note to measure note frequency modulation (FM). FMa describes note curvature, FMb 

describes slope, and FMc describes starting frequency. Middle, waveform detail of note with peak amplitude, peak 

amplitude within first quarter of note, and note duration labeled. Right, note duration changes as a function of song 

length. Photo credit: (A) B. Pasch, (B) T. Burkhard. 
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To examine patterns of heritability within this species, we recorded and analyzed songs and 107 

singing behavior from 168 wild-caught mice from San Gerardo de Dota, Costa Rica (Fig. 1, 108 

Table 1), and we quantified acoustic repeatability within and variation among individuals. We 109 

measured a variety of condition phenotypes from these mice, including morphometric traits, 110 

plasma nutrients, and circulating hormone levels, and then examined the phenotypic 111 

relationships between condition and song (Fig. 2, Table 2). We generated genotype data for 157 112 

mice using ddRAD-seq, and then deduced pairwise genetic covariance matrices. Finally, we 113 

used these data to fit animal models to explore patterns of heritability and co-heritability in song 114 

and condition phenotypes. Our study provides the first heritability estimates for complex 115 

signaling behaviors and their physiological substrates in a wild population and illustrates the 116 

utility of such methods to address evolutionary questions.  117 

Results 118 

Phenotypic sampling 119 

We sampled a population of singing mice from San Gerardo de Dota, Costa Rica (Fig. 3, Table 120 

1), taking a variety of measurements of song and condition from these wild-caught animals. 121 

Summary statistics, sample sizes, and breakdown by sex for all measured phenotypes are 122 

reported in Table 2.  123 

We successfully recorded long songs and spontaneous song rate (i.e. number of songs in two 124 

hours) from 106 and 129 mice, respectively (Table 2). Mice with at least one song were included 125 

in principal components analysis (PCA) of acoustic variation, which revealed two latent 126 

variables, PC1 (“song effort”, 23.1% of overall variance), which explained individual variation in 127 

amplitude and duration, and PC2 (“spectral characteristics”, 19.1%), which explained individual 128 

variation in frequency characteristics of song, particularly note shape (Fig. 2, Table S1).   129 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.08.321141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.321141


8 
 

   
 

We regressed body mass (RBM) as a common measure of body condition in 165 mice and 130 

measured anogenital distance (AGD) in 159 mice. We took plasma samples from each of the 131 

165 mice, but only male plasma was processed; of these, 78 samples had enough plasma to 132 

complete at least one assay. All plasma measures fell within the range of values reported for 133 

laboratory mice except adiponectin, an adiposity hormone involved in glucose and fatty acid 134 

metabolism (Mus: 3000–15 000 ng ml-1, Friedman and Halaas, 1998; Scotinomys: 50–350 ng 135 

Figure 2: Acoustic 

variation in songs of wild 

singing mice. (A) Biplots 

from PCA of Scotinomys 

song. Left, biplot showing 

how variables loaded in 

PC space. In red, 

parameters loading 

strongly on PC1 (“song 

effort”). In blue, 

parameters loading 

strongly on PC2 (“spectral 

characteristics”). Right, 

individual singers plotted 

in PC space. Points 

colored red and blue are 

individuals that produced 

the songs plotted in B and 

C, respectively. (B) 

Variation in song effort. 

Left, song loading strongly 

and negatively on PC1. 

Right, song loading 

strongly and positively on 

PC1. (C) Variation in 

spectral characteristics. 

Top panels depict full 

spectrograms of songs 

with lower panels 

depicting 0.1 ms of song 

taken at 1 s, 3 s, and 5 s. 

Left, song loading strongly 

and negatively on PC2. 

Right, song loading 

strongly and positively on 

PC2. 
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ml-1, Burkhard et al., 2018). Fifty-two samples met the requirements to be included in PCA of 136 

body condition (see Methods), which revealed three latent variables. PC1 (“PC1 condition”, 137 

34.5% of total variation) described individual variation in glucose, fatty acids, and insulin, which 138 

we interpreted as metabolic responses to recent feeding. PC2 (“PC2 condition”, 22.2%) 139 

described variation in residual body mass (RBM) and adiponectin, an adiposity hormone that 140 

modulates glucose and lipid metabolism; while PC3 (“PC3 condition”, 17.2%) described 141 

variation in leptin, an adiposity hormone that helps regulate body weight, and adiponectin (Table 142 

S2). We interpreted these latter two composite variables as putatively stable indicators of long-143 

term body composition and regulation of energy stores.  144 

Phenotype Units NTotal N (♂) N (♀) Mean ± SD  Range 

Song rate songs/2h 129 97 32 

2.1 ± 2.5 0 – 14 

2.2 ± 2.3 (♂) 0 – 9 (♂) 

1.8 ± 2.8 (♀) 0 – 14 (♀) 

Song length s 106 84 22 

6.3 ± 1.5  4.1 – 8.8 

6.7 ± 1.1 (♂) 4.1 – 8.8 (♂) 

6.1 ± 0.9 (♀) 4.4 – 7.7 (♀) 

Trill rate notes/s 106 84 22 

6.7 ± 1.1 8.5 – 15.9 

11.8 ± 1.5 (♂) 8.5 – 15.9 (♂) 

12.1 ± 1.1 (♀) 9.1 – 13.6 (♀) 

Note number notes 106 84 22 

76.5 ± 12.8 43.5 – 104 

77.5 ± 12.8 (♂) 43.5 – 104 (♂) 

73.0 ± 12.6 (♀) 55 – 104 (♀) 

Dominant 
frequency 

kHz 106 84 22 

24670.8 ± 3782.8 18052 – 35272 

24596.1 ± 3856.7 (♂) 18052 – 35272  (♂) 

24942.5 ± 3573.2 (♀) 20079 – 32158 (♀) 

Mean 
bandwidth 

kHz 106 84 22 

25064.6 ± 7799.7 3306 – 45949 

24439.3 ± 8209.9 (♂) 3306 – 45949 (♂) 

27338.3 ± 5667.5 (♀) 19599 – 44188 (♀) 

Minimum 
frequency 

kHz 106 84 22 

13660.62 ± 13856.53 15872 – 92570 

14935.4 ± 15396.04 (♂) 15872 – 92570  (♂) 

9025.06 ± 1740 (♀) 36621 – 89264 (♀) 

Maximum 
frequency 

kHz 106 84 22 

55035.0 ± 18821.1 15872 – 92570 

54309.9 ±  19123.3  (♂) 15872 – 92570  (♂) 

57671.6 ± 17851.8 (♀) 36621 – 89264 (♀) 

Entropy nat 106 84 22 -4.7 ± 0.4 -5.6 – -4.0 

 

Table 2: Sample sizes and summary statistics for each song and condition phenotype recorded from 165 

singing mice.  
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-4.6 ± 0.35 (♂) -5.6 – -4.0 (♂) 

-4.8 ± 0.4 (♀) -5.3 – -4.0 (♀) 

ddRAD NA 157 128 29 NA 

PC condition NA 52 52 0     

Mass g 165 133 32 12.6 ± 1.5 8 – 16.4 

Residual body 
mass 

g 165 133 32 0 ± 1 -3.1 – 2.5 

Hindfoot mm 165 133 32 16.4 ± 0.6 15 – 18  

Anogenital 
distance 

mm 159 127 32 

5.5 ± 1.3 2 – 8 

2.2 ± 2.3 (♂) 0 – 9 (♂) 

1.8 ± 2.8 (♀) 0 – 14 (♀) 

Glucose ml dl-1 78 78 0  111.9 ± 66.6 14.71 – 378.5  

Triglycerides ml dl-1 74 74 0 201.7 ± 119.5 52.2 – 718.3 

Adiponectin ng ml-1 63 63 0 132.8 ± 52.2 53.4 – 324.2  

Insulin pg ml-1 56 56 0 585.7 ± 502.7 69.0 – 2814.1  

Leptin pg ml-1 56 56 0 2162.0 ± 1332.9 9.0 – 6711.0 

Cholesterol ml dl-1 32 32 0 219.8 ± 64.6 18.5 – 340.7 

Phospholipids ml dl-1 32 32 0 347.4 ± 106.4 41.9 – 526.4 

Non-esterified 
fatty acids 

ml dl-1 30 30 0 0.7 ± 0.2 0.3 – 1.3 

PC song + PC 
condition 

NA 41 41 0 NA 

PC song + 
ddRAD 

NA 101 81 20 NA 

PC condition+ 
ddRAD 

NA 49 49 0 NA 

PC song + PC 
condition + 

ddRAD 
NA 39 39 0 NA 

145 

Variant calling 146 

We used ddRAD-sequencing (Peterson et al., 2012) to genotype 162 mice. Five samples had 147 

poor coverage and were excluded from downstream analyses. We demultiplexed and trimmed 148 

reads using the process_radtags command from the Stacks pipeline (v1.46.0; Rochette and 149 

Catchen, 2017), then mapped trimmed reads to the S. teguina reference genome (annotated, 150 

unpublished) using Bowtie 2 (v2.3.2; Langmead and Salzberg, 2012). After pruning the  151 

remaining 157 genotypes for minor allele frequency (MAF) > 0.1 and for sex-linked markers 152 

using VCFTOOLS (v0.1.15; Danecek et al., 2011) and ANGSD (v0.929-13; Korneliussen et al., 153 

2014), we retained 31,003 SNPs. 154 
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Population structure and individual relatedness 155 

Because population structure can influence estimates of heritability, we first examined 156 

population genetic structure (Fig. 3). Permutational multivariate analysis of variance 157 

(PERMANOVA) revealed low but statistically significant genetic differentiation between trapping 158 

sites (R2 = 0.027, P = 0.001), and principal coordinate analysis of the genotypic data revealed 159 

distinct but overlapping genetic clusters explained by trapping site (Fig. 3b). Consistent with this 160 

interpretation, we estimated generally low FST between sites (range: 5.7E-06 – 0.13) and found 161 

FST increased with geographic, though not elevational, distance (two-sided Mantel test; 162 

geographic distance: r = 0.68, P = 0.02; elevational distance: r = -0.05, P = 0.91; Table 3). We 163 

next estimated relatedness of individuals within our sample. Most pairwise genetic relationships 164 

were the equivalent of unrelated individuals, but we also uncovered stronger genetic 165 

relationships equivalent to half-sibling and full-sibling relatedness (Fig. 3c).  166 

Table 3: Trapping site statistics. Geographic distance and elevational change calculated from GPS waypoints.  

Site 1 Site 2 Geographic distance (m) Elevation change (m) FST 

PH Robles 1610 359 0.08 

QERC PH 538 6 0.05 

QERC Robles 1180 353 0.04 

QERC MH 3190 294 0.05 

QERC PC 4100 350 0.07 

MH PH 3650 300 0.07 

MH Robles 3220 59 0.08 

MH PC 870 56 0.06 

PC PH 4490 356 0.13 

PC Robles 4080 3 0.12 
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Repeatability of acoustic variation  167 

We estimated repeatability of acoustic characteristics by calculating intraclass correlation 168 

coefficients (ICC). Repeatability ranged from negligible (ICC < 0.2) to high (ICC ≥ 0.5; Table S3) 169 

and was generally greater for spectral song descriptors than for those related to song effort 170 

(spectral: mean ICC = 0.36, range = 0 – 0.76; effort: ICC = 0.21, 0 – 0.45). This pattern became 171 

more pronounced when considering only whole-song descriptors (i.e. song length, dominant 172 

frequency; Table S3), with whole-song spectral measures having greater mean repeatability 173 

than whole-song measures of effort (spectral: mean ICC = 0.32, range = 0.43 – 0.76; effort: ICC 174 

= 0.32, 0.30 – 0.33; Table S3, Fig. 4). The top three most repeatable aspects of song (ICC ≥ 175 

0.6) were spectral characteristics: song mean bandwidth (ICC ± SE; BW: 0.76 ± 0.02), minimum 176 

frequency (minHz: 0.76 ± 0.03), and the starting frequency of the first note of a song (FMc_c: 177 

Figure 3: Geographic 

structure of relatedness in 

a wild population of 

singing mice. (A) Map of 

Costa Rica with zoomed-

in panel of trapping sites 

within the valley of San 

Gerardo de Dota. (B-C) 

Colored by site from A. 

(B) Biplot of first two PCs 

from PCoA of genetic 

distance between 

individual mice. (C) 

Heatmap of genetic 

relatedness matrix (GRM) 

for 157 mice. Hierarchical 

cluster branches 

annotated by trapping site 

as in A. See Table 1 for 

elevation data and 

sample sizes. 
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0.61 ± 0.04). Entropy, a whole-song description of tonality (0.59 ± 0.04), maximum frequency 178 

(maxHz: 0.56 ± 0.05), and FMb_c, starting note slope (0.52 ± 0.04) were the other measures 179 

with ICC ≥ 0.5. Twelve parameters, including dominant frequency and song length, were 180 

modestly repeatable (0.5 > ICC ≥ 0.2), while the remaining 13 parameters had negligible 181 

repeatability.   182 

Heritability of song and condition 183 

We estimated heritability by fitting animal models using maximum likelihood (ML) estimation 184 

implemented using standalone software GCTA (Yang et al., 2011) and using Bayesian Markov  185 

 

Table 4: Heritability estimates for song and condition phenotypes. 95% HPDI = 95% highest posterior density 

credible interval.  

     95% HDPI 

Type Trait N VG/VP SE Lower Upper 

Condition 

Hindfoot 154 0.20 0.13 0.00 0.52 

PC1 condition 49 0.07 0.07 0.00 0.26 

PC2 condition 49 0.34 0.24 0.00 0.94 

PC3 condition 49 0.45 0.25 0.00 1.00 

RBM 154 0.27 0.19 0.00 0.75 

Development AGD 148 0.25 0.17 0.00 0.65 

Song 

Entropy 101 0.48 0.25 0.00 0.97 

Max Hz 101 0.88 0.09 0.64 1.00 

Mean BW 101 0.90 0.10 0.62 1.00 

Min Hz 101 0.87 0.10 0.60 1.00 

PC2 spectral chars 97 0.61 0.25 0.02 0.99 

Song DF 101 0.55 0.25 0.02 1.00 

Fma_a 102 0.32 0.15 0.00 0.60 

Fma_b 102 0.48 0.22 0.00 0.84 

Fma_c 102 0.61 0.25 0.02 1.00 

Fmb_a 102 0.09 0.06 0.00 0.23 

Fmb_b 102 0.12 0.07 0.00 0.29 

Fmb_c 102 0.42 0.21 0.00 0.81 

Note num 101 0.03 0.03 0.00 0.10 

PC1 song effort 97 0.06 0.05 0.00 0.21 

Song length 101 0.02 0.01 0.00 0.06 

Song rate 119 0.59 0.25 0.00 0.98 

Trill rate 101 0.14 0.12 0.00 0.45 
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chain Monte Carlo methods implemented with R-package brms (Bürkner, 2018, 2017). 186 

Heritability estimates derived from GCTA and brms were generally consistent for the same 187 

phenotypes with a notable exception, PC1 condition (GCTA: h2 = 0.96 ± 0.59, brms: h2 = 0.07 ± 188 

0.07; Table 4, Table S4). Such disagreements result from how the two approaches deal with 189 

sparse data—for example, due to low levels of true heritability or small sample size. In these 190 

cases, ML estimation tends to be extremely variable and may report values that are either very 191 

large or zero (e.g. Beerli, 2006), while Bayesian approaches, given appropriate priors, offer 192 

more reliable results, as demonstrated by analyses of both empirical and simulated data (Beerli, 193 

2006; Charmantier et al., 2011; Van de Schoot et al., 2015; Villemereuil et al., 2013). Credible 194 

intervals from Bayesian analysis are easily interpretable and provide distributional information 195 

indicating the most probable value and associated certainty (de Villemereuil, 2019; Kruschke 196 

and Liddell, 2018). For these reasons, we report here only heritability estimates (± SE) and 95% 197 

highest posterior density credible intervals (HPDI) from Bayesian models. For comparison, 198 

GCTA results are reported in Supplemental Files (Table S4).  199 

Patterns of heritable variation in songs 200 

Heritability estimates for whole-song measures related to song effort (h2 range: 0.02 – 0.59, 201 

mean: 0.19) were generally lower than estimates for whole-song spectral measures (h2 range: 202 

0.48 – 0.90, mean: 0.57; Fig. 4, Table 4). PC composite variables followed this pattern, with 203 

PC1 having negligible heritability (h2 = 0.06 ± 0.05) and PC2 having high heritability (h2 = 0.61 ± 204 

0.25). Mean song bandwidth, maximum song frequency, and minimum song frequency were the 205 

most heritable acoustic traits, with h2 ≥ 0.8, while song length and note number were the least 206 

heritable traits, with h2 ≤ 0.05. One notable exception to the general pattern was song rate, the 207 

number of songs produced in two hours, which had high heritability (h2 = 0.59 ± 0.25). 208 

We also examined the repeatability and heritability of several measures describing note shape 209 

(i.e. note curvature, FMa_X; note slope, FMb_x) and how shape changes over the course of a 210 
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song (Fig 5); for example, FMa_A describes how rapidly note-to-note differences in note  211 

curvature happen over course of song, FMa_B describes the change in note curvature between 212 

first and second notes, and FMa_C describes the note curvature in first note in song (Campbell 213 

et al., 2010). We estimated intermediate to high repeatability and heritability for FMx_C terms;  214 

by contrast, we found low to intermediate repeatability and heritability for FMx_B terms and 215 

negligible to low repeatability and heritability for FMx_A terms (Tables 4, S3).  216 

Patterns of heritable variation in body condition and morphology 217 

Condition and morphological measures ranged in heritability from low to intermediate heritability 218 

(h2 range: 0.07 – 0.45, Fig. 6a, Table 4). Anogenital distance (AGD), a morphological indicator 219 

of developmental exposure to androgens, had moderate heritability (h2 = 0.25 ± 0.17). Hindfoot 220 

length and RBM also had moderate heritability (hindfoot: h2 = 0.20 ± 0.13; RBM: h2 = 0.27 ± 221 

0.19). Measures of long-term body composition (i.e. PC2 and PC3 condition) were more 222 

heritable (PC2 condition: h2 = 0.34 ± 0.24; PC3 condition: h2 = 0.45 ± 0.25). Finally, short-term 223 

fluctuations in nutrients (PC1 condition) had low heritability (h2 = 0.07 ± 0.07).  224 

Figure 4: Heritable and repeatable variation in songs. (A) Repeatability (rpt) and heritability (brms) 

estimates from different models for song effort characteristics. (B) Estimates for spectral 

characteristics. Error bars indicate standard errors. 
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Correlations between body condition and singing behavior 225 

Phenotypic correlations of condition and song  226 

We next examined phenotypic correlations of condition and song by fitting mixed models. Forty-227 

one male mice had both song and PC condition data and could be included in linear or 228 

generalized linear mixed models for condition-dependence (Tables 2, S5). Acoustic 229 

characteristics related to song effort were predicted by both body size and adiposity measures 230 

of condition: males with high PC2 condition scores sang longer songs with more notes than 231 

individuals with low PC2 condition scores (song length: βPC2con = 0.32, SE = 0.10, P = 0.002; 232 

note number: βPC2con = 0.32, SE = 0.10, P = 0.001, Fig. 6b). Similarly, males with high PC3 233 

condition scores (high leptin, low adiponectin) produced more songs in the span of two hours 234 

than males with low PC3 condition scores (song rate: βPC3con = 0.21, SE = 0.10, P = 0.04, Fig. 235 

6c).  Interestingly, we did not find a statistically clear effect of body size or adiposity measures 236 

on PC1 song effort, but we did find a clear relationship between song effort and AGD, an 237 

indicator of phenotypic masculinity (song effort: βagd = 0.76, SE = 0.36, P = 0.04).  238 

Figure 5: Heritability of note shape. (A) Close-ups of a single note over 50 ms. Left, note with low FMb and FMa 

(shallow note slope and curvature). Right, note with high FMb and FMa (steep note slope and curvature). Black 

lines trace note curvature; dotted white lines indicate note slope. (B) Repeatability (rpt) and heritability (brms) 

estimates from different models for song effort characteristics. Error bars indicate standard errors.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.08.321141doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.321141


17 
 

   
 

While increases in PC3 condition scores also 239 

predicted modest increases in song maximum 240 

frequency (max Hz: βPC3con = 0.07, SE = 0.13, P 241 

= 0.007) and modest decreases in song 242 

minimum frequency (min Hz: βPC3con = -0.04, SE 243 

= 0.01, P < 0.001), other spectral characteristics 244 

were not strongly predicted by any other 245 

measure of body condition (Table S5). Finally, 246 

PC1 condition, variation in immediate metabolic 247 

responses to recent feeding, did not predict any measure of song (Table S5).  248 

Co-heritability of condition and song 249 

We estimated genetic correlations for combinations of song effort characteristics (song length, 250 

note number, song rate) and condition measures (PC2, PC3) that were substantially 251 

phenotypically correlated (Table S5). We also investigated genetic correlations between song 252 

effort characteristics and RBM; this comparison allowed us to examine the utility of the 253 

traditional body condition metric and afforded us greater statistical power. Correlations ranged 254 

from -0.19 to 0.61 and were generally larger in magnitude for traits that were more strongly 255 

phenotypically correlated (Tables 5, S5). Total songs and PC3 of condition had the largest 256 

genetic correlation (r = 0.61 ± .29); this was unsurprising given the intermediate to high 257 

heritability estimates for each trait. In all cases, however, the 95% HPDI included the region of 258 

practical equivalence (ROPE) around 0 (Kruschke and Liddell, 2018); thus, we did not find clear 259 

statistical evidence for significant genetic correlations in our study.   260 

Figure 6: Heritability of condition. Error bars indicate 

standard errors. 
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Discussion 261 

In this study, we used genome-wide data to investigate heritable variation in a variety of 262 

phenotypes related to advertisement display and body condition in a Costa Rican population of 263 

Alston’s singing mouse (Scotinomys teguina). We obtained 31,000 SNPs from ddRAD-seq that 264 

we then used to estimate genome-wide relatedness, finding genetic relationships ranging from 265 

unrelated (rel ≅ 0) to the equivalent of full siblings (rel ≅ 0.5). We next calculated SNP-based 266 

heritability for various characteristics of singing behavior and measures of body condition, 267 

confirming results with both frequentist and Bayesian modeling. We found that measures of 268 

repeatability, a common surrogate for heritability (Boake, 1989), accurately predicted patterns of 269 

heritability: characteristics related to song effort, which were modestly repeatable, had low to 270 

moderate heritability, whereas spectral characteristics were often highly repeatable and 271 

heritable. We estimated intermediate heritability for patterns of body adiposity, while the 272 

heritability of insulin and circulating nutrients was negligible. Adiposity and song effort exhibited 273 

a strong phenotypic correlation, which was accompanied by a surprisingly high estimate of their 274 

co-heritability (r = 0.61). We now explore these findings in more depth.  275 

Table 5: Genetic correlations (rG) between condition and song. 95% HPDI = highest posterior density 

credible intervals. 

Trait 1 Trait 2 N rG SE 
95% HPDI 

lower upper 

call length RBM 80 0.14 0.15 -0.17 0.43 

note number RBM 80 -0.01 0.34 -0.65 0.66 

total songs RBM 118 0.19 0.35 -0.7 0.87 

call length PC2 condition 31 0.35 0.2 -0.07 0.69 

note number PC2 condition 31 0.02 0.34 -0.63 0.64 

total songs PC3 condition 49 0.61 0.29 -0.12 0.98 
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Heritability and repeatability of singing behavior  276 

Scotinomys songs vary in a wide range of acoustic attributes, and a principal components 277 

analysis of acoustic features suggested two major dimensions of song variation: those related to 278 

duration and amplitude, which we consider “song effort”; and those describing spectral 279 

characteristics, specifically, the frequency modulation that occurs over the course of a song (Fig 280 

2, 4). Although heritability varied greatly from feature to feature, ranging from values near 0.0 to 281 

above 0.8, there were systematic patterns to the heritability of songs and their attributes (Table 282 

5). 283 

Among our various measures, whole-song spectral variation (dominant, maximum, and 284 

minimum frequency; mean bandwidth, entropy) was both highly repeatable and heritable. We 285 

hypothesize that this heritability reflects anatomical variation or low-level motor control. For 286 

example, dominant frequency (h2 = 0.55 ± 0.25; ICC = 0.43 ± 0.05) is a property of both the 287 

vocal tract and adjustments to its length or shape (Fitch, 2006; e.g. via lip contractions in 288 

humans, Story et al., 2001; tongue placement or bill gape in songbirds, Langin et al., 2017, 289 

Nelson et al., 2005; laryngeal descent in humans and deer, Fitch and Reby, 2001). Maximum 290 

frequency (h2 = 0.88 ± 0.1; ICC = 0.56) is likely a function of the cricothyroid, a muscle 291 

controlling the length and tension of vocal folds (Jürgens, 2002; Riede and Brown, 2013). In 292 

muroid mice that produce laryngeal whistles, variation in structures like the vocal folds and the 293 

ventral pouch are proposed to shape interspecific variation in dominant frequency (Riede et al., 294 

2017; Riede and Pasch, 2020; Smith et al., 2020). At a phylogenetic scale, spectral properties 295 

are often constrained by body size, a relationship generally mediated by scaling of vocal 296 

structures (Gillooly and Ophir, 2010; Ophir et al., 2010; Ryan and Brenowitz, 1985). The 297 

relationship between body size and frequency is often observed within species as well, such as 298 

in red deer (Reby and McComb, 2003), anurans (Gerhardt, 1982), songbirds (Ryan and 299 

Brenowitz, 1985), loons (Mager et al., 2007), and humans (Pisanski et al., 2014). It is by no 300 
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means universal, however (e.g. Martin et al., 2017), and we did not observe a relationship in our 301 

sample. 302 

While whole-song spectral characteristics were highly heritable, we also found substantial 303 

heritability in frequency modulation. Six related variables strongly loaded on PC2; together, 304 

these variables describe the frequency modulation that characterizes a note and how it changes 305 

over the course of a song (Figs. 2, 5). To appreciate how these are related, imagine a single 306 

note composed of a downward frequency sweep that begins and ends at characteristic 307 

frequencies defined by the performance of the vocal tract. A given note may proceed linearly 308 

from the beginning frequency to the end frequency with a relatively shallow slope, or may 309 

change rapidly in frequency initially, and then flatten out (Fig. 5a). These two parameters are the 310 

starting slope and curvature of a note (i.e. FMb, and FMa, the linear and quadratic terms in the 311 

equation: 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝐹𝑀𝑐 + 𝐹𝑀𝑏 × 𝑡𝑖𝑚𝑒 + 𝐹𝑀𝑎 × 𝑡𝑖𝑚𝑒2; Figs. 1, 5). We find that the slope 312 

and curvature of notes are strongly correlated with one another, and change systematically over 313 

the course of the song. Starting note shape (FMb_C, FMa_C) exhibits high repeatability and 314 

heritability (Tables 4, S3). Unlike many other spectral features of the song, note shape reflects 315 

the temporal dynamics of muscle activity over the course of a note. Such timing must reside in 316 

central pattern generators (CPGs), such as those vocal, orofacial and respiratory CPGs thought 317 

to reside in the brainstem (Zheng, 2020). In singing mice, laryngeal and jaw muscles important 318 

for vocalization seem to be coordinated by a putative CPG within the reticular formation (Zheng 319 

et al., manuscript).  320 

The fact that note shapes vary by individual and are highly heritable is also consistent with prior 321 

suggestions that they contribute to identity signaling in this species (Burkhard et al., 2018). 322 

Other studies have found that ecological contexts can favor individually distinctive social signals 323 

(Burt and Beecher, 2008; Sheehan and Tibbetts, 2010; Stoddard and Beecher, 1983). If this 324 

were true, it would predict that not only could animals use note shape and other spectral 325 

features to recognize individuals, but that balancing selection may actively promote diversity of 326 
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neural activity patterns within CPGs. These results highlight a need to examine whether note 327 

shapes are in fact used in individual recognition. 328 

In contrast to spectral features, we found low heritability for most song-effort traits. Our PC1 of 329 

song variation, which we labelled song effort, was low both in its repeatability and heritability 330 

(ICC = 0.21, h2 = 0.06). Measures like song length, note number, and trill rate (ICC < 0.35) all 331 

had negligible heritability (h2 < 0.1). One explanation for this pattern is that highly plastic 332 

behaviors, which are shaped by social context and experience, may be less heritable than traits 333 

constrained by morphology (Boake, 1989; Mousseau and Roff, 1987). This phenomenon has 334 

been documented in other natural populations (e.g. three-spined stickleback: Dingemanse et al., 335 

2009; island-adapted deer mice: Baier et al., 2019) and confirmed by meta-analyses of 336 

behavioral and morphological datasets (Mousseau and Roff, 1987; Stirling et al., 2002; but see 337 

Jensen et al., 2003; Dochtermann et al., 2019). This interpretation is consistent with evidence 338 

from singing mice suggesting that song effort is highly sensitive to social context and motivation. 339 

Male singing mice increase song rate in response to winning fights (George, 2014), encounters 340 

with females (Fernández-Vargas et al., 2011; Hooper and Carleton, 1976), and simply hearing 341 

another animal vocalize (Hooper and Carleton, 1976; Pasch et al., 2013). Singing mice also 342 

exhibit dynamic “turn-taking” counter-singing behavior, rapidly modifying the starts and stops of 343 

songs during social interactions (Okobi et al., 2019). Similar relationships between vocal effort 344 

and social experience are well documented in other taxa, particularly in avian (Catchpole and 345 

Slater, 2008; Podos and Cohn-Haft, 2019) and anuran species (Bernal et al., 2009; Gerhardt, 346 

1991; Ryan, 1985), in wild muroid rodents (Fernández-Vargas, 2018 a; Fernández-Vargas, 347 

2018 b), and in other mammals (Briefer, 2012; Gouzoules and Gouzoules, 2000), including 348 

humans (Bachorowski, 1999). Male music frogs dynamically adjust calling efforts based on 349 

perceived sexual attractiveness of rivals (Fang et al., 2014), comparable to male responses to 350 

competition in gray treefrogs (Gerhardt, 1991) and túngara frogs (Bernal et al., 2009; Ryan, 351 

1985). Likewise, pair-bonded California mice increase their use of aggressive “bark” 352 
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vocalizations towards recently unfaithful partners (Pultorak et al., 2018), a behavioral response 353 

with uncanny parallels to non-verbal human expressions of anger (Sauter et al., 2010). 354 

Taken together, our data suggest that as we move from the peripheral vocal organs, through 355 

low-level motor control, and finally to the higher-level neural centers that govern motivational 356 

state and dynamic social interactions, aspects of song become progressively less heritable. This 357 

seems to be a major finding of our analysis, but there are two anomalous aspects of our data 358 

that merit some further discussion. The first is that stable differences in song duration, trill rate, 359 

and related characteristics that seem negligibly heritable in our sample are nevertheless distinct 360 

among populations of singing mice (Campbell et al., 2010; Hooper and Carleton, 1976); these 361 

differences persist in laboratory-reared mice (Campbell et al., 2014), suggesting a heritable 362 

basis for lineage differences. One possibility is that meaningful heritability is present in these 363 

measures, but our power is insufficient to detect it. A second possibility is that low heritability in 364 

contemporary populations may be a by-product of past selection. Local adaptation, for example, 365 

would preserve between-lineage heritability while reducing within-population genetic variance 366 

(Falconer, 1981; Mousseau and Roff, 1987). Future work will investigate the relationship 367 

between acoustic and genetic variation across populations of singing mice. The second 368 

anomaly in our findings is that song rate, which we interpret as a motivational aspect of song, is 369 

surprisingly heritable (h2 = 0.59 ± 0.25). We recently reported that manipulating perceived body 370 

condition by injecting leptin increases song rate, but not song duration. Perhaps song rate is 371 

particularly strongly influenced by trade-offs associated with body condition – a hypothesis that 372 

is supported by phenotypic correlations between the two dimensions (discussed below). 373 

Heritability of condition  374 

Body condition holds evolutionary significance for two major reasons: it is thought to be tightly 375 

linked to fitness, and it is integral to many models of signal evolution. As a result, its heritability 376 

is also of evolutionary interest. While fitness-related traits are generally expected to have low 377 
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heritability (Falconer, 1981; Mousseau and Roff, 1987), it is not immediately obvious whether 378 

condition should follow this pattern. First, certain indices of condition may not be as predictive of 379 

evolutionary fitness as others, or may predict different aspects of fitness; for instance, in 380 

damselflies, body weight is negatively correlated with parasite-mediated mortality but has no 381 

relationship with reproductive success (Rolff et al., 2002). Further, condition may be variably 382 

affected by contributions of environmental and genetic variation underlying its many 383 

physiological and morphological constituents. Lastly, if condition is highly polygenic due to its 384 

dependence on a large number of other aspects of phenotype, the high “mutational target size” 385 

of the trait could allow heritable variation to persist in the face of selection – an argument that 386 

has been used to suggest that elaborate displays can serve as indicators of underlying genetic 387 

viability (Rowe and Houle, 1996). 388 

In the present study, we described body condition with measures of residual body mass and 389 

various circulating nutrients and metabolic hormones, using PCA to define major dimensions of 390 

variation. PC1 described variation in glucose, fatty acids, and insulin, which we interpreted as 391 

immediate metabolic responses to recent feeding or fasting. PC2 and PC3 each reflected 392 

patterns of adiposity: PC2 described variation in body size and adiponectin, an adiposity 393 

hormone involved in glucose and fat digestion, while PC3 described variation in adiponectin and 394 

leptin, an adiposity hormone regulating body weight. Thus, we interpreted both PC2 and PC3 of 395 

condition as putatively stable indicators of body composition.  396 

We found low heritability for circulating nutrients and insulin (PC1 condition: h2 = 0.07), a result 397 

that is consistent with these measures as dynamic responses to recent feeding. Relative to the 398 

moderate heritability of RBM, stable indicators of body composition (PC2 and PC3 condition) 399 

were higher in heritability (Table 4, Fig. 6) but were lower than expected. Evidence from humans 400 

and laboratory rodents suggests a high heritability of adiposity- and metabolism-related traits, 401 

including body fat distribution (Schleinitz et al., 2014), percent body fat (Wuschke et al., 2007), 402 

fat type (Ferrannini et al., 2016), and metabolic rate (Pettersen et al., 2018); indeed, twin studies 403 
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report higher heritability of human body fat (h2 = 0.59-0.63, Schousboe et al., 2004; h2 = 0.71-404 

0.75, Lehtovirta et al., 2010) and body mass index (BMI; h2 = 0.58-0.63, Schousboe et al., 2004; 405 

h2 = 0.63-0.85, Allison et al., 1996) than values we report here. However, an important 406 

distinction between human or lab rodent work and this study is that the former significantly 407 

reduces environmental variance by design whereas our focal population has been subject to 408 

natural environmental conditions.  409 

Condition dependence 410 

Elaborate displays can be costly to express, and are thought to rely on body condition (Bradbury 411 

and Vehrencamp, 1998; Cotton et al., 2004; Johnstone, 1993). Condition dependence thus 412 

plays an important role in individual signaling decisions, determining the expression and 413 

intensity of labile signals, in addition to serving as a key mechanism for many models of signal 414 

evolution (Grafen, 1990; Kirkpatrick and Ryan, 1991; Pomiankowski, 1987; Zahavi, 1975). 415 

Condition-dependence could also lead to genetic covariance between loci affecting condition 416 

and display, a critical prediction of good-genes models of signal evolution (Kirkpatrick and Ryan, 417 

1991; Rowe and Houle, 1996; Tomkins et al., 2004).  418 

We tested whether major dimensions of song were phenotypically corelated with measures of 419 

condition. As expected, stable spectral characteristics, putatively constrained by variation in 420 

vocal structures and morphology, lacked strong correlations with measures of body condition. 421 

Conversely, we found significant relationships between elements of song effort, including song 422 

length, vocalization rate, and note number, and stable measures of body composition (PC2 and 423 

PC3 of condition). These findings are consistent with previously reported relationships between 424 

body condition and song in singing mice (Burkhard et al., 2018; Pasch et al., 2011b) and with 425 

general patterns described in other taxa (e.g. birds: Houtman, 1992, Lampe et al., 1994; 426 

crickets: Thomson et al., 2014). For example, Thomas and Cuthill (2002) demonstrated that 427 

European robins (Erithacus rubecula) song rate was positively correlated with body mass, such 428 
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that increases in body mass (i.e. increased fat reserves) predict more frequent singing behavior 429 

(Thomas and Cuthill, 2002). Likewise, greater body mass predicts more elaborate repertoires 430 

and better performance in Java sparrows (Lonchura oryzibora) (Kagawa and Soma, 2013). 431 

Possible explanations for this general phenomenon include the hypothesis that conspicuous 432 

song, along with other labile displays, may be energetically costly to produce (Barske et al., 433 

2013; Ward et al., 2003) or may elicit the energetic costs of predator evasion (Zuk and Kolluru, 434 

1998). Signaling decisions are thus likely modulated not only by social context but by self-435 

assessment of body condition (Santori et al., 2020), perhaps through interoceptive cues, like 436 

adiponectin or leptin, that signal status of energetic reserves (Havel, 2001).  437 

Both song rate and PC3 of condition (the adiposity hormones leptin and adiponectin) were 438 

remarkably heritable (Table 5), and our estimate for the genetic correlation between the two 439 

suggests that roughly 60% of the heritability in song rate could be predicted by this measure of 440 

condition (Table 6). This estimate is surprisingly large – it is comparable, for example, to 441 

published genetic correlations between closely related psychiatric conditions like schizophrenia 442 

and bipolar disorder (rg = 0.64, Lee et al., 2013). An important caveat, however, is that the 443 

credible intervals overlap the region of practical equivalence around 0 (Kruschke and Liddell, 444 

2018), indicating that we lack the power to precisely estimate the genetic correlation. Our 445 

findings indicate, however, that it would be worthwhile to generate a more precise estimate of 446 

this genetic correlation. Such studies should focus on hormonal indicators of condition, and 447 

should include a substantially larger number of animals. What constitutes a reasonable 448 

sampling effort will vary by study system, its demography, and its natural history (eg Bérénos et 449 

al., 2014; Villemereuil et al., 2013).  450 

Finding a genetic correlation is necessary for the good genes hypothesis, but it is not sufficient. 451 

The idea that an expensive trait could be an index for heritable variation in condition is plausible, 452 

but we would expect genetic correlations to be present even if female choice plays no role in the 453 

evolution of effort—because males must make these decisions in order to balance risks and 454 
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rewards in general. Our approach, however, provides a way to generate meaningful measures 455 

of body condition in the wild, as well as meaningful measures of heritability and co-heritability. 456 

Such data will be essential to disentangling the role of direct benefits – such as males 457 

maximizing the outcomes of trade-offs, and females avoiding parasites – and indirect benefits, 458 

such as minimizing the genetic burden of deleterious mutations passed on to offspring.  459 

Conclusions 460 

For decades, the challenges of studying heritability in non-model and wild species has 461 

compelled many behavioral ecologists and field biologists to either strategically ignore the 462 

genetic mechanisms underlying traits (the “phenotypic gambit”; Grafen, 1984; Rittschof and 463 

Robinson, 2014) or focus instead on more tractable but less informative alternative measures, 464 

like repeatability (Boake, 1989). Despite the obvious logistical advantages of lab estimates of 465 

heritability, field estimates are more ecologically meaningful. Lab conditions can reduce genetic 466 

variation and environmental variation, which may lead to under- or overestimation of heritability 467 

(Orengo and Prevosti, 1999; Roff and Simons, 1997; Schneider et al., 2011; Simons and Roff, 468 

1994; Stirling et al., 2002). Lab conditions can also erode ecologically interesting phenotypic 469 

variation (e.g. the relationship of male song and aggression in crickets; Hedrick and Bunting, 470 

2014), rendering further examination of phenotypic and genetic correlations meaningless. 471 

Finally, heritability is not a stable characteristic of a trait—it is contingent on a population’s 472 

history of selection, gene flow, and environmental heterogeneity (Visscher et al., 2008). For 473 

these reasons, heritability is best assessed in wild populations (though see Dochtermann et al., 474 

2019). 475 

Today, advances in genomics and bioinformatics provide novel opportunities for the estimation 476 

of heritability and other quantitative genetics parameters in the field. Our study—in which we 477 

collected phenotypic data and DNA in the field, generated genome-wide relatedness estimates, 478 

and related these datasets to one another to estimate heritability and co-heritability of condition 479 
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and song—demonstrates the feasibility of implementing these methods to study both wild, non-480 

model species and the complex behaviors and traits often neglected in traditional genetics 481 

analyses. Finally, our data highlight the potential for using such methods to address 482 

longstanding evolutionary problems. Harnessing the potential of these techniques and their 483 

applications will expand the role of genetics in evolutionary and ecological studies and allow us 484 

to shed the confines of the phenotypic gambit.  485 

Materials and Methods 486 

Sampling and data collection 487 

We focused on a population of singing mice inhabiting the San Gerardo de Dota valley of Costa 488 

Rica, a high-elevation region in the Talamanca Mountain range (>2200 m) characterized by 489 

frequent rainfall and its lush cloud forests, grasslands, and paramo (Fig. 1a). Within this region, 490 

we sampled mice at five trapping sites over three years (June – August 2014, 2015, and 2016). 491 

Trapping sites were located within 6 km2 of one another and occurred at elevations between 492 

2200 m and 2600 m (Figure 3a, Table 1). Two of the sites comprised primary and secondary 493 

forests (PC and Robles) while the other two comprised grassy pastures (QERC, MH).  494 

We captured a total of 168 adult mice and brought them to the Quetzal Education and Research 495 

Center (QERC) for processing (N = 32 females and 134 males). This number was male-biased 496 

due to the needs of concurrent projects. We recorded the hindfoot length, anogenital distance, 497 

and mass of each focal mouse. Mice were housed singly in 28 x 28 x 28 cm3 PVC-coated wire 498 

mesh cages and provided with food and water ad libitum. Each mouse was given at least one 499 

day of acclimation before recording sessions. 500 

Focal animals were moved in their home cage into a 42 x 42 x 39 cm3 acoustic isolation 501 

chamber the night before recording. Recording sessions took place between 500h and 1100 h 502 

in the morning. We have previously described lab methods for obtaining and recording singing 503 
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mouse songs (Burkhard et al., 2018; Campbell et al., 2010); briefly, we recorded both songs 504 

produced in response to playback stimuli and songs spontaneously produced in two hours of 505 

silence. Vocalizations were recorded using ACO Pacific microphones on Tucker-Davis RX6 506 

hardware at 32-bit, 195.3 kHz resolution. We visualized the spectrogram of each recording in 507 

MATLAB and excluded poor-quality recordings from analysis.  508 

Between 1400 and 1700 h on the day of recording, we euthanized focal animals. Trunk blood 509 

was collected within two minutes of sacrifice and immediately centrifuged for plasma extraction. 510 

We then harvested fresh liver tissue and counted the number of nematode endoparasites 511 

present in the stomach and body cavity. Plasma and liver tissue were stored at -20ºC until 512 

analysis. 513 

Song analysis 514 

Acoustic measurement 515 

We successfully obtained 467 vocalizations from 111 mice (N = 24 females, 87 males). 516 

Vocalizations were bimodally distributed, ranging in length from 0.3 s to 9.9 s long (mean ± s.d. 517 

= 6.3 ± 1.8 s). We operationally define long songs as those four seconds or longer and retained 518 

long songs from 108 mice (N = 24 females, 84 males, Table 2). We assessed acoustic 519 

properties of each song using custom script in MATLAB. We measured 21 parameters 520 

describing changes to spectral, temporal, and amplitude characteristics throughout a song and 521 

5 parameters describing whole-song characteristics (mean bandwidth, song length, note 522 

number, entropy, and dominant frequency; Table S1) (Burkhard et al., 2018; Campbell et al., 523 

2010). To these 26 parameters, we added three additional whole-song measures, trill rate 524 

(notes/s), and minimum and maximum frequency of song. 525 

Multivariate analysis of acoustic variation 526 

To characterize dimensions of acoustic variation, we performed principal components analysis 527 

(PCA) on 26 acoustic parameters (Table S1) in R version 3.5.3 (R Core Team, 2016). These 528 
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variables were selected to accommodate comparison of unpublished data to previously reported 529 

data (Burkhard et al., 2018). The first two principal components (PCs) had λ > 4.9 and explained 530 

42.2% of overall variance (Figure 2b). To aid interpretation, we multiplied PC1 scores by -1 531 

(Jolliffe, 2002). Songs scoring strongly and positively on PC1 were longer, had longer beginning 532 

notes, and had shorter inter-note intervals than those scoring strongly and negatively on PC1. 533 

Songs that loaded strongly and positively on PC2 had a lower dominant frequency, greater 534 

mean bandwidth, began at lower frequencies, and ended on higher frequencies than those 535 

scoring strongly and negatively on PC2. As these results resembled previously published work 536 

(Burkhard et al., 2018), we interpreted PC1 as individual variation in “song effort” and PC2 as 537 

variation in “frequency modulation” and retained these as composite acoustic variables for 538 

subsequent models (Figure 2c). 539 

Repeatability  540 

Because repeatability describes the proportion of total phenotypic variation due to differences 541 

between individuals, the metric is often used to estimate the upper limits to a trait’s heritability 542 

(Bell et al., 2009; Boake, 1989, though see Dohm, 2002). We estimated the repeatability for 543 

each of the eight whole-song measures and for PC1 and PC2 of song. Repeatability is often 544 

estimated as the intraclass correlation coefficient (RA., 1954; Wolak et al., 2012), such that: 545 

𝐼𝐶𝐶 =
𝑉𝐴

𝑉𝐴+𝑉𝑊
   (equation 1) 546 

where 𝑉𝐴 is the variance among individuals, 𝑉𝑊 is the variance within individuals, and total 547 

phenotypic variation 𝑉𝑃 = 𝑉𝐴 + 𝑉𝑊. Intraclass correlation coefficients were calculated by fitting 548 

mixed-effect models using the rptR R-package (v0.9.22, Stoffel et al., 2017) with animal ID as a 549 

random effect. Confidence intervals were estimated with parametric bootstrapping for 1000 550 

iterations, and p-values were calculated with likelihood ratio tests.  551 
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Assessment of body condition 552 

Morphometric evaluation 553 

Residual body mass (RBM) was determined by regressing mass on skeletal length (i.e. hindfoot 554 

length) and calculating the residual error in grams for each animal. RBM, a traditional proxy for 555 

total energy reserves, was included in subsequent analyses of body condition.  556 

We also measured anogenital distance (AGD), a morphological cue of prenatal exposure to 557 

androgens. We performed Z-score normalization on AGD (AGDz); because AGD was sexually 558 

dimorphic (Welch two sample t-test; T= -12.5, P < 2.2e-16), it was transformed for each sex 559 

separately. Thus, female AGDz > 1.5 corresponds to females with AGD ≥ 5.0 mm whereas male 560 

AGDz > 1.5 corresponds to males with AGD ≥ 7.5 mm. Because variation in AGD predicts 561 

individual differences in “masculinity” but not body condition itself, we considered AGD as a 562 

covariate separate from body condition metrics in subsequent analyses.  563 

Plasma assays 564 

Plasma samples collected in 2015 were assayed by the Mouse Metabolic Phenotyping Center 565 

at the University of Cincinnati, Ohio. Those collected in 2016 were assayed by the Mouse 566 

Metabolic and Phenotypic Core at the Baylor College of Medicine. Only male samples were 567 

processed. We selected assays for cholesterol, phospholipids, non-esterified fatty acids 568 

(NEFA), glucose, and triglycerides (TG) and the hormones adiponectin, insulin, and leptin. Not 569 

every male had enough plasma for all assays, so assays were assigned an order of priority. 570 

Assays for 2015 samples were completed in the following order: 1) glucose, 2) lipid profile (TG, 571 

cholesterol, phospholipids, NEFA), and 3) multiplex ELISA assay (insulin, leptin, adiponectin). 572 

As results from these first analyses suggested a strong relationship between adiposity 573 

hormones and singing behavior (Burkhard et al., 2018), we modified the order for 2016 assays 574 

to the following: 1) multiplex ELISA, 2) glucose, and 3) lipid profile. As a result, sample sizes 575 
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vary across plasma measures (Table 2). Values for plasma measures did not significantly differ 576 

between years and were thus pooled for further analysis. 577 

Multivariate analysis of variation in body condition 578 

We performed exploratory PCA and assessed a correlation matrix of all body condition 579 

parameters (i.e. RBM and plasma measures) to examine how body condition varied among 580 

individuals. To maximize our statistical power, we ultimately focused on the subset of individuals 581 

(N = 52) with each of the following parameters: RBM, glucose, leptin, insulin, adiponectin, and 582 

triglycerides. We performed PCA on these condition measures in R to create composite 583 

variables for downstream analyses. Three PCs had λ > 1.0, explaining 34.5%, 22.2%, and 584 

17.2% of total variance, respectively. Glucose, insulin, and triglycerides strongly loaded on PC1; 585 

RBM and adiponectin contributed most to PC2; and leptin and adiponectin contributed strongly 586 

and in different directions to PC3 (Table S2). We retained these three components as 587 

composite variables in downstream analyses (i.e. PC1con, PC2con, PC3con). 588 

Library preparation and variant calling  589 

We extracted DNA from thawed liver tissue using Qiagen DNeasy Blood and Tissue kits. DNA 590 

was first quality-checked by gel electrophoresis and then quantified with a PicoGreen 591 

fluorometer quantitator and Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen™, 592 

ThermoFisher Scientific). The Genomic Sequencing and Analysis Facility (GSAF; University of 593 

Texas, Austin) performed double-digest restriction site associated DNA sequencing (ddRAD-594 

seq; Peterson et al., 2012) library preparation on normalized DNA concentrations. The 595 

restriction enzymes EcoR1 and MspI (New England BioLabs) were selected to shear DNA with 596 

Pippen size selection for fragments of 335-435 bp. Each sample was tagged with a unique five-597 

nucleotide-long barcode and then pooled in groups of 24 for sequencing. Samples included 598 

biological replicates to check for procedural error. Multiplexed samples were then sequenced on 599 
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one lane of either the HiSeq 2500 or NextSeq 500 (Illumina, Inc.), depending on availability. 600 

Lanes also included samples for studies not described here. 601 

After inspecting the quality of raw reads with FastQC (Andrews, 2010), we demultiplexed and 602 

trimmed reads to 125 bps using the process_radtags command from the Stacks pipeline 603 

(v1.46.0; Rochette and Catchen, 2017). Trimmed reads were mapped to the S. teguina 604 

reference genome (unpublished) using Bowtie 2 (v2.3.2; Langmead and Salzberg, 2012), and 605 

resulting sam files were converted to bam files using SAMtools (v1.10; Li et al., 2009). We used 606 

ANGSD (v0.929-13; Korneliussen et al., 2014) to assess base qualities and coverage depth of 607 

resulting bam files, excluding poor-quality and poor-coverage samples from downstream 608 

analyses. 609 

Samples that passed these initial filtering steps were then further filtered with ANGSD to retain 610 

only loci with minor allele frequency (MAF) above 0.1 and which were present in at least 80% of 611 

all individuals. We detected sex-linked markers using VCFTOOLS (v0.1.15; Danecek et al., 612 

2011) and then excluded them with the -rf option in ANGSD. Finally, we used ANGSD to call 613 

variants and convert genotype data into various formats, including identity-by-state matrices 614 

(ibsmat), mutation annotation format files (maf), variant calling files (vcf), and genetic covariance 615 

matrices (covmat).  616 

Population structure and genomewide relatedness 617 

Pairwise genetic distance between trapping locations (FST) was estimated using VCFTOOLS. 618 

We also used the R-package vegan (v.2.5.6 ; Oksanen et al., 2019) to perform principal 619 

coordinates analysis (PCoA) to help resolve genetic distance. Permutational multivariate 620 

analysis of genetic distance (PERMANOVA) explained by trapping site was performed with the 621 

adonis function in vegan.  622 

 623 
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There are many methods available to calculate genetic relatedness which produce a variety of 624 

data formats (Eu-ahsunthornwattana et al., 2014). Certain combinations of data formats with 625 

heritability estimation method are more compatible and straightforward than other combinations, 626 

however. For use with GCTA software (see Inference of SNP-based heritability), we produced a 627 

population genomic relationship matrix (GRM) in PLINK (v1.90b6.7; Chang et al., 2015), which 628 

uses a method-of-moments approach to estimate the proportion of the genome at which two 629 

individuals share 0, 1, or 2 alleles identical by descent (IBD; Purcell et al., 2007). PLINK 630 

operates on ‘hard-call’ genotypes and is thus best suited for high-coverage, high-quality reads. 631 

To check the accuracy of PLINK relatedness estimation on our data, we also estimated 632 

relatedness using NgsRelate software (v2; Korneliussen and Moltke, 2015), which uses a 633 

maximum likelihood approach on genotype likelihoods to estimate the proportion of alleles two 634 

individuals share IBD. Relatedness estimates from NgsRelate, a method based on genotype 635 

likelihoods, were strongly correlated with estimates from PLINK (R2 = 0.90, P < 2.2e-16; Fig. 636 

S1). Finally, for use with brms (see Inference of SNP-based heritability), we produced a 637 

population genetic covariance matrix using ANGSD, which uses genotype likelihoods rather 638 

than hard-called genotypes.  639 

Phenotypic correlations between condition and song 640 

To ask how condition phenotypes related to singing behaviors, we fitted mixed models using the 641 

R-package glmmTMB (v1.0.2.1; Brooks et al., 2017). We focused on the eight whole-song 642 

measures, song rate, and the first two song PCs as response phenotypes. Whole-song 643 

measures were transformed by Z-score normalization before model fitting. Whole-song 644 

measures and song PCs were fitted assuming Gaussian distributions, while song rate was fitted 645 

assuming a negative binomial distribution with a logit link function. Each response variable was 646 

initially fitted with a full model, which included PC1, PC2, and PC3 of condition and AGDz as 647 

covariates. Composite variables, rather than individual parameters, were included to reduce 648 

multicollinearity of parameters and to mitigate interpretation of results. Trapping site (Site) and 649 
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individual identity (1|ID) were also included as a fixed factor and a random effect, respectively. 650 

Because only male plasma samples were processed, we did not include sex in the models. 651 

Finally, we specified the number of days spent in acclimation (Days) as an observation-level 652 

dispersion factor to account for data overdispersion (Harrison, 2014). After fitting the full model, 653 

we used R-package buildmer to perform a backwards stepwise elimination procedure based on 654 

the change in AIC (v1.6; Voeten, 2020). We report the estimates, SEs, and p-values for all 655 

terms in the final models and the change in AIC between initial and final models. Model results 656 

were visualized using the effects package (v4.1.4; Fox and Hong, 2009; Fox and Weisberg, 657 

2018), and the emmeans (v1.5.0; Lenth, 2020) and boot packages were used to help interpret 658 

results (v1.3.25; Canty and Ripley, 2020). 659 

 660 

Quantitative genetics 661 

Inference of SNP-based heritability  662 

We estimated h2 values for the eight whole-song measures, PC1 and PC2 song, RBM, AGDz, 663 

and PC1, PC2, and PC3 condition using animal models implemented with both a maximum 664 

likelihood estimation (MLE) approach and a Bayesian Hamiltonian Monte Carlo approach. The 665 

MLE method was implemented with GCTA standalone software (v1.92.1; Yang et al., 2011), and 666 

the Bayesian approach was implemented using the brms R-package (v2.13.5; Bürkner, 2018, 667 

2017). While easy to implement and fast to run, GCTA and many related frequentist algorithms 668 

cannot accommodate more complex models or non-parametric assumptions (e.g. non-normally 669 

distributed phenotypes; e.g. de Villemereuil, 2019). Conversely, linear (or generalized linear) 670 

mixed models (GLMM) implemented with Bayesian approaches are less user-friendly and more 671 

computationally intensive but are more robust to scarce data and complex models and are easy 672 

to interpret (de Villemereuil, 2019; Morrissey et al., 2014; Villemereuil et al., 2013).  673 

 674 
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Animal model approaches rely on estimating heritability by correlation between genetic similarity 675 

and phenotypic similarity (Wilson et al., 2010).The most basic animal model assumes a normally 676 

distributed phenotype, where a trait (y) in an individual (i) can be described as:  677 

 678 

𝑦𝑖 =  𝜇 + 𝑎𝑖 + 𝑒𝑖  (equation 2) 679 

 680 

where 𝜇 is the population mean; 𝑎𝑖  is the breeding value, or effect of individual i’s genotype on 681 

the trait; and 𝑒𝑖 is a residual term. This equation is specified as a mixed model containing both 682 

fixed and random effects with individual genotype treated as a random effect such that:  683 

 684 

𝑌 = 𝑋𝛽 + 𝑍𝛾 + 𝜀  (equation 3) 685 

 686 

where Y is a vector of phenotypic values, X is a fixed variable, β is the fixed variable effect size, 687 

Z is the GRM, γ is a vector of random effects, and 𝜀 is a residual random effect (non-genetic).  688 

 689 

Narrow-sense heritability was calculated as  690 

h2 = 
𝑉𝐴

𝑉𝐴+𝑉𝑅
 (equation 4) 691 

 692 

, where 𝑉𝐴 is additive genetic variance, 𝑉𝑅 is residual variance, and 𝑉𝑃, is total phenotypic 693 

variance, = 𝑉𝐴 +  𝑉𝑅. 694 

 695 

GCTA models 696 

Models were fitted with GCTA with sex (Sex) and trapping site (Site) included as fixed effects 697 

and PLINK-derived GRM as a random effect.  698 
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Brms models 699 

Heritability estimates for each trait were estimated with models including ANGSD-derived 700 

genetic covariance matrix as a random effect, and Sex (excluding models involving only one 701 

sex, i.e. heritability of PC condition variables) and Site as fixed effects. Where applicable, 702 

response variables were log-transformed and scaled to address skew. We specified gaussian 703 

family distributions for all variables except song rate, which we fitted assuming a negative 704 

binomial distribution. Each model was run with 4 chains of 5000 iterations, with burn-in of 1000, 705 

and thin of 1 and provided with weakly informative priors. Model output was checked for proper 706 

mixing and convergence by inspection of autocorrelation and diagnostic plots. We took the 707 

mean of values from the posterior distribution to calculate heritability and report 95% highest 708 

posterior density credible intervals (HPDI) in Table 4. We calculated heritability following 709 

equation 4; residual variance for negative binomial models was calculating following (Matos et 710 

al., 1997). Credible intervals contain the most probable values (i.e. 95%, in this case) of the 711 

estimated parameter. Unlike a confidence interval, credible intervals have distributional 712 

information such that the most probable values are closest to the point estimate and the width 713 

indicates certainty. 714 

Genetic correlation of song and condition 715 

The proportion of covariance between two traits explained by genetics is calculated by the 716 

following equation:  717 

𝑟𝑔 =  
𝑐𝑜𝑣𝑔

√𝑉𝑔1𝑉𝑔2
 (equation 5) 718 

 719 

Where covg is the genetic covariance, Vg1 is the additive genetic variance for trait 1, and Vg2 is 720 

the additive genetic variance for trait 2. To determine whether traits were genetically correlated, 721 

we ran bivariate models in brms between all pairwise comparisons of condition and song 722 

variables that were found to have statistically clear phenotypic correlations (see Phenotypic 723 
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correlations between condition and song). These models used the same data and parameters 724 

as the univariate models described above for brms models. Genetic correlations were 725 

considered significant in magnitude if the 95% highest posterior density credible intervals 726 

(HPDI) excluded zero.  727 
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