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Abstract: 
Reconstruction of gene-content evolutionary history is an essential approach for understanding how 
complex biological systems have been organized. However, the existing gene-content evolutionary 
models cannot formulate complex and heterogeneous gene gain/loss processes, which reflect diverse 
evolutionary events and greatly depend on gene families. In this study, we developed Mirage (MIxture 
model with a Realistic evolutionary rate model for Ancestral Genome Estimation), which allows 
different gene families to have flexible gene gain/loss rates, but reasonably limits the number of 
parameters to be estimated by the expectation-maximization algorithm. Simulation analysis showed 
that Mirage can accurately estimate complex and heterogeneous gene gain/loss rates and reconstruct 
gene-content evolutionary history. Application to empirical datasets demonstrated that our 
evolutionary model better fits genome data from various taxonomic groups than other models. Using 
Mirage, we revealed that gene families of metabolic function-related gene families displayed frequent 
gene gains and losses in all taxa investigated. The source code of Mirage is freely available at 
https://github.com/fukunagatsu/Mirage. 
 
Keywords: Genome evolution, Gene content, Probabilistic evolutionary model, Phylogenetic mixture 
model, Maximum likelihood method 
 
1. Introduction 
Gene gain and loss events in genomes have played essential roles in the evolutionary history of life. 
Complex biological systems that function through the coordination of numerous genes, e.g., metabolic 
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pathways and signal transduction systems, have been constructed through the accumulation of such 
events. To answer the fundamental biological question of how such complex systems have been 
organized, reconstruction of gene content evolutionary history has been established as an important 
field in bioinformatics (Iwasaki and Takagi 2009; Montague et al. 2014; Fernández and Gabaldón 
2020). To date, various algorithms to reconstruct gene content evolutionary history have been 
developed (Snel et al. 2002; Hahn et al. 2005; Iwasaki and Takagi 2007; Csurös and Miklós 2009; 
Cohen and Pupko 2010; Ames et al. 2012; Li et al. 2014; Zamani-Dahaj et al. 2016; Li et al. 2019). 
These algorithms estimate the gene content of ancestral species based on the maximum parsimony 
(MP) or maximum likelihood (ML) method, where the ML method is known to show better 
performance (Cohen and Pupko 2011; Ames et al. 2012).  
In the ML method, it is important which gene-content evolutionary model is adopted. Given an 

ortholog table and a phylogenetic tree, the ML method first estimates the evolutionary model 
parameters, such as gene gain and loss rates, using numerical optimization methods or the expectation-
maximization (EM) algorithm. Then, the ML evolutionary history of gene-content is reconstructed 
based on the estimated parameters. Some ML methods adopt a two-state evolutionary model and 
require a two-state ortholog table, which contains the presence/absence information of each ortholog 
group in each genome, and estimate whether each ortholog group existed or not at each ancestral node 
of the given phylogenetic tree (Cohen and Pupko 2010; Li et al. 2014) (Fig. 1A). Although the two-
state evolutionary model is mathematically simple, it is apparently unable to deal with gene copy 
number variations, which play important roles in the evolution of biological systems (Saitou and 
Gokcumen 2020). At the opposite extreme, the ML method can also adopt an “infinite-state” (or least-
constraint) evolutionary model and require a “raw” ortholog table, which contains copy number 
information of each ortholog group in each genome, and estimate the copy number of each ortholog 
group at each ancestral node (the least-constraint model; Fig. 1B). A major drawback of this approach 
is that parameter numbers can become too large to be estimated. For example, even if the upper bound 
of the gene copy numbers is set to ~1,000 (cf., olfactory receptor genes (Niimura 2009)), ~2,000 
parameters still need to be estimated at a huge computational cost and overfitting risk.  
Between the two extremes of the two-state and least-constraint models, previous studies on the ML 

method have adopted gene-content evolution models that consider gene copy numbers but limit the 
numbers of parameters. The simplest model is the two-parameter model, which considers only gene 
gain and loss rates (Fig. 1C) (Hahn et al. 2005; Iwasaki and Takagi 2007). Other models (Csurös and 
Miklós (C&M) model and Birth, Death and Innovation (BDI) model) decompose the gene gain rate 
into gene birth (innovation) and duplication rates, resulting in three parameters (Figs. 1D and 1E) 
(Csurös and Miklós 2009, Karev et al. 2002; Ames et al. 2012). However, these two- and three-
parameter models still cannot formulate complex processes that reflect diverse evolutionary events, 
e.g., de novo gene birth, tandem duplication, ectopic recombination, and horizontal gene transfers 
(HGTs). These models ignore tendencies that gene gain rates change non-linearly in accordance with 
gene copy numbers in case of tandem duplications, and copy numbers of many genes are kept one 
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because of dosage balance conservation.  
 Another aspect of gene-content evolution that should be considered is that different gene families 
have different gene gain/loss rates. For example, housekeeping genes are seldom lost from genomes 
and gene loss rates to zero copies are small for such genes, whereas antibiotic genes are easily lost 
from genomes. Another example is olfactory receptor genes, which are prone to increase copy numbers 
and have exceptionally large gene gain rates. To deal with such heterogeneity in gene-content evolution, 
the phylogenetic mixture model, which is widely used in molecular evolutionary analyses to handle 
heterogeneous evolutionary rates among different residues (Lartillot and Philippe 2004; Pagel and 
Maede 2004; Quang et al. 2008; Dang and Kishino 2019), can be adopted. However, in gene-content 
evolutionary analysis, the phylogenetic mixture model has been adopted only in the ML-based 
methods that use the two-state model (Spencer and Sangaralingam 2009; Cohen and Pupko 2010; Li 
et al. 2014; Zamani-Dahaj SA et al. 2016). 
 In this study, we proposed a realistic evolutionary rate (RER) model, a novel gene-content 
evolutionary model, and developed Mirage (MIxture model with a RER model for Ancestral Genome 
Estimation), which adopts the RER model and phylogenetic mixture model for accurate ML 
reconstruction of gene-content evolutionary history (Fig. 1F). To limit the number of model parameters 
to be estimated, the RER model enables users to set an upper bound of gene copy numbers (Iwasaki 
and Takagi 2007; Ames et al. 2012). We verified that Mirage can estimate both model parameters and 
gene-content evolutionary history with high accuracy using simulated datasets. In addition, we 
demonstrated that the combination of the RER model and phylogenetic mixture model fitted empirical 
datasets better than the other models. Finally, we reconstructed gene-content evolutionary histories of 
several taxonomic groups using Mirage, and revealed that gene families involved in metabolic 
functions frequently exhibited gene gain/loss events in all taxonomic groups investigated. 
 
2. New Approaches 
2.1 Input data  
The input data for our method are an ortholog table ! and a phylogenetic tree ". ! is a data matrix 
that consists of #  species (genomes) and $  gene families (ortholog groups). !!,# , which is an 
element of the species % and the gene family & in the matrix, represents the gene copy number of j in 
i. The phylogenetic tree " is a binary rooted tree whose branches have branch lengths greater than 0. 
The tree has # leaves (external nodes), which correspond to the # species in the ortholog table !. 
"  also has # − 1  internal nodes, which correspond to the ancestral species. The reconstruction 
problem of gene content evolutionary history is defined as an estimation problem of the gene copy 
numbers in the ancestral species for each gene family ()). 
 
2.2 The RER model and the phylogenetic mixture model 
Gene-content evolution is formulated as a continuous-time Markov model, where gene copy numbers 
and gene gain/loss events are represented as states and state transitions, respectively. Gene gain/loss 
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events in each gene family are assumed to have occurred independently of those in other gene families. 
In an infinitesimal time *+, a gene gain/loss event of one gene is assumed to have occurred at most 
once. In the two-parameter model, where the model parameters are a gene gain rate , and a gene loss 
rate -, transition from a gene copy number . to . + 1 and . − 1 occur at probabilities of ,*+ 
and -*+, respectively, in *+ (Fig. 1B) (Hahn et al. 2005; Iwasaki and Takagi 2007). Csurös and 
Miklós developed a model with three parameters: a gene acquisition rate ,, a gene loss rate - and a 
gene duplication rate 0  (Fig. 1C) (Csurös and Miklós 2009). By assuming that HGT is a main 
mechanism of gene acquisition, the C&M model defines transition rates from . to . + 1 and . − 1 
as , + .0 and .-, respectively (note that the gene gain/loss rates change linearly with gene copy 
numbers). The other three-parameter model, the BDI model, utilizes a novel gene family acquisition 
rate 1 in addition to a general gene gain rate , and a gene loss rate - (Fig. 1D) (Karev et al. 2002; 
Ames et al. 2012). This model is basically the same as the two-parameter model, except that the 
transition rate from 0 to 1 is 1. 
 In this study, we proposed a RER model, which allows all state transition rates to be different. Instead, 
to limit parameter numbers, we set the maximum gene copy numbers as a parameter 2$%& (i.e., gene 
families having copy numbers larger than 2$%& are considered to have 2$%& gene copies) (Fig. 1E). 
That is, the number of states is 2$%& + 1 (0 to 2$%&). Because 2$%& is a user-input parameter, the 
user can freely set it to a reasonable value according their interest (for example, if the user is interested 
in the evolution of many copy gene families, 2$%& can be set large at the expense of a parameter 
number increase). Let 3 be a (2$%& + 1) × (2$%& + 1) transition rate matrix. [3]!,#, which is an (%, 
&)-th element of 3, represents the state transition rate from the state % to the state & in *+. [3]!,# =
0  when |% − &| > 1 , and the number of evolutionary rate parameters is 22$%& . We define 
>(?|@, 3, +) as a transition probability from state @ to ? in time +. If + = 0, the gene copy number 
does not change and >(?|@, 3, 0) = [B]&,' , where B  is the identity matrix. If + = *+ , 
>(?|@, 3, *+) = [B + 3*+]&,' , where [3]!,! = −∑ [3]!,##,!(# . Then, under the Markov process 

assumption, we obtain >(?|@, 3, +) = [ lim
)→+

GB + ,
)3H

)]&,' = [exp(+3)]&,'. 

Furthermore, to allow different gene families to have different gene gain/loss rates, we combined the 
RER model with the phylogenetic mixture model. Instead of assuming that all of the $ gene families 
evolve under the same transition rate matrix 3 , the phylogenetic mixture model introduces L 
transition rate matrices (i.e., 3-, … , 3.). Each of the $ gene families is probabilistically assigned to 
L clusters as a mixture model. Here, L is a user-input parameter.  
 
2.3 Parameter estimation and gene-content evolutionary history reconstruction algorithm 
The evolutionary model parameter to be estimated is N = {P, 3-, … , 3. , Q-, … , Q.}, where P is a L-
length vector that is the mixing probability of each gene-content cluster, 3! is a transition rate matrix 
of the %-th gene-content cluster, and Q!  is a (2$%& + 1)-length vector that is the state occurrence 
probability at the root node in the phylogenetic tree of the %-th gene-content cluster. Note that the 
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degree of freedom is 32$%&L + L − 1. 
 The model parameters are estimated by the EM algorithm (Dempster et al. 1977). The EM algorithm 
is an ML method for estimating parameters from observed data in statistical models that assume 
unobserved hidden states. In our model, the observed data is the ortholog table ! , while the 
unobserved hidden states are the gene-content evolutionary history ) and assignments of each gene 
family to each gene-content cluster T. The EM algorithm consists of the following four steps. (1) 
Initialize the model parameter N/01 randomly. (2) Calculate U(), T|!, N/01). (3) Calculate N)23 =
argmax4Y(N, N/01), where Y(N, N/01) = ∑ U(), T|!, N/01)lnU(), T, !|N)5,6 . (4) If the log-likelihood 
converges, terminate the EM algorithm. Otherwise, substitute N)23 for N/01 and return to the step 
(2). The steps (2) and (3) can be efficiently calculated using the eigenvalue decomposition of the state 
transition probability matrices and a dynamic programming method across the phylogenetic tree " 
(Holmes and Rubin 2002; Quang et al. 2008; Kiryu 2011). 
 After the parameter estimation, the ML evolutionary history 	)\  is reconstructed by a dynamic 
programming method using the estimated parameters. The reconstruction method is similar to the 
Viterbi algorithm, which obtains the ML path of hidden states in the hidden Markov model, and also 
resembles an algorithm for the reconstruction of ancestral protein sequences (Pupko et al. 2000).  
The details of the algorithms are described in the Supplementary Materials. We implemented the 

algorithms in C++. The source code is freely available at https://github.com/fukunagatsu/Mirage. 
 
3. Results 
3.1 Performance evaluation of Mirage based on simulated datasets 
We first evaluated the performance of Mirage using simulated datasets. We simulated the evolution of 
10,000 gene families in a phylogenetic tree that had 128 leaves for 10 times, creating 10 datasets. We 
used the RER model whose maximum gene copy number 2$%& was set to 3 and the phylogenetic 
mixture model whose number of gene content cluster L was set to 4 for the simulation. Details are 
described in the Material and Methods. 
 Then, we applied Mirage to the 10 simulated datasets to estimate the evolutionary model parameters 
and reconstruct the gene-content evolutionary history. Fig. 2 shows the relative errors of the estimated 
model parameters. The medians and maximum values of the relative errors were 1.25 and 7.23 for P, 
1.122 and 27.164 for 3, and 14.7565 and 510.67 for Q, respectively. These results imply that Mirage 
can estimate parameters with high accuracy, although the estimated Q may substantially differ from 
the true parameter. Such difficulty in root parameter estimation is well known and may stem from the 
fact that the root node is the topologically the furthest away from the observable leaf nodes (i.e., extant 
genomes). 
 The accuracy of the reconstructed ancestral states (gene copy numbers) was 84.0% (Table 1). When 
the phylogenetic mixture model was not used (i.e., L = 1), the accuracy decreased to 81.6%, likely 
because the heterogeneity of gene-content evolution was ignored. If the copy number states were 
ignored and only presence/absence information was considered (i.e., if incorrect estimation among the 
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copy numbers 1, 2, and 3 was ignored), the accuracy of presence/absence state reconstruction of the 
ancestral nodes was 92.0%. On the other hand, when gene copy number information was not used and 
the two-state model (with the phylogenetic mixture model) was applied (i.e., 2$%& = 1), the accuracy 
was 91.9%. This result indicates that the two-state model is sufficiently accurate only to reconstruct 
presence/absence information. In addition, if the two-parameter, C&M, and BDI models (without the 
phylogenetic mixture model) were used, the accuracies were 82.8%, 82.6%, and 82.8%, respectively. 
Note that 2$%& was set to 3 to compare the models under the same condition.  
 
Table 1. Estimation accuracy of the reconstructed gene content evolutionary history 

Method Estimation accuracy 
Estimation accuracy of  
presence/absence only 

RER, K = 4, lmax = 3 
(True condition) 

84.0% 92.0% 

RER, K = 1, lmax = 3 81.6% - 
RER, K = 4, lmax = 1 

(Two-state model with 
phylogenetic mixture model) 

- 91.9% 

Two-parameter, K = 1, lmax = 3 82.8% - 
Csurös, K = 1, lmax = 3 82.6% - 

BDI, K = 1, lmax = 3 82.8% - 
 
3.2 Investigation of gene copy numbers in empirical datasets 
We next applied Mirage to empirical datasets. We created three empirical datasets including Archaea 
(domain), Micrococcales (order), and Fungi (kingdom). We used ortholog tables provided in the 
STRING database (Szklarczyk et al. 2019). We downloaded phylogenetic trees of Archaea and 
Micrococcales from the Genome Taxonomy Database (Parks et al. 2019) and one of Fungi from the 
SILVA database (Yilmaz et al. 2014; Yarza et al. 2017). The Archaea, Micrococcales, and Fungi 
datasets comprised 167 species and 11,717 gene families, 111 species and 6,653 gene families, and 
123 species and 23,791 gene families, respectively. 
 The largest gene copy numbers among all gene families were 183, 102, and 513 in the Archaea, 
Micrococcales, and Fungi datasets, respectively, indicating that it would be reasonable to set an upper 
bound of gene copy numbers to limiting numbers of model parameters. Fig. 3 shows cumulative 
relative frequency curves of the largest gene copy numbers in each gene family. Approximately 60% 
of the gene families had one copy at most in any dataset, indicating that the two-state model was not 
suitable for reconstructing the evolution of approximately 40% of the gene families. In contrast, when 
we set 2$%& to 3, the evolution of approximately 90% of the gene families could be reconstructed 
without the gene copy number cut-off.  
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3.3 Comparison of models and parameters by holdout validation 
Next, we compared effects of models and parameters by evaluating holdout performance of Mirage 
using empirical datasets. We first divided each dataset into gene families of training and test datasets, 
and estimated the model parameters using the training dataset only. We then calculated log-likelihood 
of the test dataset. Similarly, parameters were estimated and log-likelihood values were obtained using 
the two-parameter, C&M, and BDI models for each dataset. Note that 2$%& was set to 2, 3, or 4 to 
compare the models under the same condition.  
 Regardless of 2$%& or the dataset used, the log-likelihood increased with the increasing number of 
transition-rate matrices L, except for limited cases, likely because of convergence to local optima by 
the EM algorithm, and the RER and two-parameter models showed the best and the worst log-
likelihood, respectively (Fig. 4). When we divided the training and test datasets in different ways (i.e., 
by species or by species and gene families), we obtained similar results (Figs. S1-S2). In conclusion, 
both the RER model and the phylogenetic mixture model yielded a gene-content evolutionary model 
with high log-likelihood values. 
Interestingly, although the C&M and BDI models had the same number of parameters, their log-

likelihood values were slightly different (Fig. 4). When the Archaea or Micrococcales dataset was used 
and 2$%& was 3 or 4, the C&M model exhibited a larger log-likelihood. On the other hand, when the 
Fungi dataset was used, the BDI model exhibited a larger log-likelihood. When 2$%& ≥ 3, the C&M 
model naturally assumes that gene duplication and loss rates change linearly with gene copies, whereas 
the BDI model assumes that gene duplication and loss occur at a constant rate regardless of gene copy 
numbers (Fig. 1). Thus, the difference likely reflects the nature of gene duplications and losses in 
prokaryotic and eukaryotic genomes. Specifically, the BDI model may be more suitable for eukaryotic 
evolutionary processes in which meiotic recombination introduces tandem gene duplications and 
losses, which are basically independent of gene-copy numbers (Fitzpatrick 2012). 
 

3.4 Analysis of estimated evolutionary model parameters 
Next, we applied Mirage to each of the complete Archaea, Micrococcales, and Fungi datasets. Based 
on an investigation of gene copy numbers and holdout validation results, we used L = 5 and 2$%& =
3. Estimated model parameters are presented in Table 2, Fig. S3, and the Supplementary Data. In all 
datasets, the gene gain rates ([37]!,!8-) tended to be smaller than the gene loss rates ([37]!,!9-), being 
consistent to a previous study (Cohen and Pupko 2010).  
 
Table 2. Estimated parameters based on the complete Archaea dataset (see Supplementary Materials 
for Micrococcales and Fungi datasets). 

Cluster ID P Q 3 
 
1 0.316 (0.460,	0.070,	0.021,	0.449)T� !

−0.160 0.160 0 0
7.959 −9.503 1.544 0
0 11.795 −15.237 3.442
0 0 6.615 −6.614

- 
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2 0.306 (0.000,	0.951,	0.000,	0.048)T� !

−0.016 0.016 0 0
2.395 −2.718 0.323 0
0 4.553 −5.570 1.017
0 0 3.479 −3.479

- 

 
3 0.291 (0.864,	0.115,	0.017,	0.003)T� !

−0.031 0.031 0 0
0.196 −0.272 0.076 0
0 0.822 −1.125 0.303
0 0 0.500 −0.500

- 

 
4 0.049 (0.438,	0.414,	0.000,	0.148)T� !

−0.281 0.281 0 0
0.542 −1.002 0.460 0
0 2.190 −3.203 1.013
0 0 2.433 −2.433

- 

 
5 0.038 (0.553,	0.070,	0.043,	0.335)T� !

−0.615 0.615 0 0
2.808 −4.966 2.158 0
0 6.036 −7.925 1.869
0 0 1.651 −1.651

- 

 
 We next examined the evolutionary model parameters estimated for each gene-content cluster and 
each dataset. To quantify the frequency of gene gain/loss events occur in each cluster _, we calculated 
a normalized cluster evolutionary rate, which was ∑ Q![37]!!0!"#

!:;  divided by the minimum of these 
values among each dataset (Fig. S4). The maximum normalized cluster evolutionary rates were 60.0, 
4.9, and 12.1 for the Archaea, Micrococcales, and Fungi datasets, respectively, indicating that different 
gene-content clusters have different evolutionary rates. The Archaea dataset exhibited the largest 
difference, where the gene-content clusters 1, 2, and 3 exhibited large, moderate, and small normalized 
cluster evolutionary rates, respectively (Table 2). We also investigated whether specific gene functions 
were enriched in specific gene-content clusters. We used EGGNOG database version 4.0 for gene 
annotation to COG, arCOG, and NOG gene families and version 3.0 for gene annotation to KOG 
category (Powell et al. 2012; Powell et al. 2014). After removing “poorly characterized” 
supercategories, we observed differences in the enriched COG supercategories among gene-content 
clusters (Tables S1-S3). 
 
3.5 Reconstruction of the gene-content evolutionary history 
We then reconstructed the gene-content evolutionary history for each dataset using Mirage. We first 
counted gene gain/loss events in each gene family from the reconstructed evolutionary history (Fig. 
S5). In all datasets, gene gain/loss events were rare in most gene families, whereas some gene families 
exceptionally frequently experienced gene/gain loss events. Tables S4-S6 list the 20 gene families with 
the most frequent gene gain/loss events for each dataset. Many transposase genes were commonly 
found in all three datasets, whereas two gene families, COG0286 (HsdM) and COG1848, commonly 
appeared in the lists of the Archaea and Micrococcales datasets. COG1848 is a function-unknown gene 
family, whereas COG0286 is annotated as a DNA methylase subunit of the type I restriction-
modification system. It is reasonable that this restriction-modification system has been spread by HGT, 
as is well known for the type II system (Jeltsch and Pingoud, 1996). 
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Finally,, we investigated whether specific gene functions were enriched in the gene families with 
frequent gene gain/loss events. First, we examined differences in the distributions of the COG 
supercategories between the top 10% of gene families with frequent gene gain/loss events and entire 
gene families (Table 3). Based on a chi-square test with Bonferroni’s multiple correction, we found 
that the “metabolism” supercategory was significantly enriched in the gene families with frequent gene 
gain/loss events in all datasets. When we analyzed which categories in the “metabolism” supercategory 
were enriched in the different datasets, we found that different categories were enriched (Table 4). In 
the Archaea dataset, gene families in categories C, “Energy production and conversion”, and P, 
“Inorganic ion transport and metabolism”, were the most enriched, probably reflecting the diverse 
ways in which Archaea obtain energy. In the Micrococcales and Fungi datasets, gene families in 
categories G, “Carbohydrate transport and metabolism”, and Q, “Secondary metabolites biosynthesis, 
transport, and catabolism”, were highly enriched, probably reflecting rich secondary metabolism 
functions of those taxonomic groups. 
 
Table 3. Enrichment of COG supercategories by frequent gene gain/loss events. 

COG supercategory 
Cellular process  

and signaling 
Information storage 

and processing 
Metabolism 

Archaea top 10% 0.228 0.197 0.575 
Archaea 

whole gene families 
0.249 0.246 0.505 

Micrococcales  
top 10% 

0.241 0.147 0.613 

Micrococcales 
whole gene families 

0.306 0.213 0.481 

Fungi top 10% 0.348 0.198 0.455 
Fungi 

whole gene families 
0.429 0.288 0.282 

 
 
Table 4. Enrichment of COG categories in the metabolism supercategory by frequent gene gain/loss 
events. 

COG 
category 

C E F G H I P Q 

Archaea top 
10% 

0.15 0.097 0.016 0.059 0.048 0.024 0.138 0.028 

Archaea 
whole gene 

families 
0.1 0.095 0.032 0.076 0.057 0.031 0.075 0.030 
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Micrococcales  
top 10% 

0.060 0.124 0.024 0.153 0.032 0.031 0.133 0.034 

Micrococcales 
whole gene 

families 
0.070 0.092 0.020 0.097 0.046 0.030 0.084 0.030 

Fungi top 
10% 

0.053 0.071 0.027 0.104 0.022 0.054 0.057 0.033 

Fungi 
whole gene 

families 
0.041 0.038 0.012 0.069 0.017 0.031 0.048 0.014 

COG category symbols: C, energy production and conversion; E, amino acid transport and 
metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H, 
coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic ion transport and 
metabolism; Q, secondary metabolites biosynthesis, transport, and catabolism. 
 
4. Discussion 
In this study, we developed Mirage, which adopts the RER model and phylogenetic mixture model for 
accurate ML reconstruction of gene-content evolutionary history. We demonstrated that the 
combination achieved good performance based on simulated and empirical datasets. 
 The differences between the RER model and the UNREST model in DNA evolution models are 
noteworthy, because elements of the UNREST evolutionary rate matrix are independent of each other 
(Yang 1994). The first difference lies in the way of estimating Q. Whereas Q is modeled as the 
stationary distribution of the Markov process formulated by the parameter matrix 3 in the UNREST 
model, Q and 3 are defined as independent parameters in the RER model, because of the difficulty 
of assuming the stationarity in the gene-content evolution. Second, the RER model assumes that 
[3]!,# = 0 when	|% − &| > 1, like all other gene-content evolution models. Although simultaneous 
acquisitions/ losses of multiple genes may occur during evolution, they can be modeled as consecutive 
gene acquisitions/losses in a very small period of time by the RER model. 
  The setting of the gene-content category number K is also an important problem in Mirage. Although 
the Akaike Information Criterion (AIC) is a widely used estimator for model selection in phylogenetics, 
AIC can only be applied to statistically regular models, and the phylogenetic mixture model is a non-
regular model. Another popular technique for model selection is the non-parametric Bayesian method. 
This method can be applied to non-regular models, but requires a lot of computation time. A practical 
model selection method for non-regular models is an unsolved problem in statistics, and various 
methods have been proposed (Fujimaki and Morinaga 2012; Watanabe 2013). The integration of 
Mirage with model selection methods for non-regular models is a future task. 
 As an application of Mirage, we envision function prediction of function-unknown genes by 
integrating it with phylogenetic profiling to be an interesting direction. The phylogenetic profiling 
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method predicts gene functions based on correlated occurrence patterns between genes in an ortholog 
table (Kensche et al. 2008; Kumagai et al. 2018; Sherill-Rofe et al. 2019). The method generally 
ignores evolutionary relationships, for example by using simple mutual information as an index of 
correlation, and this ignorance is known to decrease prediction performance (Kensche et al. 2008). 
Previous studies have shown that the prediction performance can be improved by observing correlation 
patterns of gene gain/loss events in the reconstructed gene-content evolutionary history instead of gene 
occurrence patterns in extant species (Barker et al. 2007; Ta et al. 2011; Moi et al. 2020). Thus, precise 
reconstruction of the gene-content evolutionary history by Mirage would contribute to the 
improvement of the phylogenetic profiling method. 
 With the present Mirage implementation, it is still difficult to reconstruct the gene-content 
evolutionary histories of all genome-sequenced species at once because of the huge computation time 
required. Thus, improving the computation time of Mirage is essential. In particular, application of the 
series acceleration method, which improves the convergence rate of a series, to the iteration steps of 
the EM algorithm seems promising. Specifically, the vector-	` acceleration technique, which does not 
require derivation of acceleration formula for each statistical model, may be readily applied to Mirage 
(Kuroda and Sakakihara. 2006). Another powerful approach would be a partitioning method, which 
does not use probabilistic but deterministic assignment of gene families to each gene cluster in the 
phylogenetic mixture model. This method has been widely used in molecular evolutionary analyses, 
but not in gene-content evolutionary analyses (Brown and Lemmon. 2007; Frandsen et al. 2015; 
Lanfear et al. 2017). Although the partitioning method can be less accurate due to the deterministic 
approximation, its computational efficiency would be high. 
 Although Mirage can model differences in the evolutionary rates among gene-content clusters, it 
assumes the same evolutionary rate among all branches of the phylogenetic tree. However, this 
assumption does not always hold true. For example, polyploidization events cause massive gene gains 
(Inoue et al. 2015; Sriswasdi et al. 2016), and parasitization events cause massive gene losses (Sun et 
al. 2018). Moreover, heterogeneity of evolutionary rates among branches may also be caused by 
changes in survival strategies (Sriswasdi et al. 2017) or large-scale extinction events (Wolf and Koonin 
2013). Our knowledge of the nature of branch-wide gene gain/loss rate heterogeneities is still very 
limited, and the expansion of Mirage in this direction would be needed to deepen our understanding. 
Iwasaki and Takagi developed a heterogeneous gene-content evolution model, but their model had a 
problem with an increase in parameter numbers by assigning independent parameters for each branch 
(Iwasaki and Takagi 2007). Instead, a branch-level parameter mixture model that divides branches into 
clusters with the same evolutionary model parameters may be promising. 
 
5. Materials and Methods 
5.1 Preparation of simulated datasets 
To prepare simulated datasets, we used a perfect binary tree with 128 leaves as the input phylogenetic 
tree topology and determined the branch lengths by randomly sampling from a uniform distribution 
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between 0.01 and 0.05. We set the number of gene-content clusters L to 4 and the maximum gene 
family size 2$%& to 3. The parameter P was set to (0.5, 0.2, 0.2, 0.1)T. We defined a! as a vector 
([3!];,-, [3!]-,<, [3!]<,=)T for simplicity of notation, and we set a-, a<, a=, and a> to (0.05, 0.05, 0.05)T, 
(0.2, 0.3, 0.5)T, (2.0, 0.5, 0.5)T, and (2.5, 3.0, 4.5)T, respectively. We used the same values for [3!]#,#8- 
and [3!]#9-,#  for any & . Intuitively, the four clusters represent: 1) a cluster with few gene-copy 
number changes, 2) a cluster with moderate changes, 3) a cluster with a large variation between 0 and 
1, and 4) a cluster with large overall variations. Finally, we set Q-, Q<, Q=, and Q> to (0.8, 0.15, 0.04, 
0.01)T, (0.1, 0.7, 0.1, 0.1)T, (0.45, 0.45, 0.05, 0.05)T, and (0.4, 0.1, 0.1, 0.4)T, respectively. 
 We simulated the evolution of 10,000 gene families along the input phylogenetic tree for a simulated 
dataset, and we constructed an ortholog table from the gene copy numbers at the leaf nodes. We 
prepared 10 simulated datasets, each of which consisted of an ortholog table and a phylogenetic tree. 
 
5.2 Parameter estimation and the data analysis 
The EM algorithm is guaranteed to converge to a local optimum but not to a global optimum, and thus, 
the estimation results can depend on the initial values of the model parameters. Therefore, we estimated 
the parameters 100 times using the EM algorithm for each dataset and each model setting, and we 
adopted the estimation results with the highest data likelihood in the training dataset. 
We compared the RER model with the two-parameter, C&M, and BDI models with restriction of the 

maximum value of the gene copy number value. Because a software program to estimate the 
parameters under these model settings was not available, we implemented our own software. Technical 
details are described in the Supplementary Materials. In the simulated dataset analysis, we used model 
settings that mimic those in previous studies for comparison. Specifically, we investigated the model 
settings of (1) the RER model (L = 4, 2$%& = 1) (Cohen and Pupko 2010), (2) the two-parameter 
model (L = 1, 2$%& = 3) (Hahn et al. 2005; Iwasaki and Takagi 2007), (3) the C&M model (L = 1, 
2$%& = 3) (Csurös and Miklós 2009) and (4) the BDI model (L = 1, 2$%& = 3) (Karev et al. 2002; 
Ames et al. 2012). Additionally, we investigated the model setting that changed L of the true model 
setting from 4 to 1 to assess the effect of the phylogenetic mixture model on the performance.  
 As the evaluation criteria for the reconstructed evolutionary history in the simulated dataset analysis, 
we used the proportion of gene families whose gene copy numbers were correctly estimated in 
ancestral nodes, except for the two-state model. For the two-state model and the true model settings, 
we evaluated the estimation accuracy of the presence or absence of gene families. We used the 
averaged accuracy from the 10 simulated datasets. 
 In the empirical dataset analysis, we tested L values from 1 to 15 and 2$%& values from 2 to 4. We 
investigated the two-parameter, C&M, BDI model, and RER models as evolutionary models. 
 
5.3 Preprocessing of the empirical datasets 
We extracted gene family data of Archaea, Micrococcales, and Fungi genomes from the ortholog table 
in the STRING database version 11.0 (Szklarczyk et al. 2019). We used the NCBI Taxonomy database 
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for taxonomic annotation. Next, we retrieved species in the phylogenetic trees provided by the Genome 
Taxonomy Database release 89 (Parks et al. 2019) for Archaea and Micrococcales, and those provided 
by the SILVA database release 111 (Yilmaz et al. 2014; Yarza et al. 2017) for Fungi. Then, we removed 
species data that were only included in either the ortholog tables or the phylogenetic trees from these 
datasets. In the Fungi phylogenetic tree, for some species, there were multiple strains per species. For 
these species, we randomly selected one strain and removed the others. Then, we reshaped the 
phylogenetic trees to satisfy the following three conditions: (1) a leaf of the phylogenetic trees always 
corresponds to a species, (2) tree topology of the tree is a binary tree, and (3) the distances and the 
phylogenetic relationships between species are the same as in the original tree. Because there were 
branches with branch lengths of 0 in the Fungi phylogenetic tree, we added a pseudo length 0.0001 to 
all tree branches. Note that the minimum branch length excluding 0 in the tree was 0.00059, which is 
larger than 0.0001. Finally, we removed their gene families shared by #  or # − 1 or only one 
organism from the ortholog tables. The constructed datasets are freely available at 
https://github.com/fukunagatsu/Mirage. 
 
5.4 Division of the datasets into the training and test datasets 
We divided the datasets in the following three ways. For experiment 1, we randomly divided the gene 
families into training and test datasets at a 3:1 ratio for each dataset. In this method, the species were 
common between the two datasets. For experiment 2, for each dataset, we randomly divided the species 
into training and test datasets at a 1:1 ratio and removed the gene families that were not present or 
shared by only 1 or . − 1 or . species in each dataset after the division. Here, . is defined as the 
number of species in the dataset after the division. In this method, some gene families were shared 
between the training and test datasets. For experiment 3, we further processed the datasets obtained by 
the second method. In particular, we randomly assigned gene families shared between the training and 
test datasets to either of the datasets, so that no gene families were shared between the two datasets. 
Therefore, in this division, both the species and the gene families differed between the two datasets. 
The numbers of gene families for each dataset in the experiments 2 and 3 are listed in Table S7.  
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Fig. 1 
Schematic illustration of the evolutionary models. Enclosed numerals and arrows indicate gene copy 
numbers and the gene gain/loss events, respectively. (A) Two-state, (B) least-constraint, (C) two-
parameter, (D) C&M, (E) BDI, and (F) RER evolutionary models are shown. 
 
Fig. 2 
Distributions of the relative errors of the estimated parameters for the simulated datasets. A relative 
error is 100 × |the	estimated	value − the	true	value|/the	true	value . The x-axis and y-axis 
represent the relative error and the frequency, respectively. Distributions for (A) φ, (B) R, and (C) π 
are shown. Note that R and π have many parameters and thus their frequencies are larger than that of 
φ. 
 
Fig. 3 
Cumulative distribution curves of the maximum gene copy numbers in the empirical datasets. The x-
axis and y-axis represent the maximum value of the gene copy numbers and the cumulative relative 
frequency, respectively. The Archaea, Micrococcales, and Fungi datasets are represented by red, black, 
and blue lines, respectively. 
 
Fig. 4 
Log-likelihood values of various model settings by the holdout validation of the experiment 1. The x-
axis and y-axis represent the number of gene-content clusters L and the log-likelihood of the test 
dataset, respectively. The two-parameter, C&M, BDI, and RER models are represented by blue, green, 
yellow, and red lines, respectively. (A-C) Archaea dataset when 2$%&  was set to 2-4, (D-F) 
Micrococcales dataset when 2$%& was set to 2-4, and (G-I) Fungi dataset when 2$%& was set to 2-4. 
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