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Soma3,

1 Collegiate of Industrial Engineering, University of Amapa State, Macapá, AP, Brazil
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Abstract

BACKGROUND - Since the first reports of COVID-19, decision-makers have been using
traditional epidemiological models to predict the days to come. However, the
enhancement of computational power, the demand for adaptable predictive frameworks,
the short past of the disease, and uncertainties related to input data and prediction
rules, also make other classical and machine learning techniques viable options.

OBJECTIVE - This study investigates the efficiency of six models in forecasting
COVID-19 confirmed cases with 17 days ahead. We compare the models autoregressive
integrated moving average (ARIMA), Holt-Winters, support vector regression (SVR),
k-nearest neighbors regressor (KNN), random trees regressor (RTR), seasonal linear
regression with change-points (Prophet), and simple logistic regression (SLR).

MATERIAL AND METHODS - We implement the models to data provided by the
health surveillance secretary of Amapá, a Brazilian state fully carved in the Amazon
rainforest, which has been experiencing high infection rates. We evaluate the models
according to their capacity to forecast in different historical scenarios of the COVID-19
progression, such as exponential increases, sudden decreases, and stability periods of
daily cases. To do so, we use a rolling forward splitting approach for out-of-sample
validation. We employ the metrics RMSE, R-squared, and sMAPE in evaluating the
model in different cross-validation sections.

FINDINGS - All models outperform SLG, especially Holt-Winters, that performs
satisfactorily in all scenarios. SVR and ARIMA have better performances in isolated
scenarios. To implement the comparisons, we have created a web application, which is
available online.

CONCLUSION - This work represents an effort to assist the decision-makers of
Amapá in future decisions to come, especially under scenarios of sudden variations in
the number of confirmed cases of Amapá, which would be caused, for instance, by new
contamination waves or vaccination. It is also an attempt to highlight alternative
models that could be used in future epidemics.

Introduction 1

By September 20th 2020, almost nine months after SARS-COV-2 first appearance, 2

World Health Organization (WHO) reported a total of 31.1 million cases worldwide, 3
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with 315, 919 daily cases and 962, 000 accumulated deaths due to coronavirus disease [1]. 4

Brazilian authorities announced the first COVID-19 case by February 25th, 2020 [2]. 5

Despite this two month delay, by the end of August 2020, Brazil already held the second 6

largest number of accumulated infected (4.6 million) and death cases (137, 000) in the 7

world. The number of daily new cases and deaths are also high, placing Brazil just after 8

India and the United States of America, respectively, and both with much larger 9

populations [3]. 10

All those numbers caught the attention of many researchers, that presented models 11

to attend the concerns from the Brazilian government and population, such as when the 12

outbreak will peak, how long it will last, and how many will be infected or die [4, 5]. 13

Many of those forecasting models rely on epidemiological approaches [6,7] or state-of-art 14

artificial intelligence (AI) algorithms. Generally, researchers address their models to the 15

country as a unit or to highly populated areas, mainly big cities and federation states 16

like Sao Paulo and Rio de Janeiro [4, 8, 9]. 17

However, COVID-19 has also impacted other Brazilian regions, such as the North, 18

that is a territory almost entirely covered by the Amazon rain-forest and accounts for 19

almost half of the Brazilian territory. The north has a low population density (4.78 20

inh./km2), accounts for only 8.8% of the Brazilian population, and is responsible for 21

14.3% of all confirmed cases of COVID-19 in Brazil. It may be represented by infected 22

per population rates: 2.6% in the North, versus 1.5% in the rest of the country [10]. 23

Figure 1 shows the evolution of the infection rate in all five Brazilian regions. 24

2020-03 2020-04 2020-05 2020-06 2020-07 2020-08

0.000

0.005

0.010

0.015

0.020

0.025

In
fe

ct
io

n 
R

at
e

region
SE
NE
CO
S
N

2020-03-01 2020-03-08 2020-03-15 2020-03-22 2020-04-01 2020-04-08 2020-04-15 2020-04-22
date

0.0000

0.0001

0.0002

0.0003

Fig 1. Evolution of the infection rate in all five Brazilian regions

Carved into the Amazon rain-forest is Amapá, a northern state of Brazil. Amapá is 25

like an island surrounded by the forest since it displays no land routes with any other 26

Brazilian state (See Fig. 2). It has only 830,000 inhabitants but living in an area bigger 27

than England, which is Voc67 times denser. Like other parts of Amazon, Amapá 28
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already experiences an excess mortality from infectious diseases, especially among 29

indigenous populations. Despite recent political efforts, many people living in the state 30

still suffers from different social and health problems such as minimal access to clean 31

water and public sanitation [11]. Those and other reasons make Amapá especially 32

susceptible to COVID-19 and other epidemic outbreaks that may occur in the future. 33

By the end of May, Mapacá, the Amapá’s capital, saw its health system collapse due to 34

COVID-19. By closing August 2020, the state consolidated the second highest infection 35

rate in Brazil, according to official data [10]. By the end of September 2020, the state 36

also has a low fatality rate (1.29%) when compared to the whole country (3.02%), which 37

may be the result of local attempts to track new cases and avoid under-notifications. 38

Macapá

Amapá

Brazilian Amazon
North Region
Amapá
Rest of Brazil

Fig 2. Amapá, Brazil

Respecting this ambiance, in this paper, we explore and compare traditional and AI 39

forecasting models to support the Amapaense decision-makers in the future decisions to 40

come. The interest variables are the accumulated number of confirmed and death cases. 41

We compare the models autoregressive integrated moving average (ARIMA), 42

Holt-Winters, support vector regression (SVR), k-nearest neighbors regressor (KNN), 43

random trees regressor (RT), seasonal linear regression with change-points (SLiR) and 44

simple logistic regression (SLR), which dictates the baseline performance in this study. 45

We compare the models according to the necessities of local authorities. Thus, we 46

measure the model’s effectiveness to forecast the 17 days ahead and how fast they have 47

responded to quick increases and decreases in the number of cases, as well as to periods 48

of stability. This scenarios may repeat in the future, as result of new contamination 49

waves or vaccination, for example. The forecasts are performed to each Amapaense 50

municipality individually and to the state accumulated data, which we paint as our 51

main example. 52

Since the municipalities are in different stages of the COVID-19 spreading, they may 53

also display very different curve growing behaviors. Thus, as a result of this study, we 54

have also created an online application (which can be accessed in 55

http://www.previsor.covid19amapa.com/, that can be used to visualize the data at 56
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municipal level. The web application also allows decision-makers and researchers to 57

follow the steps we do, as well as choose the best model to use in different occasions. 58

1 Research Framework 59

In this section, we describe our research framework, which we split into: (1.1) data 60

acquisition, (1.2) data splitting, (1.3) fitting and forecasting, and (4) model evaluation. 61

The subsection that follows treats each one of those steps. 62

1.1 Data acquisition 63

We performed all modelings to the cumulative confirmed cases of COVID-19 in Amapá, 64

since the first official case, in March 20th 2020, up to August 20th 2020. We gather the 65

data from official reports, from each of the 16th Amapense municipalities. The collected 66

data is also available in an application programming interface provided by Brasil.io 67

repository [10]. The measurement periods are different for each municipality and Tab. 1 68

summarized the dates of the first and last reports. 69

Table 1. Number of observed days by city

Municipality
First
report

Last
report

Observ.
days

Amapá 26-Apr 21-Sep 149
Calçoene 1-May 21-Sep 144
Cutias 5-May 21-Sep 140
Ferreira Gomes 2-May 21-Sep 143
Itaubal 24-Apr 21-Sep 151
Laranjal do Jari 15-Apr 21-Sep 160
Macapá 20-Mar 21-Sep 186
Mazegão 14-Apr 21-Sep 161
Oiapoque 4-Apr 21-Sep 171
Pedra Branca do Amapári 23-Apr 21-Sep 152
Porto Grande 14-Apr 21-Sep 161
Pracuúba 5-May 21-Sep 140
Santana 5-Apr 21-Sep 170
Serra do Navio 22-Apr 21-Sep 153
Tartarugalzinho 26-Apr 21-Sep 149
Vitória do Jari 14-Apr 21-Sep 161

The data we use may diverge a little from the Brazilian government website, since 70

the counting protocol may differ from those used by the Amapá state. Also, This paper 71

does not treat case sub-notifications. 72

1.2 Data splitting 73

First, we split the raw data into training and test datasets. However, we performed a 74

rolling forward splitting, with a minimum of p training samples and a fixed value of q 75

testing samples. Considering a total of n observations, we first took p days as the 76

training set and tried to forecast the next q days. Then, interactively, we added one day 77

to the training set, until it comprised n− q observations. Thus, for a given municipality, 78

we have n− p− q + 1 different cross-validation splittings. 79
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In this paper, we use p and q equal to 17, since this the horizon required by 80

Amapense decision-makers. Thus, in the first splitting, the raw data is divided into a 81

proportion of half-and-half between training and testing sets (see Algorithm 1). 82

Each training sample (x) is then standardized (z) by its mean (u) and standard 83

deviation (s), calculated as z = (x− u)/s. 84

Algorithm 1: cross-validation and forecasting

raw data = rd
p = 17
q = 17
i = 17 + 17
while p + q ≤ n : do

i = i + 1
train, test = rd[:i-q], rd[i-q:i]
train = standardization(train)
forecaster.fit(train)
pred = forecaster.predict(test)
metrics = [RMSE, R-Squared, sMAPE]
for metric in metrics do

metric = metric(test, pred)
return metric

end

end

85

1.3 Fitting and Forecasting 86

We then fit the training datasets to each one the following models: autoregressive 87

integrated moving average (ARIMA), Holt-Winters, support vector regression (SVR), 88

k-nearest neighbors regressor (KNN), random forest regressor (RFR), seasonal linear 89

regression with change-points (SLiR) and simple logistic regression (SLR). We also use 90

search-grid to find the best hyperparameters sets to the state level data and for each 91

model. With the exception of ARIMA model, which is automatized, when applicable 92

the search-grid is performed only for the last time window we analyze. The models are 93

applied to the bases that ensure the best fit for the model. Thus, the models Logistic 94

Regression, Holt-Winters, ARIMA, and Prophet are modeled to accumulated databases, 95

while SVR, KNN, and RFR use daily databases. we also reduce the Logistic, KNN, 96

RFR and SVR regressors to the size of the testing samples, thus, 17 days. However, all 97

of them are compared according to predicted accumulated values. This way, models 98

running on a daily bases will convert the predicted values before calculating the metrics 99

and comparing them. The models are explained as follows: 100

1.3.1 ARIMA 101

The ARIMA model stands for integration (I) between autoregressive (AR) and moving 102

average (MA) models. Box and Jerkings [12] are the first designers of this model. 103

ARIMA may also be adjusted to consider seasonality, which optimal value may be found 104

after the conduction of a Canova-Hansen test [13]. The optimum values of 105

autoregressive (p), degree of their differences (d) and moving average (q) may also be 106

found by search-grid. Usually, we select the parameters that minimize the Information 107

Criterion (AIC). Articles such as Benvenuto et al. [14], Ceylan [15], and Singh et al. [16] 108

bring examples of ARIMA applications to COVID-19 cases forecasting. The general 109

equations for AR and MA models are [15]: 110
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Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt (1)

Yt = θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt (2)

where Yt, ε, φ, and θ are the observed values at time t, the value of the random shock 111

at time t, AR, and MA parameters, respectively. Thus, an ARMA model is given by: 112

Yt = α+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt − θ1εt−1 − θ2εt−2 + ...+ θqεt−q (3)

Where α is a constant. When dealing with non stationarity, the data may be 113

differenced, and the ARIMA model is then performed. 114

1.3.2 Holt-Winters 115

Holt [17] and Winters [18] are the architectures of the Holt-Winters method, also known 116

as triple exponential smoothing. This model is an upgraded version of the simple 117

exponential smoothing to consider trend and seasonality. Thus, it employs three 118

parameters: α, the smoothing factor, β, a trend smoothing parameter, and γ, which 119

relates to seasonality. Different authors have explored this model to forecast COVID-19 120

cases [19,20]. The equations of the additive model follow. 121

St = α
yt

It − L
+ (1− α)(St−1 + bt−1) (4)

Where S is the smoothed observation, L the cycle length, and t a period. The trend 122

factor (b), the seasonal index (I), and the forecast at m steps (F ) are given by: 123

bt = γ(St − St−1) + (1− γ)bt−1 (5)

It = β
yt
St

+ (1− β)It−L+m (6)

Ft+m = (St +mbt)It−L+m (7)

1.3.3 SVR 124

A support vector machine (SVM) is a supervised machine learning algorithm. It 125

performs both regression and classification tasks. Vapnik [21] is the precursor of this 126

technique, and its variant for regression, the support vector regression (SVR), which 127

was widespread mainly by the work of Drucker et al. [22]. Some applications of SVR 128

can be found in the context of COVID-19 case forecasting [4, 23,24]. 129

The general logic of an SVR is relatively simple. Suppose a linear regression, which 130

objective is to minimize the sum of square errors. 131

MIN
i=1∑
n

(yi − wixi)
2 (8)

where yi is the target, wi the coefficient and xi the feature. Then, the training of 132

SVR aims to minimize the following system. 133

minimize
1

2
||w||2 (9)

subject to |yi − (wixi) + bi| ≤ ε (10)
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1.3.4 KNN 134

KNN stands for k-nearest neighbors and was primarily designed to deal with 135

classification problems. Decades after the first conceptualizations of KNN, around the 136

start of the ’90s, researchers started exploring it for regression purposes [25]. In the 137

time series context, the KNN algorithm searches for k nearest past similar values by 138

minimizing a similarity measure. Then, the forecasting is an average of these k-nearest 139

neighbors. However, it sounds straightforward, it demands a high computational 140

cost [9]. In the context of COVID-19, Many researchers have used this approach in 141

classification problems. Just a few have used it to COVID-19 case forecasting [9]. The 142

main distance functions used for continuous variables are: 143

Euclidean

√√√√ k∑
i=1

(xi − yi)2 (11)

Manhattan
k∑

i=1

|xi − yi| (12)

Minkowski

(
k∑

i=1

(|xi − yi|)q
)1/q

(13)

1.3.5 RFR 144

Random forest is a machine learning algorithm with many decision trees. Breiman [26] 145

proposed a combination of bagging and random subspaces methods. Nowadays, 146

researchers and machine learning practitioners employ RF in both classification and 147

regression tasks. Authors have applied RF to deal with COVID-19 forecasting [4, 27]. 148

This model randomly splits the data into in-Bag data and out-of-Bag data. Then many 149

decision trees are randomly created with bootstrap samples. The branching of each tree 150

is also performed according to randomly selected predictors. The final RF estimate in an 151

average of the results from each tree. It is especially impressive when dealing with the 152

randomness of the time series. In regression applications, Mean Squared Error (MSE) is 153

used as splitting criteria in each tree’s branch. We explain MSE in more detail later on. 154

1.3.6 Prophet 155

Prophet is a forecasting approach developed by Facebook. It employs a decomposable 156

times series model, with three main model components: trend (g(t)), seasonality (s(t)) 157

and holidays (h(t)). It also assumes an error ε representing any idiosyncratic changes 158

that are not predicted by the model. 159

y(t) + g(t) + s(t) + h(t) + εt (14)

with 160

g(t) = (k + a(t)T δ)t+ (m+ a(t)γ) (15)

where k is the growth rate, δ is the rate adjustments, m is the offset parameter, and 161

γj is set to sjδj to make the function continuous. Another important aspect is that the 162

model performs automatic changepoint selection, putting a sparse prior on δ. 163

On the other hand, it relies on Fourier series to incorporate daily, weekly, and 164

annually seasonalities. In the case of COVID-19, we are more concerned about weekly 165

seasonality. 166
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s(t) =
n=1∑
N

(
ancos

(
2πnt

P

)
+ bnsin

(
2πnt

P

))
(16)

In the context of COVID-19, Prophet has few appearances in forecasting the 167

accumulated confirmed and death cases [8, 28]. 168

1.4 Model evaluation 169

We evaluate the performance of each forecasting models in terms of R-squared (R2), 170

Root Mean Square Error (RMSE), and Symmetric Mean Absolute Percentage Error 171

(SMAPE). We perform the evaluations for each train/test pair created by the rolling 172

forward splitting. Thus, each metric is performed n− p− q + 1 times. 173

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(17)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (18)

sMAPE =
2

n

n∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

(19)

where n is the number of observations, yi and ŷi are the ith observed and predicted 174

values. 175

2 Results and Discussion 176

This section describes the results of our experiments. We compare the models according 177

to their efficiency to predict COVID-19 confirmed cases 17 days ahead and over 178

different time windows. In the next subsections, we describe the models’ performances 179

during exponential increase, after a sudden decrease, during the stability of daily new 180

cases, and overall for the whole period. 181

2.1 Exponential increase 182

For the data related to the State as a whole, we take the period between March 20th 183

and June 20th as an example of period with exponential increase. Among all models, 184

ARIMA is the one that seems to perform better in the period, considering 17 days of 185

rolling forward windows from May 1st to June 20th. Holt-Winters follows ARIMA 186

during this period and even displaying slightly better results in the last 17 days window 187

(ARIMA: RMSE = 649, R-Squared = 0.95, and sMAPE = 3.81; Holt-Winters: RMSE 188

= 575, R-Squared = 0.96, and sMAPE = 3.09). Fig. 3 shows how Holt-Winters 189

graphically fits the data. 190

2.2 After sudden decrease 191

Still, for the Amapá state, we take the period between June 22th and July 14th as an 192

example of a period after a sudden decrease. In this case, Holt-Winters, ARIMA, and 193

RFR are those that perform better, considering 17 days rolling forward windows. For 194

instance, in the last 17 days window Holt-Winters displays RMSE = 262, R-Squared = 195

0.95, and sMAPE = 0.74. Fig. 4 shows how Holt-Winters graphically fits this kind of 196
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Fig 3. Forecasting during exponential growth with Holt-Winters

data. Holt-Winters has a good performance for this specific time window. All 197

forecasting models struggle to predict just after a sudden decrease in the number of 198

daily confirmed cases. The models that have the fastest recover are SVR and 199

Holt-Winters, in this order. 200

2.3 Stability period 201

We take the period between July 14th to September 20th as a period of stability in daily 202

new cases, where the average of daily new cases tends to be constant, and weekly 203

seasonal variations and noise mostly influence the values. In this case, all ML models 204

perform reasonably, with special attention to Holt-Winters, ARIMA, and SVR. For 205

instance, Fig. 5 shows hot Holt-Winters graphically fits to a section of this type of 206

period (RMSE = 162, R-Squared = 0.98, sMAPE = 0.34). At the same section, Logistic 207

regression display as metrics RMSE = 667, R-Squared = 0.6 and sMAPE = 1.34. 208
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Fig 4. Forecasting during stability with Holt-Winters

2.4 Model’s overall performance 209

In a general manner, all machine Learning models achieve better results than Logistic 210

regression. In Fig. 6 we can see how Holt-Winters performs in comparison to the other 211

five models. Those findings Notice that we measure rolling forward performances 212

according to the R-Squared given by each cross-validation set. 213

In each pair of models we can observe how the Holt-Winters perform in comparison 214

to an other model and considering the periods we classify as (1) exponential increasing, 215

(2) after sudden daily decreasing and (3) stability of daily new cases. 216

Similar evaluations to the prediction of confirmed cases can be extended to death 217

cases. In this case, Holt-Winters still seems to be the most suitable model, along with 218

ARIMA. Similar considerations can also be draw to the municipalities of Amapá. 219

However, for small cities where data is scarce, most models we present here struggle to 220

make predictions. In this case, even naive approaches seem to be a good alternative. 221
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Fig 5. Forecasting during stability with Holt-Winters

3 Conclusions 222

COVID-19 has been a burden issue to the world, and to a large number of countries. It 223

imposes severe challenges to local authorities that do not have the necessary resources 224

to fight it. The situation of Amapá is not different, a Brazilian state in the middle of 225

the Amazon rain-forest. Like other Amazonian regions, various Amapaense communities 226

already suffer from social and health problems, such as minimal access to public 227

sanitation and different epidemiological diseases, such as Malaria and Yellow Fever. 228

COVID-19 depreciates these social conditions. Knowing how the COVID-19 numbers 229

will evolve is critical to local authorities to determine the best responses. 230

Thus, in this paper, we compared classical and machine learning models to forecast 231

the evolution of COVID-19 in the state. Despite the volume of research papers pointing 232

Machine Learning models as those with the best performance for many locations, in the 233

case of Amapá, two classical approaches seem to perform better: Holt-Winters and 234

ARIMA. It may be a consequence of the Amapaense data, which has marked seasonality 235

and sudden variations. One advantage of these two models is that they are easier to 236
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Fig 6. Rolling forward performance of Holt-Winters in comparison to other models
(R-squared metric)

code and tune than machine learning models. 237

This conclusions, as well as other analysis, can be made by exploring the web 238

application we created and is available online at 239

http://www.previsor.covid19amapa.com/. 240

As possible developments of this research, we highlight the investigation of Neural 241

Networks models, which may consider other feature sets in forecasting future numbers 242

of cases. We also intend to propose a framework that indicates the best forecasting 243

model for each municipality and period, saving time from local decision-makers. 244
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