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Abstract—To cope with the lack of highly skilled professionals,
machine leaning with proper signal techniques is a key to estab-
lishing automated diagnostic-aid technologies to conduct epileptic
electroencephalogram (EEG) testing. In particular, frequency
filtering with appropriate passbands is essential to enhance
biomarkers—such as epileptic spike waves—that are noted in the
EEG. This paper introduces a novel class of convolutional neural
networks (CNNs) having a bank of linear-phase finite impulse
response filters at the first layer. These may behave as bandpass
filters that extract biomarkers without destroying waveforms
because of linear-phase condition. The proposed CNNs were
trained with a large amount of clinical EEG data, including
15,899 epileptic spike waveforms recorded from 50 patients.
These have been labeled by specialists. Experimental results show
that the trained data-driven filter bank with supervised learning
is dyadic like discrete wavelet transform. Moreover, the area
under the curve achieved above 0.9 in most cases.

Index Terms—Epilepsy; Spike detection; Electroencephalo-
gram (EEG); Linear-phase filter; Convolutional neural network
(CNN).

I. INTRODUCTION

EPILEPSY is a neurological disorder that is said to have
50 million patients worldwide. In particular, childhood

epilepsy affects individual cognitive activity. Early appropriate
diagnosis supports the patients to reduce future brain damage.
In diagnosis, measurements taken using an electroencephalo-
gram (EEG) along with a medical examination is essential to
determine the type of seizure symptoms. Despite the fact that
the examination requires clinical knowledge and experience,
epilepsy specialists with these skills are chronically insuffi-
cient. This has motivated the development of an automated
diagnostic aid to support epileptologists.

One of the important biomarkers in the diagnosis is an
epileptic spike called a paroxysmal discharge, which is fre-
quently recorded in a patient’s interictal EEG. To support the
detection of epileptic spikes, several automated detection man-
ners are making great advances. To implement the automatic
detection of epileptic spikes, supervised learning is one of the
effective methods. To efficiently train the machine learning
models, the signal of the EEG is generally decomposed into
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standard clinical bands of interest—such as δ, θ, α, β, and
γ—before the learning [1]. While conducting such training,,
it is necessary to appropriately select the frequency bands,
which depend on a measurement method of the EEG and
an individual patient. However, in various studies, a range of
frequencies or frequency band of interest has been empirically
selected. Douget et al. [2] used discrete wavelet transform
(DWT) to obtain a set of sub-bands with a range of 4–32 Hz.
Carey et al. [3] used an infinite impulse response Butterworth
bandpass filter with a frequency band of 1–30 Hz.

With the advent of deep neural networks, models can learn
from observation data, including the feature extraction method.
In particular, convolutional neural networks extract features by
applying filters to input data [4], [5]. However, each filter in
the layer is fitted with a high degree of freedom in spite of
the fact that the filters in the previous studies are designed
with linear-phase constraints to preserve the waveform shape,
which is also an essential requirement in the diagnosis by
clinical experts, as filtering cannot destroy the shape of the
signal to find epileptic biomarkers.

In this paper, we hypothesize that the frequency subbands
can be estimated by the data from an epileptic EEG labeled
by clinical specialists. To this end, we propose to use super-
vised learning to find filter coefficients regarded as a one-
dimensional (1D) convolutional layer under a linear-phase
constraint. This layer can be connected to general neural
networks such as convolutional neural networks (CNNs) and
artificial neural networks (ANNs) as a classifier. The proposed
model is trained with a medical dataset containing spike
waveforms of the EEG and the corresponding labels—either
an epileptic spike or a non-epileptic discharge.

II. RELATED WORK

A. Feature Extraction
Recently, many works that study epileptic EEGs have ap-

plied signal decomposition methods using DWT in a prepro-
cessing stage [2], [6]–[12]. However, the parameter selection
frequency range of bandpass filters is empirically given.

Cheong et al. [13] used DWT to decompose the signal into
the frequency subbands from the delta band to the gamma band
(0–63 Hz). Gutierrez et al. [6] applied a bandpass filter in the
range of 0.5–70 Hz. Then, they obtained wavelet coefficients
from the filterd signal to classify epileptic spikes. Similarly,
the range of 0.5–70 Hz were extracted with a Butterworth filter
to obtain wavelet coefficients [12].

Meanwhile, other studies utilized narrow bandpass filter
ranges for preprocessing. Polat et al. [14] applied a bandpass
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filter range of 0.53–40 Hz, and then used the discrete Fourier
transform to extract features for the decision tree classifier.
Khan et al. [9] used the range of 0–32 Hz decomposed by
DWT since most of the epileptic information lies in 0.5–30 Hz.
Similarly, Douget et al. [2] and Indiradevi et al. [15] adopted
DWT with Daubechies 4 (DB4) to extract the frequency band
of 4–32 Hz. Moreover, Fergus et al. [16] used the range of only
0–25 Hz, although they did not use DWT but a Butterworth
filter. Thereafter, they employed the holdout technique and
k-fold cross validation, passing into many different classifier
models for distinguishing the seizure and non-seizure EEG
records.

In these studies on the classification or detection of epilepsy,
DWT decomposition and other filter methods were effective.
However, the selection of filter range were set empirically in
different studies. This motivated us to identify filter parameters
from data.

B. Convolutional Neural Networks

One of the neural networks (NNs) that demonstrates excel-
lent performance—especially in the field of image or video
recognition [17], [18]—is a CNN. A CNN is an extended
NN that has an input layer, multiple hidden layers, and
an output layer. In general, the hidden layers consist of
convolutional layers, and a fully connected layer is used as
the output layer. The convolution layer applies a convolution
to the input and forwards the result to the next layer. Let
X = {x0, x1, . . . , xN−1}, Y = {y0, y1, . . . , yM−1}, and
H = {h0, h1, . . . , hL−1} be a 1D input signal, a 1D output
signal, and a convolutional kernel, where N , M , and L are the
length of X , Y , and H , respectively. For the sake of simplicity,
L is assumed to be even. Focusing on one layer, the input X
is convolved with the kernel H and the output Y is generated
as follows:

ym =

L−1∑
l=0

hlxm−L
2 +l. (1)

. The flattened layer smoothes multiple convolved signals into
a single dimension. Then, the fully connected layer multiplies
all input neurons by weight coefficients and connects them to
the output.

Recently, some studies have applied a CNN to EEG sig-
nals [4], [5], [19], [20]. Ullah et al. [4] used 1D convolution
to extract features by filtering time series EEG signals. Zhou
et al. [20] directly input both of the multichannel time-series
EEG signals and their frequency domain signals into a CNN.
These studies, using CNN to detect epileptic seizures or
epileptic spikes are gaining interest.

C. Dataset of Other Works

This section summarizes datasets of recent studies on
epileptic spike detection. The most common task is the classi-
fication of epileptic spike waveforms and non-epileptic wave-
forms. Table I summarizes the datasets from similar studies.
It should be emphasized that the dataset constructed in the
current study achieved a much larger dataset (15,899 epileptic

TABLE I
SUMMARY OF THE DATASETS IN OTHER STUDIES ON EPILEPTIC SPIKE

DETECTION

Reference and #Epileptic spikes #Patientspublication year
Wilson et al. [21], 1999 2,400 50
Indiradevi et al. [15], 2008 684 22
Liu et al. [22], 2013 142 12
Johansen et al. [19], 2016 7,500 5
Douget et al. [2], 2017 2,157 17
Xuyen et al. [11], 2018 1,491 19
Thanh et al. [12], 2020 1,442 17
This paper 15,899 50

spike waveforms from 50 patients) than the conventional
studies, where the largest one in terms of spike waveforms
consists of 7,500 samples [19] and the one in terms of patients
likewise consists of 50 patients [21].

III. METHOD

A. Dataset

Table II datails the dataset. EEG recordings were collected
from 50 patients (23 males 27 females) with benign epilepsy
with centro-temporal spikes (BECTS) [23] at the Department
of Pediatrics, Juntendo University Nerima Hospital. The age
at the time of the examination was 3–12 years. The data were
recorded with the international 10–20 methods using the Nihon
Koden EEG-1200 system. The sampling frequency was 500
Hz. This dataset was recorded and analyzed under approval
from the Juntendo University Hospital Ethics Committee and
the Tokyo University of Agriculture and Technology Ethics
Committee.

First, two neurosurgeons, one pediatrician, and two clinical
technologists selected a focal channel associated with the
origin of the epileptic spike. Typically, one EEG dataset
may contain multiple epileptic focal channels, and annotators
selected the most intense channel as the focal channel. Peaks
(minima and maxima) of the EEG at the channel were detected
by PeakUtils [24]. Second, the annotators labeled each peak
as either an epileptic spike (spike or spike-and-wave) or non-
epileptic discharge. At every detected peak, a 1-s segment
was extracted, including 300 ms before and 700 ms after the
peak. Fig. 1 illustrates an example of typical waveforms. Z-
score normalization was applied with mean value and standard
deviation for each segment. It should be noted that each
segment represents one candidate spike.

B. Preprocessing and Subband Decomopsition

We considered two models as shown in Fig. 2. The first
model uses a predefined bank of filters. It is based on the
method adopted in several previous studies. The second model
involves a special convolution layer called the LPCL when the
parameters are searched based on the dataset.

1) Fixed approach: The first approach is to employ a hand-
engineered preprocessing for each segment. DWT is applied
to extract the subbands from the EEG. In this paper, the
Daubechies wavelet of order 4 (DB4), which has been reported
to be appropriate for analyzing EEG signals [2], [25], [26], is
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TABLE II
DATASET INFORMATION OF 50 EPILEPTIC EEG DIAGNOSED WITH BECTS. THIS DATASET WAS LABELED BY TWO NEUROSURGEONS, TWO CLINICAL

TECHNOLOGISTS, AND ONE PEDIATRICIAN. THE TOTAL NUMBER OF LABELED SAMPLES IS 31,437.

Patient ID Age of Sex Annotator #Epileptic #Non-epileptic #Totalyears spikes discharges
1 8 Male Neurosurgeon 1 1,009 763 1,772
2 9 Female Pediatrician 172 108 280
3 9 Female Pediatrician 456 225 681
4 9 Male Neurosurgeon 1 85 416 501
5 7 Female Neurosurgeon 1 345 199 544
6 10 Male Neurosurgeon 1 295 209 504
7 10 Male Neurosurgeon 1 84 333 417
8 5 Male Pediatrician 211 255 466
9 6 Male Pediatrician 351 151 502

10 8 Female Clinical technologist 1 655 189 844
11 11 Male Pediatrician 318 85 403
12 6 Male Neurosurgeon 1 232 289 521
13 9 Female Neurosurgeon 1 129 245 374
14 7 Male Neurosurgeon 1 105 207 312
15 9 Female Clinical technologist 1 331 214 545
16 7 Female Neurosurgeon 1 253 390 643
17 6 Female Clinical technologist 1 166 297 463
18 7 Male Clinical technologist 2 232 298 530
19 9 Female Neurosurgeon 1 368 358 726
20 7 Male Neurosurgeon 1 350 190 540
21 6 Female Clinical technologist 1 440 244 684
22 6 Female Pediatrician 939 692 1,631
23 8 Male Neurosurgeon 1 495 239 734
24 10 Female Neurosurgeon 1 341 303 644
25 6 Female Neurosurgeon 2 412 94 506
26 8 Male Neurosurgeon 1 294 292 586
27 11 Female Neurosurgeon 1 295 335 630
28 6 Female Neurosurgeon 1 159 355 514
29 9 Male Neurosurgeon 1 408 389 797
30 11 Female Neurosurgeon 1 175 340 515
31 7 Male Neurosurgeon 1 142 283 425
32 7 Female Clinical technologist 1 560 314 874
33 10 Female Pediatrician 99 55 154
34 7 Female Neurosurgeon 1 416 293 709
35 9 Male Neurosurgeon 1 231 330 561
36 11 Female Neurosurgeon 1 446 385 831
37 9 Male Clinical technologist 1 282 112 394
38 6 Female Pediatrician 315 301 616
39 10 Male Clinical technologist 1 321 351 672
40 10 Male Neurosurgeon 1 385 189 574
41 7 Female Clinical technologist 1 72 369 441
42 12 Female Neurosurgeon 1 355 342 697
43 7 Female Pediatrician 261 321 582
44 10 Male Pediatrician 287 509 796
45 3 Male Pediatrician 271 511 782
46 5 Male Pediatrician 240 580 820
47 6 Male Pediatrician 263 629 892
48 7 Female Pediatrician 424 178 602
49 10 Female Pediatrician 188 321 509
50 10 Female Pediatrician 236 461 697

24 by neurosurgeon 1
23 males 1 by neurosurgeon 2

Total 8 by clinical technologist 1 15,899 15,538 31,437
27 females 1 by clinical technologist 2

16 by pediatrician

adopted as the mother wavelet. The input EEG is decomposed
into six coefficient levels—D6, D5, D4, D3, D2, and D1—
and one approximation level A6. Then, four subbands corre-
sponding to D6, D5, D4, or D3 were generated. Each subband
represents the θ band (4–8 Hz), the α band (8–16 Hz), the β
band (16–32 Hz), the γ band (32–64 Hz), respectively [13].
The approximation level A6 and the coefficient levels D2 and
D1 were eliminated because the low frequency band may
include breathing and eye movements, and the high frequency

band can be considered as noise.

2) Novel data-driven approach using linear-phase convolu-
tional layer: Convolutional layer described in Section II-B can
behave as a finite impulse response (FIR) filter. However, each
weight in a convolutional layer is fitted with a high degree
of freedom in spite of the fact that FIR filters are designed
with linear-phase constraint in order to preserve the waveform
shape. In this paper, we propose a convolutional layer with
linear-phase constraints, called the linear-phase convolutional
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(a) An epileptic spike

0

500 ms

50 V

Peak point

300 ms 700 ms

(b) A non-epileptic discharge

Fig. 1. Typical waveforms of detected peaks. Each waveform is clipped into
1-s segment.

layer (LPCL), and its implementation.
FIR filter is realized by convolution of the discrete

signal X = {x0, x1, . . . , xN−1} and the kernel H =
{h0, h1, . . . , hL−1}, and the output discrete signal Y =
{y0, y1, . . . , yM−1} is calculated based on the current and past
L− 1 inputs as follows:

ym =
L−1∑
l=0

hlxm−l. (2)

Generally, the kernel described above causes phase distortion,
which can be avoided by a linear-phase constraint. The even-
symmetry or odd-symmetry of the kernel yields the linear-
phase FIR filter, that is:

hl = hL−1−l, (3)

or

hl = −hL−1−l. (4)

Model 
output

Raw 
EEG

Classifier 
(e.g. Neural networks)

Ba
nk

 o
f fi

lte
rs

…

(a) The traditional fixed approach

Model 
output

Linear-Phase 
Conv. layer

Raw 
EEG

Following 
neural networks

LPCL

…

LPCL

LPCL

(b) The data-driven approach using the linear-phase convolutional layers

Fig. 2. The diagrams of the two prediction models. The colored blocks contain
parameters to be trained.

From (2) and (3), an even-symmetric convolution Y e =
{ye0, ye1, . . . , yeM} is described as:

yem =

L/2−1∑
l=0

hl

(
xm+l + xm+(L−1)−l

)
. (5)

This convolution can be implemented by a butterfly structure,
as shown in Fig. 3(a). As shown in this figure, even-symmetric
convolution can be regarded as the product of the vector
expressed by addition of the two components in X and the
kernel H . This is the same operation as a weighted full
connection (namely, a fully connected layer). Therefore, it can
be implemented by repurposing a conventional neural network
framework with the pre-addition of X . Similarly, an odd-
symmetric convolution Y o = {yo0, yo1, . . . , yoM} is described
as:

yom =

L/2−1∑
l=0

hl

(
xm+l − xm+(L−1)−l

)
. (6)

Fig. 3(b) shows the butterfly structure for (6). As this figure
shows, it can be implemented by repurposing a conventional
neural network framework with the pre-subtraction of X .
These LPCLs can replace the fixed (pre-designed) subband
filters, as illustrated in Fig. 2. The underlying idea behind
of using the LPCL is to hypothesize thet frequency bands of
interest can be derived from the epileptic EEG dataset.

C. Classifier Models

Random forest (RF), artificial neural network (ANN), and
CNN are adopted as the classifiers. Although, an ANN and a
CNN can be combined with either a traditional preprocessing
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Fig. 3. Butterfly structures of the linear-phase convolution.

TABLE III
PARAMETER FOR RANDOM FOREST TO BE TUNED BY GRID SEARCH

Parameter Candidates
Number of trees Ntree 5, 10, 20, 30, 50, 100, 300
Maximum depth Dmax 2, 4, 6, 8, 10

or the proposed method, RF can be combined only with the
traditional preprocessing.

The parameters for RF is tuned by a grid search for
parameters listed in Table III. For adjusting the grid search, the
F1-score is used as the ranking score and the five-fold cross
validation with two subsets is used. The model architectures
of ANN and CNN are depicted in Fig. 4. For the generation of
initial weights of these models, the He initializer [27] is used
for the layers that employ the rectified linear unit (ReLU) as
the activation function, and the Xavier initializer [28] is used
for the other layers.

D. Application of Linear-Phase Convolutional Layer
The total number of LPCLs shown in Fig. 2(b) is 10, and

each filter setting is as shown in Table IV. The reason that
there are LPCLs with different filter lengths is to let the model
determine the appropriate filter length. The learning step is
roughly divided into the following two parts:

1) Update only the coefficients of the LPCLs.
2) Update all coefficients of the main layers of the “Fol-

lowing neural networks” in Fig. 2(b).
The first step assists the learning of the filter coefficients in
the added convolutional layer to extract the effective frequency
bands from the raw signal in a stable manner, without the
influence of the learning of the following network. Then, in
the next step, the main layers are tuned to extract the hidden
features in the signal.

IV. EXPERIMENTAL RESULT

To validate the effectiveness of the proposed method, an
experiment is performed using the dataset described in Section

TABLE IV
SETTINGS OF THE LPCLS

LPCL No. Filter length Constraint type
1 2

Even-symmetric
2 4
3 8
4 16
5 32
6 2

Odd-symmetric
7 4
8 8
9 16
10 32

III-A. Recall that the classification is binary: an epileptic spike
or a non-epileptic discharge. For comparison, two approaches
are used: the fixed approach (combined with RF, ANN and
CNN) and the proposed data-driven approach (combined with
ANN and CNN). In the fixed approach, a raw EEG is
decomposed into four frequency bands using DWT.

In the experiment, inter-subject validation in all combina-
tions are performed, where 49 patients are used as training
data and the remaining patient is used as test data. For the
evaluation of the models, the area under the curve (AUC) is
employed. AUC is the area of the curve drawn by the false
positive rate (FPR) and the true positive rate (TPR) when the
discrimination threshold is changed, and is calculated in the
following manner:

FPR =
FP

FP + TN
,

TPR =
TP

TP + FN
,

where TP, FP, FN, and TN are the numbers of true positive,
false positive, false negative, and true negative, respectively.
In particular, ANN and CNN evaluations use the mean AUC
(by taking 30 independent realizations) because the initial
weight or initial kernel value affect the learning. In addition,
since the convolution filter can be regarded as a FIR filter,
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(b) Classification model based on CNN

Fig. 4. The model architectures. The input is decomposed by DWT or the linear-phase convolutional layer.

the frequency response of each filter of the 10 linear-phase
convolutional layers is analyzed after training. Similar to the
AUC evaluation, the frequency response are averaged by 30
independent runs.

Table V represents the AUC by each model and pre-
processing. A statistical tests including Friedman’s one-way
analysis of variance (ANOVA) [29] showed that the effect
of the models on the AUC was significant, F(1,3) = 104,
p = 1.51×10−22. Since the main effect of the models has been
observed, Bonferroni post-hoc test [29] werwase performed to
better understand the changes on cross-correlation across the
different models. Fig. 5 visualizes the AUC results and its
analysis of variance. As shown in Fig. 5, the AUC resuluts
by LPCL + CNN were significantly different than the AUC
resuluts by DWT + ANN (p = 2.87 × 10−6) and LPCL +
ANN (p = 3.23 × 10−11). Moreover, the AUC resuluts by
DWT + CNN were significantly different than the AUC results
by DWT + ANN (p = 1.08 × 10−11) and LPCL + ANN
(p = 3.12×10−18). Therefore, there is no significant effect of
the change to LPCL since the CNN-based models show high
AUC resuluts independent of the preprocessing.

Fig. 6 and Fig. 7 show examples of the frequency responses
at the proposed layers. From Table V, it is clear that the
AUC evaluation of the proposed method is comparable that
achieved with traditional methods [2]. In addition, it is clear
that the proposed method filter emphasizes the low frequency
band (around 15 Hz) from Figs. 6 and 7. Thus, while the
conventional method manually focuses on the low frequency
band, it can be said that the proposed method automatically
extracts this frequency. Moreover, from Figs. 6(b) and 7(b),
it can be seen that filters with odd-symmetric constraints pass
different frequency bands according to the filter length. Fig.
8 provides an example of prediction by CNN combined with
the LPCL. From this figure, it is considered that a relatively
sharp waveform is classified as an epileptic spike.

V. DISCUSSION AND CONCLUSION

The experimental results show that the filters with an odd
symmetry constraint have a different passband respectively as
shown in Figs. 6 and 7. This behavior is similar to the discrete
wavelet transform. For example, the peak frequencies of the
five spectra shown in Fig. 6(b) (the spectra by LPCL No. 6
to 10) are 14.6, 22.5, 47.4, 92.3, and 249 Hz, respectively. It
can be seen that the frequencies at the peaks in spectrum of
middle range were about half of that in high range. LPCL No.

*
*

*
*

DW
T+CNN

LPCL+CNN

DW
T+ANN

LPCL+ANN

Method

0.6

0.7

0.8

0.9

1.0

A
U

C

Fig. 5. Visualized AUC results shown in Table. V. Statistical significance is
indicated by asterisk (*: p < 0.01).

6–8 can be considered to correspond to the standard clinical
frequency bands of α, β, and γ, respectively. These results,
which show that the filters learned from the raw EEG and
the expert annotations are decomposed into their respective
frequency bands, may support the validity of the other studies
using DWT to decompose the EEG into clinical frequency
bands [2], [25], [26]. Also, this finding may suggest that the
filter emulates physician’s analyze logic.

Next, we investigated the characteristics of the 1-s segments
in order to consider the effectiveness of the frequency band
extracted by the LPCLs. To obtain the differences of spectra
between the non-epileptic discharge segments and the epileptic
spike segments, statistical analyses were performed on the
amplitude distributions at each frequency by using Welch’s t-
test [30]. Next, the effect sizes were calculated using Cohen’s
d [31]. Fig. 9 shows the mean spectrum of all 15,538 non-
epileptic discharges, the mean spectrum of all 15,899 epileptic
spikes, the areas where p < 0.01 in the t-test, and the effect
sizes. From Fig. 9, it can be seem that there is a significant
difference across almost all frequencies. In addition, in the
range of 5–15 Hz, there is a large difference (d ≈ 0.8) between
the two classes. As these results, it can be said that the LPCL,
which has a maximum frequency response around 14 Hz,
effectively extracted the low frequency band where there is
a statistical difference, as shown in Fig. 6(b). Therefore, this
result supports the effectiveness of low-pass filters in spike
detection of epileptic EEG.
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TABLE V
AUC EVALUATION RESULTS. FOR ANN OR CNN MODELS, THE AVERAGE OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN AUC ± STD.

Patient ID Classifier
Random forest ANN CNN ANN CNN

Preprocessor
Train data Test data DWT LPCL

(Extraxt predefined frequency band: 4–64 Hz) (Learn frequency band from the train data)

A
ll

ID
s

ex
ce

pt
te

st
da

ta
in

th
e

ri
gh

t
co

lu
m

n

1 0.998 0.970 ± 1.14E-02 0.995 ± 2.37E-03 0.996 ± 9.59E-04 0.997 ± 8.10E-04
2 0.985 0.957 ± 1.11E-02 0.985 ± 3.94E-03 0.954 ± 1.13E-02 0.981 ± 9.41E-03
3 0.966 0.911 ± 1.22E-02 0.950 ± 8.37E-03 0.900 ± 2.23E-02 0.939 ± 1.51E-02
4 0.956 0.866 ± 3.28E-02 0.865 ± 4.75E-02 0.878 ± 2.79E-02 0.979 ± 1.86E-02
5 0.833 0.864 ± 7.10E-03 0.932 ± 7.50E-03 0.796 ± 1.93E-02 0.908 ± 1.27E-02
6 0.989 0.965 ± 1.23E-02 0.991 ± 5.32E-03 0.936 ± 2.05E-02 0.978 ± 8.23E-03
7 0.972 0.952 ± 7.73E-03 0.960 ± 6.52E-03 0.945 ± 5.43E-03 0.967 ± 4.95E-03
8 0.752 0.799 ± 1.14E-02 0.804 ± 7.11E-03 0.664 ± 2.83E-02 0.810 ± 1.22E-02
9 0.928 0.882 ± 1.83E-02 0.917 ± 1.60E-02 0.910 ± 1.23E-02 0.919 ± 1.28E-02
10 0.962 0.926 ± 7.11E-03 0.954 ± 6.43E-03 0.934 ± 6.12E-03 0.956 ± 5.48E-03
11 0.921 0.887 ± 5.67E-03 0.925 ± 6.01E-03 0.880 ± 1.08E-02 0.909 ± 1.26E-02
12 0.986 0.963 ± 5.18E-03 0.991 ± 1.71E-03 0.973 ± 3.94E-03 0.994 ± 1.89E-03
13 0.995 0.984 ± 3.31E-03 0.998 ± 6.99E-04 0.972 ± 4.36E-03 0.997 ± 1.35E-03
14 0.933 0.934 ± 5.57E-03 0.961 ± 4.98E-03 0.862 ± 1.24E-02 0.953 ± 1.24E-02
15 0.973 0.949 ± 5.82E-03 0.982 ± 3.45E-03 0.937 ± 7.93E-03 0.983 ± 3.47E-03
16 0.766 0.723 ± 1.32E-02 0.792 ± 1.29E-02 0.719 ± 1.80E-02 0.757 ± 2.42E-02
17 0.971 0.972 ± 5.54E-03 0.995 ± 1.53E-03 0.935 ± 8.05E-03 0.989 ± 3.72E-03
18 0.993 0.966 ± 7.05E-03 0.989 ± 2.07E-03 0.976 ± 3.67E-03 0.986 ± 3.59E-03
19 0.961 0.947 ± 9.30E-03 0.977 ± 7.42E-03 0.929 ± 1.26E-02 0.957 ± 1.17E-02
20 0.792 0.760 ± 1.94E-02 0.840 ± 1.23E-02 0.709 ± 1.85E-02 0.806 ± 2.02E-02
21 0.936 0.938 ± 8.41E-03 0.972 ± 2.79E-03 0.919 ± 7.38E-03 0.970 ± 4.90E-03
22 0.998 0.985 ± 4.18E-03 0.994 ± 1.23E-03 0.983 ± 2.47E-03 0.993 ± 1.35E-03
23 0.973 0.917 ± 8.22E-03 0.983 ± 3.58E-03 0.901 ± 1.13E-02 0.961 ± 1.01E-02
24 0.947 0.905 ± 1.22E-02 0.969 ± 4.09E-03 0.893 ± 1.21E-02 0.948 ± 8.20E-03
25 0.751 0.745 ± 1.90E-02 0.810 ± 1.53E-02 0.701 ± 2.13E-02 0.783 ± 1.79E-02
26 0.953 0.941 ± 8.28E-03 0.978 ± 3.15E-03 0.883 ± 1.38E-02 0.950 ± 1.65E-02
27 0.879 0.871 ± 8.20E-03 0.925 ± 1.09E-02 0.777 ± 1.53E-02 0.932 ± 1.04E-02
28 0.946 0.931 ± 6.92E-03 0.959 ± 4.87E-03 0.873 ± 1.75E-02 0.954 ± 6.73E-03
29 0.982 0.964 ± 4.26E-03 0.987 ± 2.38E-03 0.956 ± 4.11E-03 0.984 ± 2.60E-03
30 0.784 0.690 ± 1.83E-02 0.851 ± 1.61E-02 0.669 ± 1.52E-02 0.785 ± 2.76E-02
31 0.986 0.958 ± 4.97E-03 0.987 ± 3.34E-03 0.920 ± 1.74E-02 0.966 ± 1.06E-02
32 0.969 0.919 ± 1.20E-02 0.971 ± 4.18E-03 0.929 ± 7.94E-03 0.962 ± 4.78E-03
33 0.996 0.982 ± 2.61E-03 0.996 ± 1.21E-03 0.982 ± 4.07E-03 0.995 ± 1.24E-03
34 0.884 0.855 ± 1.04E-02 0.915 ± 8.25E-03 0.806 ± 1.39E-02 0.881 ± 1.34E-02
35 0.826 0.783 ± 1.21E-02 0.841 ± 1.41E-02 0.748 ± 1.64E-02 0.829 ± 1.78E-02
36 0.971 0.959 ± 1.16E-02 0.991 ± 2.35E-03 0.954 ± 8.11E-03 0.986 ± 3.46E-03
37 0.992 0.988 ± 2.96E-03 0.997 ± 6.44E-04 0.979 ± 3.73E-03 0.996 ± 6.81E-04
38 0.983 0.969 ± 4.66E-03 0.995 ± 1.52E-03 0.945 ± 7.27E-03 0.993 ± 3.42E-03
39 0.973 0.949 ± 6.47E-03 0.974 ± 4.87E-03 0.934 ± 6.23E-03 0.973 ± 4.17E-03
40 0.959 0.896 ± 1.28E-02 0.969 ± 5.37E-03 0.896 ± 1.03E-02 0.947 ± 1.18E-02
41 0.959 0.943 ± 4.86E-03 0.970 ± 3.86E-03 0.901 ± 1.17E-02 0.964 ± 4.88E-03
42 0.923 0.953 ± 1.17E-02 0.981 ± 5.45E-03 0.884 ± 1.62E-02 0.986 ± 6.30E-03
43 0.982 0.956 ± 6.68E-03 0.978 ± 4.81E-03 0.966 ± 5.39E-03 0.966 ± 1.07E-02
44 0.922 0.840 ± 1.75E-02 0.922 ± 1.81E-02 0.794 ± 1.96E-02 0.890 ± 2.62E-02
45 0.911 0.825 ± 9.49E-03 0.810 ± 3.22E-02 0.853 ± 1.11E-02 0.855 ± 1.46E-02
46 0.916 0.852 ± 2.08E-02 0.899 ± 1.16E-02 0.870 ± 1.63E-02 0.807 ± 2.54E-02
47 0.957 0.900 ± 2.66E-02 0.928 ± 1.67E-02 0.899 ± 1.01E-02 0.901 ± 1.72E-02
48 0.886 0.901 ± 1.14E-02 0.925 ± 9.30E-03 0.854 ± 2.32E-02 0.899 ± 1.34E-02
49 0.938 0.869 ± 1.40E-02 0.901 ± 9.46E-03 0.918 ± 5.22E-03 0.889 ± 9.64E-03
50 0.974 0.924 ± 1.53E-02 0.960 ± 6.45E-03 0.955 ± 3.31E-03 0.960 ± 3.73E-03

Finally, we consider the advantage of the data set. In this
paper, EEGs were measured from 50 BECTS patients, and
15,899 epileptic spikes and 15,538 non-epileptic discharges
were extracted as 1-s segments. To our knowledge, the number
of the epileptic spike segments is the largest in the world of
epileptic spike detection studies according to the described in
Section II-C. This number of the segments strongly supports
the credibility of the statistical validation in this paper. For
the length of the segment, we set it as 1-s, based on other
studies [2], [20] and on the annotation tasks by the five
specialists. Of course, there are studies using different length
segments [11], [19], however, as the results of this paper show,

1-s extraction is sufficient to achieve a high AUC (> 0.9 in
most cases) for BECTS spikes. In particular, since epileptic
spike-wave discharges in BECTS patients are known to contain
a 3–4 Hz component [32], a segment length of one second
can fully contain one of these discharges. Furthermore, even
if the position of extracting the spike waveform is slightly
misaligned, it is unlikely that any part of the waveform will
be lost, thus the 1-s extraction is appropriate.

In conclusion, we proposed a method to combine a bank
of linear-phase filters with a convolutional neural network and
learn its coefficients from the data. To our knowledge, we have
built the largest dataset in the literature, containing 31,437
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(b) Odd symmetric LPCLs (LPCL No. 6 to 10)

Fig. 6. An example of mean filter spectrums at the LPCL combining with ANN.
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Fig. 7. An example of mean filter spectrums at the LPCL combining with CNN.
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Fig. 8. An example of predicted spikes. The circles and triangles indicate non-epileptic discharges and epileptic spikes, respectively. A bar at the bottom
indicates that the classification failed.
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Fig. 9. The mean spectrum of all 15,538 segments of non-epileptic discharges
and the mean spectrum of all 15,899 segments of epileptic spikes. The areas
where p < 0.01 in the t-test between the two classes at each frequency are
filled in yellow, and the bottom of the graph shows its effect size.

samples annotated by two neurosurgeons, two clinical technol-
ogists, and one pediatrician. The proposed model classify 1-s
segments to epileptic spikes or non-epileptic discharges with
high performance (AUC > 0.9 in most cases). Furthermore,
the frequency response of the filter fitted from the EEG is
strongly responds in the low frequency range (around 14 Hz).
This band coincided brilliantly with the frequency band of
interest in the raw EEG segments of epileptic spikes.
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