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Abstract 

Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to 
somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. 
However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, 
particularly if the variants only are present in a small fraction of cells. Here, the Brain Somatic Mosaicism Network 
conducted a coordinated, multi-institutional study to: (i) examine the ability of existing methods to detect 
simulated somatic single nucleotide variants (SNVs) in DNA mixing experiments; (ii) generate multiple replicates 
of whole genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and 
dural fibroblasts of a single neurotypical individual; (iii) devise strategies to discover somatic SNVs; and (iv) apply 
various approaches to validate somatic SNVs. These efforts led to the identification of 43 bona fide somatic 
SNVs that ranged in variant allele fractions from ~0.005 to ~0.28. Guided by these results, we devised best 
practices for calling mosaic SNVs from 250X whole genome sequencing data in the accessible portion of the 
human genome that achieve 90% specificity and sensitivity. Finally, we demonstrated that analysis of multiple 
bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. 
Thus, this study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The 
data and methods are freely available to the scientific community and should serve as a guide to assess the 
contributions of somatic SNVs to neuropsychiatric diseases.  
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Introduction 

Genomic sequence variants may be inherited vertically (i.e., transmitted through the germline) or generated 
after zygote formation (i.e., leading to somatic or gonadal mosaicism). It is well established that somatic 
mosaicism occurs in cells of phenotypically normal individuals1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 and can lead to various 
diseases18. However, the prevalence of somatic mosaicism and the extent to which it contributes to diseases 
outside of cancers requires elucidation18. 

Recent studies have estimated that each cell within the human brain contains hundreds to a few thousand 
somatic single nucleotide variants (SNVs) and that a smaller fraction of cells harbor somatic copy number 
variations (CNVs) and mobile genetic element (i.e., retrotransposon) insertions10,15,17,19,20,21,22. Dozens of somatic 
SNVs are present at high variant allele fractions (VAFs) across multiple tissues, indicating that they arose during 
early development17,23. By comparison, some somatic SNVs are present at low VAFs in a small number of cells 
and have limited tissue distributions, suggesting they arose later in development15,16,17. 

Single cell DNA sequencing is the most direct approach to identify somatic variants. However, mutations 
introduced during the amplification and/or generation of single cell DNA sequencing libraries, as well as non-
uniform DNA amplification biases, make it difficult to discriminate bona fide mosaic SNVs from procedural 
artifacts24. Moreover, this approach for identifying mosaic SNVs requires sampling a large number of cells in a 
given individual and, consequently, is cost intensive.  

Another approach to identify mosaic variants involves comparing bulk cell populations from two tissue 
samples derived from the same individual — the sample of interest and a control sample — as is performed 
routinely during the analysis of cancer genomes. However, this approach is limited by the inability to define a 
proper control tissue because mosaic SNVs, particularly ones that arise during early development, are often 
present in multiple tissues across the body. Thus, the development of a unified set of best practices to detect 
somatic SNVs from bulk whole genome sequencing (WGS) datasets would provide an alternative, cost-effective 
approach to identify somatic SNVs.  

In this study, members of the Brain Somatic Mosaicism Network (BSMN) conducted a coordinated, multi-
institutional study that analyzed mosaicism in a single neurotypical brain sample and established unified 
standards for calling and validating mosaic SNVs from bulk WGS and WES data.  

Results 
The detection of simulated somatic SNVs in DNA mixing experiments 

We first assessed the ability of three variant callers commonly used to detect germline single nucleotide 
polymorphisms (SNPs) and somatic SNVs in cancers (i.e., the GATK HaplotypeCaller25, MuTect226, and 
Strelka227) to detect simulated somatic SNVs. We mixed genomic DNAs derived from transformed 
lymphoblastoid cell lines of four unrelated individuals at different proportions (Figs. 1a & S1; see Mix 1 and Mix 
2), sequenced the resultant mixtures to ~100X coverage, and assessed the ability of the callers to detect the 
simulated somatic SNVs (Figs. 1b & S2). In general, none of the callers were sensitive enough to reliably detect 
SNVs present at low (<0.10) VAFs. Combining the Mix 1 and Mix 2 datasets to double sequencing coverage 
only marginally improved sensitivity (Figs. 1b & S2). Moreover, MuTect2 and Strelka2, which are designed to 
detect somatic SNVs that are present in tumors but not matched normal samples, lacked the sensitivity to detect 
simulated mosaic SNVs shared between two matched samples (Figs. 1b & S2). 

We next compared the performance of the three variant callers to detect putative somatic SNVs in ~250X 
coverage WGS data derived from post-mortem dorsolateral prefrontal cortex (DLPFC; herein called the common 
reference brain; see below) and dural fibroblasts derived from a single neurotypical individual. We discarded 
likely germline variants having ~0.5 VAFs and observed that the remaining putative somatic SNVs exhibited little 
overlap among the three callers (Fig. 1c). The VAF distributions identified using the variant callers also differed 
significantly from validated mosaic variants previously reported in fetal brain17 (Fig. 1d). Thus, the naive 
application of existing callers appear to lack the sensitivity and precision necessary to robustly call somatic SNVs 
from bulk brain tissue, indicating a need for new approaches to address this challenge.  
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The generation of a somatic SNV call set from a neurotypical brain sample 

To arrive at an unbiased approach to confidently identify somatic SNVs, we dissected a DLPFC sample from 
the reference brain of a neurotypical individual, pulverized it to enhance homogeneity, and distributed aliquots 
of this sample, as well as aliquots of a matched isogenic primary dural fibroblast cell line, to individual BSMN 
working groups. Each BSMN group independently performed DNA extractions and generated either whole 
genome (four datasets ranging from ~85X to ~245X sequencing coverage) or exome sequencing (two datasets 
of ~350X and ~435X sequencing coverage) data (Fig. 2a; Replicates 1 through 6). The resultant reads were 
uniformly processed using a common workflow (see Methods) and mapped to the human genome (version 
GRCh37d5) (Fig. S3). Group-specific computational approaches and filtering strategies then were used to 
identify putative somatic SNVs (Fig. 2a; Methods 1 through 6). 

The most widely used WGS technologies result in relatively short (~100-150 bps) sequence reads that are 
derived from the ends of small (typically of 350-450 bps) DNA fragments. As such, many reads do not 
unambiguously map to a single genomic locus. For example, it is difficult to confidently assign short DNA reads 
to evolutionarily young and/or human-specific retrotransposon-derived sequences (e.g., LINE-1 and Alu 
elements)28,29. Similarly, segmental duplications sharing high sequence identity, as well as tandem repeat 
sequences present in centromeric, telomeric, and subtelomeric genomic regions pose significant mapping 
challenges30. Thus, we applied the 1000 Genomes Project Strict Mask as a filter, which identifies positions in the 
human reference where sequence coverage does not significantly deviate from the expected average values 
across human populations. This mask defined ~73% of the human genome as accessible and each BSMN 
working group only called putative mosaic SNVs in the accessible fraction of the human genome.    

The BSMN working groups used different analytical strategies to identify putative somatic SNVs (e.g., single 
sample calling, paired sample calling, or a combination of both strategies, as well as various filtering strategies; 
see Methods). Some groups opted for higher precision calling approaches, yielding fewer, but presumably more 
precise mosaic SNV call sets. Other groups casted a wider net and opted to generate more inclusive, but 
presumably less precise call sets. Consequently, the initial numbers of putative somatic SNV calls were quite 
discordant and varied significantly among the working groups. For example, none of the putative SNV calls were 
identified by each of the six working groups and only three calls were identified by five of six groups (Figs. 2b & 
Table S1). 

We next assessed the sensitivity and specificity of the filters used by different BSMN working groups to 
generate individual call sets. First, we prioritized the 1114 putative mosaic SNV calls into four categories using 
the strategy outlined in Table 1. We reasoned that putative mosaic SNVs called by multiple groups using different 
approaches and from multiple data sources/replicates (Multi-call SNVs) would have the highest probability of 
yielding bona fide somatic SNVs. By comparison, SNVs identified using one approach from different data 
sources (Approach Singletons) and SNVs identified using multiple approaches from one data source (Data 
Source Singletons) might be expected to have more false-positive calls when compared to Multi-call SNVs. 
Finally, SNVs identified using a single approach from a single data source (Absolute Singletons) might be 
expected to have the fewest number of true mosaic SNV calls. 
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Table 1: Categories of Validated Mosaic SNVs 

We subjected 400 putative mosaic SNVs to validation experiments (Tables S1 & S2). The validation set 
included all the putative SNVs detected using two or more approaches (Data Source Singletons and Multi-calls; 
49 calls), all of the calls detected individually using Methods 1-5 (Approach and Absolute Singletons; 124 calls), 
and a subset of randomly chosen calls detected individually by Method 6, which had the largest number of calls 
(Approach and Absolute Singletons; 227 calls). We divided the putative mosaic SNV calls into five sets of 100 
variants; 20% of the SNV calls overlapped between the sets. The putative calls sets then were distributed to four 
BSMN working groups for PCR amplicon-based deep sequencing validation (Fig. 2c). Another group attempted 
to validate all 400 sites using a multiplex PCR-based targeted single-end re-sequencing assay (see Methods). 
Together, these strategies allowed testing of 272 putative SNVs by two independent working groups.  

To aid in the validation of putative somatic SNVs we conducted the following analyses: (i) whenever possible, 
we used the 3’ overlapping paired-end reads derived from each PCR amplicon to correct for sequencing errors 
(Fig. 2d); and (ii) we derived a nucleotide substitution error profile for each PCR amplicon-based sequencing 
library (Fig. 2e). To identify and eliminate systematic DNA amplification and sequencing artifacts, 4/5 groups 
also sequenced the same PCR validation amplicons from genomic DNA derived from the control NA12878 
lymphoblastoid cell line31. This process yielded 233 concordant and 39 discordant putative validation calls. The 
majority (22/39) of discordant calls represented mosaic SNVs present at low VAFs (<0.01).  

We resolved the discordant mosaic SNV calls by prioritizing conclusions from amplicon-seq experiments with 
overlapping paired reads, which provided higher confidence base calls within mapping reads. Additionally, we 
considered orthogonal experimental evidence (i.e., whether the putative mosaic SNV was detected as an 
alternative read on a single haplotype in a ~70X coverage Chromium 10X linked-read dataset and/or whether 
the putative mosaic SNV was detected in NeuN+ single cell DNA sequencing datasets generated from the 
common reference sample) (Fig. 2c; see Methods). Finally, to verify the validation status, we performed droplet 
digital PCR (ddPCR) experiments for thirteen calls (Table S3). These calls included a germline SNP within a 
heterozygous genomic duplication, three false-positive calls, and nine previously validated mosaic SNVs. The 
ddPCR experiments demonstrated remarkable consistency with the VAFs determined using the PCR amplicon-
based sequencing experiments, confirmed the predicted ~0.3 VAF for the germline SNP within a genomic 
duplication, invalidated the false-positive calls, and led to the re-validation of eight mosaic SNVs. One mosaic 

Categories Definition 

Number of 
Mosaic SNVs 
selected for 

validation (out 
of total) 

Number of 
Validated Mosaic 

SNVs 

Multi-calls 
Identified by multiple approaches, 
supportive evidence from multiple 

data sources 
45 out of 45 33 

Approach 
Singletons 

Identified by one approach, 
supportive evidence from multiple 

data sources 
311 out of 1101 10 

Data Source 
Singletons 

Identified by multiple approaches, 
supportive evidence from one data 

source 
4 out of 4 0 

Absolute 
Singletons 

Identified by one approach, 
supportive evidence from one data 

source 
40 out of 148 0 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.10.332213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.10.332213
http://creativecommons.org/licenses/by/4.0/


   

 

   
 

7 

SNV validated by amplicon sequencing with a low VAF (0.0053) was not validated using ddPCR, highlighting 
potential limitations of PCR amplicon-based sequencing and/or ddPCR to validate mosaic SNVs at very low 
VAFs.  

In total, 43 mosaic SNVs were validated as bona fide somatic SNV calls. The validated mosaic SNVs were 
present at VAFs that ranged from ~0.005 to ~0.28. None of the mosaic SNVs occurred within coding exons, one 
(chr19:9,493,288 G>A) was present in a non-coding exon (i.e., 3’-UTR of ZNF177), and one intronic variant 
(chr8:103,281,483 C>T) also had supportive reads in WES datasets, which only effectively survey 1%-2% of the 
human genome. Moreover, consistent with previous data17, the SNV mutation spectrum was dominated by C>T 
transitions (Fig. S4). The filtering strategies, sources of false-positive calls, and caveats when conducting variant 
discovery and validation experiments are discussed in greater detail below. 
Sources of false-positive SNV calls and filtering strategies 

We sought to understand properties that distinguish bona fide somatic SNV calls from false-positive calls. 
Additional criteria used to identify and eliminate false-positive calls included: (i) assessing the base quality score 
of reads supporting the candidate SNV; (ii) identifying imbalances in candidate SNV counts in forward vs. reverse 
sequencing reads; (iii) examining local assemblies of candidate somatic SNVs present within or near 
polymorphic insertion/deletion mutations (indels), homopolymeric tracts, and structural variants; and (iv) 
determining whether the candidate SNV arose on a single parental haplotype. Below we briefly summarize the 
sources of false-positive calls discovered in our study. 
Germline SNPs 

The PCR amplicon-based validation experiments coupled with the availability of Chromium 10X linked-read 
data, single cell DNA sequencing datasets, and germline copy number assessments in the common reference 
brain sample helped identify putative mosaic SNVs present at VAFs of <0.50 that ultimately were determined to 
be germline SNPs. For example, our initial analyses identified 29 putative SNVs that appeared at <0.50 VAFs; 
however, PCR amplicon-based sequencing validation demonstrated that these variants were present at ~0.50 
VAFs. Consistently, Chromium 10X linked-read data demonstrated that 18/29 variants were present on a single 
parental haplotype (“2 haplotype” calls) and 25/29 variants were present in at least six of twelve single cell 
sequencing datasets (Fig. 3). Finally, 14/29 putative mosaic SNVs were located within regions of the genome 
containing germline copy number gains, leading to <0.50 VAFs (Fig. S5). This latter result highlights the 
importance of performing copy number characterization on experimental samples prior to calling mosaic SNVs. 
Sequencing and/or mapping artifacts 

The largest proportion of false-positive calls (300/312) were represented by fewer than five supporting reads 
(i.e., low read count false-positive calls) in the 250X coverage replicate 6 WGS dataset, which had the highest 
coverage among all WGS datasets (Fig. 3). These false-positive calls likely represent DNA sequencing and/or 
mapping errors. Indeed, the use of Chromium 10X linked-read datasets allowed us to unambiguously identify 
SNV calls that resulted from DNA sequencing artifacts. Twenty-four false-positive calls appeared as alternative 
reads on both parental haplotypes, leading to the appearance of four apparent haplotype states (Fig. 3; see “4 
haplotype” calls) and are most simply explained by sequencing errors in reads originating from both parental 
haplotypes. By comparison, bona fide validated mosaic SNVs were detected as alternative reads on a single 
haplotype, giving the appearance of three haplotype states (i.e., the two parental haplotypes plus a “third” 
haplotype containing the somatic SNV on a single parental haplotype; Fig. S6).  

The effectiveness of applying Chromium 10X linked-read datasets as a filter to evaluate bona fide somatic 
SNVs is limited by sequencing coverage. For example, at ~70X coverage, mosaic SNVs at <0.03 VAFs were 
unlikely to have supporting alternative reads and therefore could not be assigned to a parental haplotype (Fig. 
3; see “2 haplotype” for validated SNVs). Similarly, the relatively small number of single cells analyzed in this 
study limited the effectiveness in using these data to validate mosaic SNVs present at low VAFs that were 
supported by independent PCR amplicon-based sequencing and/or ddPCR experiments (see below). Indeed, 
~58% of validated and ~36% of false-positive SNVs lacked supporting alternative SNV reads in the single cell 
datasets. 
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Genomic context 

We noticed that candidate mosaic SNVs reads located near or within polymorphic germline indels, short 
tandem repeats, or structural variants (which includes copy number variants and retrotransposon insertions) 
were the second largest source of false-positive calls. A systematic misalignment of these germline variants (Fig. 
S7) and/or a systematic reduction in read counts near the germline variant (Fig. S8) resulted in 75 false-positive 
calls (Table S2). The systematic nature of these false-positive calls suggests they could be recurrently called as 
mosaic SNVs in unrelated samples. By extension, because sequencing errors and misalignments are known to 
be a problem in certain sequence contexts, some of the low read count false-positive calls and germline SNPs 
discussed above may also be due to systematic sequencing errors.  
Unrelated samples and replicate samples 

We next considered a filtering strategy that is based upon analyzing read support for a given mosaic SNV 
call in unrelated individuals. We searched for alternate reads containing the 400 candidate mosaic SNVs using 
~30X coverage WGS data from the 2504 unrelated samples in the 1000 Genomes Project (ftp://ftp-
trace.ncbi.nlm.nih.gov/1000genomes/ftp/1000G_2504_high_coverage/). This analysis revealed that 183/400 
calls were present at >0.05 VAFs in more than five individuals and likely represent systematic false-positive calls 
or germline variants. Indeed, 17/183 were germline, 153/183 were false positives, and 13/183 require addtional 
data to classify (i.e., not enough data [NED] Fig. 3). This panel of normals (PON) filter provided discriminative 
power to detect false-positive calls that likely arise from systematic technical errors encountered during Illumina 
sequencing and/or read misalignments in certain genomic contexts across the VAF spectrum. For example, we 
found instances where sequencing errors occurred within short tandem repeats (e.g., an A>T at 
chrX:150,725,216 in the sequence of 5’-CTC[A>T]CTCTCTCTCT; also see below). Given its importance, we 
calculated the PON mask across the entire human genome and have made these data available to the scientific 
community (https://bsmn.synapse.org). 

Next, we searched for alternate reads in sequencing data derived from additional brain regions of the 
common reference sample. These datasets consisted of 75-240X WGS data derived from the cerebellum, 
neuronal and non-neuronal cell fractions of the dorsolateral prefrontal cortex (DLPFC), dura matter, and dural 
fibroblasts. Genotyping the 400 candidate variants using high stringency mapping quality (q30) and base quality 
(Q30) sequencing reads revealed consistent support for both germline SNPs and bona fide mosaic SNVs 
assignments across multiple datasets (Fig. 3). Namely, all the germline and 35/43 validated somatic SNVs were 
present at >0.01 VAFs in at least three replicate datasets, which is consistent with previous studies17. However, 
we observed that 9/12 false-positive calls with substantial read support (>=5) and 12/18 false-positive calls with 
a VAF >0.02 passed the filtering criteria, but likely arose from systematic sequencing errors. Thus, sequencing 
multiple brain regions and different tissues from the common reference sample is powered to confirm bona fide 
mosaic SNV calls, but does not replace the requirement of using the PON filter to remove systematic false-
positive calls.  
Best practices for calling mosaic SNVs 

Consolidation of the above validation approaches led to the identification of 43 bona fide somatic SNVs. We 
next sought to derive a unified set of best practices to call somatic SNVs in WGS data. We found the input 
“discovery” call set has a significant impact on final sensitivity and determined that a GATK ploidy option of 50 
for the 250X coverage WGS replicate 6 dataset, which corresponds to approximately five sequencing reads per 
haplotype, generally allowed the best approach to identify validated mosaic SNVs (Figs. 4d and S9). We applied 
a number of filters to remove false-positive calls (see below). Although the filters were effective, integrating a 
machine learning approach that unifies multiple read and genomic features32 into the best practices framework 
resulted in the highest accuracy call sets (Fig. S9). 

Based on the above data, the BSMN has the following recommendations for calling somatic SNVs from WGS 
data derived from non-cancerous cells (Fig. 4a, see Methods): (i) call variants with GATK using a ploidy setting 
that corresponds to 20% of the overall sequencing coverage (e.g., a ploidy value of 50 for 250X WGS coverage); 
(ii) eliminate inaccessible genomic regions using the 1000 Genomes Strict Mask; (iii) discard germline variants 
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that have a population allele frequency of >0.001 (e.g., by comparing the candidate mosaic SNV calls to 
established catalogues of population variations such as the Genome Aggregation Database33; (iv) eliminate calls 
having ~0.5 VAFs by binomial test significance with a p-value cutoff above 10-6; (v) carefully scrutinize calls in 
genomic regions exhibiting copy number gains and other structural variants; (vi) mandate candidate mosaic 
SNVs have at least five independent non-duplicated supporting reads that have minimum values of 20 for 
mapping and base quality; (vii) identify and eliminate false-positive calls using the PON filter based on the data 
from the 1000 Genomes Project; (viii) filter calls using available machine-learning algorithms (e.g., 
MosaicForecast32); (ix) optionally interrogate calls by applying filters that identify forward-reverse read 
imbalances and/or haplotype information (e.g., 10X Genomics linked-read haplotype datasets); and (x) optionally 
validate candidate mosaic SNVs using additional wet-bench experimental approaches (e.g., PCR amplicon-
based sequencing and/or ddPCR). This best practices workflow is freely available at: 
https://github.com/bsmn/bsmn-pipeline. 

Applying the first seven steps of this best practices workflow to 250X WGS replicate 6 data from the common 
DFPLC brain sample resulted in the identification of 40 candidate mosaic SNVs with >0.025 VAFs; 34 of these 
SNVs also were present in our original validation set. Two additional SNVs, which are absent from the set of 43 
validated mosaic SNVs, also are likely true variants (discussed below). As an additional benchmarking metric, 
we used the best practices workflow to detect simulated SNVs in the DNA mixing experiment; however, because 
the simulated mosaic variants actually represent germline SNPs, we omitted the PON filter for this analysis. The 
sensitivity to detect simulated SNVs across the entire genome at VAFs ranging from ~0.02 to ~0.25 was ~65%  
(Fig. 4b), but increased to ~90% when we only considered simulated SNVs present in the accessible portion of 
the genome. The latter estimate is comparable to what we observed for a subset of 35 validated mosaic SNVs 
with >0.02 VAF (34 validated out of 35 [~97%]).   
Using somatic SNVs to recreate cell lineage trees  

 We next asked whether the identified mosaic SNVs could be used to infer developmental cell lineage trees. 
We first examined whether the union set of 49 SNVs identified in our validation call set and by the best practices 
workflow were shared among the twelve NeuN+ neuron single cell datasets. One neuron (Fig. S10, cell E2) was 
excluded from this analysis, as it lacked evidence for any of the 49 SNVs, perhaps because of inefficient whole 
genome DNA amplification. The VAFs of the 49 SNVs also were estimated from the following WGS datasets: 
DLPFC (4 samples), NeuN+ (2 datasets) and NeuN- (1 dataset) DLPFC cell fractions, cerebellum (1 dataset), 
dura mater (1 dataset), and dural fibroblasts (2 datasets). Hierarchical clustering using the single cell genotype 
and SNV VAF data allowed the reconstruction of a cell lineage tree (Fig. 4c; see Methods). Two lineages (L1 
and L2) were clearly separable by diagnostic mosaic SNVs in the eleven single cells (Figs. 4c and S10; compare 
SNVs 1-4, which define the L1 lineage, with SNV10 and SNV11, which define the L2 lineage). Moreover, a 
subset of SNVs could be used to infer L1 (e.g., SNV5, SNV6, SNV7, etc.) or L2 (e.g., SNV12, SNV14, SNV18, 
etc.) sub-lineages. Notably, the L1 and L2 lineages were evident in ectodermally-derived brain tissue, 
ectodermally- and mesodermally-derived dura mater, and mesodermally-derived dural fibroblasts, suggesting 
the L1 and L2 lineages originated prior to gastrulation and diverged during early embryonic development, 
possibly after the first post-zygotic cleavage. 

We next tested whether we could discriminate the presumed sister L1 and L2 lineages without relying upon 
the use of single cell sequencing data. We reasoned that frequencies of SNVs defining the L1 and L2 lineages 
would covary across DNA samples derived from different tissues of the common reference sample. For example, 
if the fraction of cells from the L1 lineage predominates in one tissue sample, we should observe a corresponding 
decrease in the fraction of cells from the L2 lineage in that tissue sample and vice versa. Moreover, the sum of 
allelic frequencies of SNVs defining the L1 and L2 lineages should approach 0.5 VAF (which corresponds to 
total cell frequency of 100%). We compared the VAFs of all 49 mosaic SNV pairs in nine brain region and two 
dural fibroblast samples sequenced to at least 75X coverage and then calculated how well the VAF sums of 
each SNV pair matches 0.5 across the WGS bulk samples (see Methods). The eight best scoring SNV pairs 
consisted of a SNV (SNVs 1-4) from the L1 lineage and a SNV from L2 lineage (SNV10 and SNV11; Fig. S11). 
Although the VAFs of SNVs defining the L1 and L2 lineages differed among tissue samples, their sums 
consistently approached 0.5, which correspond to a cell fraction value of ~100% (Figs. 4c and 4d). Using a 
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similar strategy, we also were able to identify anti-correlated mosaic SNV VAFs that defined L1 and L2 sub-
lineages that likely arose later in development (Fig. S11). Thus, this analysis suggested the possibility of 
discovering and analyzing mosaic SNVs across multiple bulk tissues to reconstruct early developmental cell 
lineages. 

The recreation of cell lineage trees served as an independent means to gain support for bona fide mosaic 
SNV calls. For example, a somatic SNV defining a L1 lineage sub-branch (SNV6: chr7:112,461,481 G>T) was 
not present in our call set of 43 validated SNVs (even though it “passed” the Chromium 10X linked-read haplotype 
test) because it had a very low VAF (<0.0002) in PCR amplicon-based sequencing experiments. However, SNV6 
exhibited a consistent VAF across multiple brain datasets and no apparent alignment or sequencing artifacts 
surround the site. In addition, and consistent with the reconstructed lineage tree (Figs. 4c & S10), the sum of 
the SNV5 and SNV6 VAFs for L1 sub-lineages was in general agreement with the VAF of the SNVs defining the 
L1 lineage across samples. Based on these analyses, SNV6 is likely a bona fide mosaic SNV. Using a similar 
strategy, we also concluded that a mosaic SNV defining a L2 sub-lineage (SNV16: chr6: 96,086,198 A>C) that 
was not in our original validation set also is likely is a bona fide somatic SNV (see Methods). Thus, in total, we 
were able to validate 45 somatic mosaic SNVs in the common reference sample. 

Discussion 
The BSMN has described the successful implementation of a coordinated, multi-institutional approach to 

discover somatic SNVs in a neurotypical brain sample. These efforts led to the discovery of a catalog of high-
confidence mosaic SNVs that are present at >0.01 VAFs at ~65% detection sensitivity; 42/43 validated somatic 
SNVs present at >0.02 VAFs in at least one WGS replicate. When adjusted for discovery sensitivity, this number 
of somatic SNVs is consistent with previous estimates that ~1.3 SNVs arise per cell division per cell during early 
development17.  

A  major factor currently affecting the sensitivity of our approach (towards discovering mosaic variants at a 
>0.02 VAF) is the necessity of restricting variant calling to the portion of the genome that can be assessed using 
short-read DNA sequencing technologies. The refinement of single-molecule long-read sequencing approaches 
(e.g., Pacific Biosciences and Oxford Nanopore technologies) should enable SNV calling in currently 
inaccessible genomic regions; however, the sequence depth required for mosaic SNV discovery currently make 
the application of these approaches prohibitively expensive.   

The use of orthogonal approaches to interrogate somatic SNV calls was instrumental in our validation 
analyses. In general, these approaches (e.g., PCR amplicon-based sequencing, Chromium 10X-linked read 
sequencing, the analysis of single cell sequencing datasets, and ddPCR) were effective at identifying false-
positive calls and providing validation support for bona fide somatic SNVs, but likely are not suitable for genome 
wide de novo mosaic SNVs discovery. Moreover, each approach has limitations. For example, PCR amplicon-
based sequencing initially led to the mis-assignment of a small number of bona fide somatic SNV calls as false 
positives. Similarly, the Chromium 10X linked-read and single cell sequencing data filters generally were only 
effective in supporting a small number of somatic SNV calls present at higher VAFs. Finally, although ddPCR 
proved to be a highly reliable validation approach, the effort and cost required for developing robust assays for 
each individual predicted mosaic SNV only allowed it to be applied to assess a small number of variants. It is 
noteworthy that distinguishing somatic SNVs present at low VAFs from false-positive calls (e.g., sequencing 
artifacts or calls arising from read misalignment errors) remains a formidable challenge. 

Our analysis provided tantalizing suggestive evidence that the use of somatic SNVs discovered in bulk WGS 
sequencing data may ultimately provide a cost-effective approach to reconstruct early embryonic cell lineage 
trees when compared to more expensive single cell sequencing and clonal analysis approaches. However, 
because we only analyzed a limited number of bulk DNA samples from a single individual, additional data will 
be needed to explore the potential advantages and limitations of tracing cell lineages from mosaic SNVs 
discovered in bulk WGS datasets.   

In sum, the BSMN has developed an efficient approach to identify and validate somatic SNVs in the brain of 
a single neurotypical individual that should serve as a guide to ultimately assess the contributions of somatic 
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SNVs to neuropsychiatric diseases. This study generated ~7 Tb genomic sequencing data that have been 
deposited into the NIMH Data Archive, which is freely available to the greater research community.  
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Methods 
Data generation 
Mixing Experiment 

Lymphoblastoid cell lines (LCLs) of four grandparents from CEPH/Utah pedigree 1463 were ordered from 
the Coriell Institute (catalog numbers: GM12889, GM12890, GM12891, GM12892). Genomic DNAs (gDNA) from 
the cells were prepared, mixed in different proportions (as indicated in Fig. 1a), and subjected to WGS. Briefly, 
DNA libraries were prepared from 1µg of mixed gDNA per sample using the Illumina PCR-free TruSeq DNA 
Library Prep kit according to the protocol provided by the manufacturer. The constructed libraries were quantified 
using the KAPA Library Quantification Kit and real-time PCR. Then, 150 bp paired-end reads were generated 
using the Illumina HiSeq X platform. The sequencing experiments were designed to yield ~200X coverage on 
each samples and were carried out at a GeneWizM facility (South Plainfield, NJ). 
 
Sample processing (Lieber Institute, contributed by Daniel Weinberger) 

The samples from the common reference brain numbered 5154 were dissected from deep frozen tissue from 
various brain regions in a standardized routine that uses a dental drill to minimize tissue injury and RNA 
degradation. To ensure that all distributed samples came from a singular source, the brain samples were first 
uniformly homogenized and then aliquoted for distribution to all but one BSMN node (Yale University and Institut 
de Biologia Evolutiva), which received a piece of frozen tissue. The disbursed tissue and related data were de-
identified, delinked, and coded prior to sharing with the BSMN nodes. To obtain viable fibroblasts we collected 
a biopsy from the meninges (dura mater) of the same individual, suspended it in appropriate media (including 
DMEM (Gibco), HiFBS (Gibco), GlutaMAX (Gibco), Antibiotic/Antimycotic Solution (Gibco), MEM NEAA (Gibco), 
2 βME (Gibco)), and then cultured it into a fibroblast line. The resultant fibroblast cell lines were serially expanded 
in T-25 and T-75 tissue culture flasks, harvested, re-suspended in media as a large homogenous culture, and 
subsequently were aliquoted into smaller tubes for storage/redistribution. 

 
Whole Exome Sequencing Replicate 01 (University of Michigan, contributed by Sarah Emery and Yifan Wang) 
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Genomic DNA was extracted from 5154 brain tissue using the MagAttract HMW DNA Kit (Qiagen, 
Germantown, MD). The length of gDNA was determined by either standard gel electrophoresis in 0.4% agarose 
or pulse field gel electrophoresis in 1% agarose and 0.5 x TBE for 16 hours at 6 V/cm and a 1200 angle with an 
initial switch time of one second and a final switch time of six seconds. Whole exome sequencing was performed 
on all extracted gDNAs. Duplicate libraries were made for each sample by shearing 75-200ng of gDNA to 350bp. 
Libraries were purified with 0.65x SPRIselect beads (Beckman Coulter) and quantitated using a Qubit™ dsDNA 
HS Assay Kit (Thermo Fisher Scientific, Carlsbad, CA). A 50ng aliquot of sheared DNA was saved for later use 
and the remaining 400-800ng was used for exome target enrichment. Target enrichment was performed using 
SeqCap EZ Exome Probes v3.0 (Roche Sequencing Solutions, Pleasanton, CA) according to the protocol 
provided by the manufacturer with a 72-hour incubation for hybridization and 12-16 cycles of post-capture 
ligation-mediated PCR (LM-PCR) to amplify the captured DNA. The quantity of the captured DNA was measured 
using a Qubit™ dsDNA HS Assay Kit and target enrichment was determined by calculating the abundance of 
control targets in post-capture libraries relative to the abundance of these targets in the pre-capture libraries as 
outlined in SeqCap_EZ_UGuide_v5.4 (Roche Sequencing Solutions). Each library was sequenced on an 
individual HiSeq lane on the HiSeq X series. Library QC and sequencing was performed at Novogene 
Corporation (Davis, CA). 

 
Whole Exome Sequencing Replicate 02 (University of California San Diego, contributed by Laurel Ball) 

Pulverized brain cortex (0.98g) and fibroblasts were provided by the Lieber Institute for Brain Development, 
(Baltimore, MD). Fibroblasts were cultured in fibroblast culture media containing MEM (Gibco), 20% FBS (Gibco), 
and 1X Pen/Strep (Gibco). Confluent fibroblasts were harvested and gDNA was extracted from pulverized brain 
and fibroblast samples using Qiagen Maxiprep kits according to the protocols provided by the 
manufacturer. Genomic DNA samples were prepared for whole exome sequencing using the Agilent SureSelect 
XT Human All Exon v.5 kit. Then, 125 bp paired-end reads (median insert size ~210 bp) were generated using 
the Illumina HiSeq X 2500 platform. The sequencing experiments were designed to yield three datasets of ~100X 
coverage on each sample, sequencing completed at the New York Genome Center, NY.   

 
Whole Genome Sequencing Replicate 03 (Yale University and Institut de Biologia Evolutiva, contributed by 
Irene Lobon)  

A frozen piece of DLPFC from the 5154 common reference brain sample was provided by the Lieber Institute 
for Brain Development (Baltimore, MD). A scalpel was used to scrape off its surface and subdivide it into smaller 
pieces. Genomic DNA was extracted using the DNeasy Blood and Tissue kit (QIAGEN). The NEBNext Ultra II 
DNA Library Prep Kit for Illumina was used for library preparation. Then, 125 bp paired-end reads were generated 
using the Illumina HiSeq4000 platform. The sequencing experiments were designed to yield 90X coverage. 
Sequencing was carried out by Macrogen. 
 
Whole Genome Sequencing Replicate 04 (Lieber Institute University, contributed by Rujuta Narurkar and Joo 
Heon Shin) 

Nuclei were isolated from pulverized postmortem brain tissue (0.7g) using sucrose gradient centrifugation 
(4°C, 25 000 rpm, 1h) and incubated with anti-NeuN-488 antibody (Millipore MAB377X, 1:1000) in a phosphate 
buffered saline (PBS) solution containing bovine serum albumin (BSA at 0.1%). Nuclei were sorted into NeuN+ 
and NeuN- fractions by FACS (BD FACSAriaTMIII). Fibroblasts were cultured in fibroblast culture media (DMEM 
high glucose, FBS, L-glutamine, N.E. amino acids, Pen/Strep; all Invitrogen) and confluent fibroblasts were 
harvested for gDNA isolation. DNA was extracted from: (i) 0.3g post mortem bulk brain tissue; (ii) NeuN+ and 
NeuN- nuclear fractions; and (iii) fibroblast cell lines using the DNeasy Blood and Tissue Kit (QIAGEN) that 
included an RNAse A treatment step (QIAGEN) according to protocols provided by the manufacturer. For all 
samples, the libraries were prepared using the Illumina TruSeq DNA PCR-Free Library Prep Protocol with 1.5µg 
of DNA for NeuN+ and NeuN- nuclear fractions and 3 µg of DNA for bulk cortex and fibroblast samples. Then, 
150 bp paired-end reads were generated using the Illumina HiSeq X platform. The sequencing experiments were 
designed to yield 90X coverage. Library construction and sequencing were conducted at Psomagen, previously 
known as Macrogen (Rockville, MD, USA).  
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Whole Genome Sequencing Replicate 05 (Harvard University, contributed by Javier Ganz) 

Pulverized brain tissue was provided by Lieber Institute for Brain Development (Baltimore, MD). DNA was 
isolated from bulk brain tissue using lysis buffer from the QIAamp DNA Mini kit (Qiagen) followed by phenol 
chloroform extraction and isopropanol cleanup. DNA was then processed at Macrogen using the TruSeq DNA 
PCR-Free library preparation (Illumina) followed by a minimum of 30X sequencing of seven separate libraries 
on the Illumina HiSeq X Ten, for a total minimum coverage of 210X. 
 
Whole Genome Sequencing Replicate 06 (Yale University, contributed by Liana Fasching) 

Pulverized brain cortex (1.02g) and fibroblasts were provided by the Lieber Institute for Brain Development 
(Baltimore, MD). Nuclei were isolated from pulverized postmortem brain tissue (0.7g) using sucrose gradient 
centrifugation (4°C, 25 000 rpm, 1h) and incubated with anti-NeuN-488 antibody (Millipore MAB377X, 1:1000) 
in PBS and BSA. Nuclei were sorted into NeuN+ and NeuN- fractions by FACS (BD FACSAriaTM III). Fibroblasts 
were cultured in fibroblast culture media (DMEM high glucose, FBS, L-glutamine, N.E. amino acids, Pen/Strep; 
all Invitrogen) and confluent fibroblasts were harvested for gDNA isolation. DNA was extracted from: (i) 0.3g post 
mortem bulk brain tissue; (ii) NeuN+ and NeuN- nuclear fractions; and (iii) fibroblast cell lines using the DNeasy 
Blood and Tissue Kit (QIAGEN) that included an RNAse A treatment step (QIAGEN) according to protocols 
provided by the manufacturer. Illumina Truseq DNA PCR-free (350bp insert) libraries were prepared for all 
samples using 1.5 µg of DNA for NeuN+ and NeuN- nuclear fractions and 3 µg of DNA for bulk cortex and 
fibroblasts. Then, 150bp paired-end reads were generated using the Illumina platform. The experiments were 
designed to yield  30X f sequence coverage for NeuN+ and NeuN- nuclear fractions and 210X sequence 
coverage for bulk cortex and fibroblast samples. Library construction and sequencing were conducted at 
Macrogen (Rockville, MD, USA). 
 
Whole Genome Sequencing of single cells (Yale University, contributed by Liana Fasching, Livia Tomasini 
and Bo Zhou) 

Nuclei were isolated from fresh frozen pulverized postmortem brain tissue using sucrose gradient 
centrifugation (4°C, 25 000 rpm, 1h) and incubated with anti-NeuN-488 antibody (Millipore MAB377X, 1:1000) 
in PBS and BSA. Ninety-five NeuN+ single nuclei were sorted into a 96-well plate by FACS (BD FACSAriaTM III). 
Whole genome amplification was performed by multiple displacement amplification (MDA) using the REPLI-g 
Single Cell Kit (QIAGEN) according to protocols provided by the manufacturer. After amplification, each genomic 
DNA was purified using the DNeasy Blood & Tissue Kit (QIAGEN). Quality control was performed using a 
multiplex PCR for four arbitrary loci from different human chromosomes12. Amplified single nuclei were 
subsequently excluded if less than four loci were amplified. Sixty seven out of ninety-five amplified nuclei (70.5%) 
passed the 4-locus multiplex PCR quality control. Low coverage sequencing was performed as a second quality 
control to assess locus dropout rate. Paired-end barcoded WGS libraries were prepared for the 67 MDA reactions 
and sequenced on one lane of HiSeq 4000 (2X100 bp). Twelve out of the sixty-seven MDA reactions (18%) were 
selected for further sequencing. Illumina Truseq DNA PCR-free libraries were prepared for seven of them and 
sequence on a HiSeq X (2X150 bp) at 30X coverage. 

Samples of MDA amplified DNA from five cells was size selected for fragments >10 kb on the BluePippin 
instrument (Sage Science, Beverly, MA, USA) using the  S1 Maker 10 kb High Pass protocol provided by the 
manufacturer and then diluted to 1 ng/µl and used as input for the Chromium reagent delivery system34,35 from 
10x Genomics (Pleasanton, CA, USA), where high molecular weight (HMW) DNA fragments are partitioned into 
>1 million droplets, uniquely barcoded (16 bp) within each droplet, and subjected to random priming and 
isothermal amplification following standard manufacturer’s protocol. Afterwards, the emulsion was broken, and 
the barcoded DNA molecules were released and converted to a Chromium 10X linked-read library in which each 
library molecule retains its “HMW fragment barcode”. Read-pairs generated in this manner (i.e., linked-reads) 
that come from the same HMW DNA fragment can be identified by their “HMW fragment barcode” and 
subsequently used to phase variants onto megabase scale haplotypes. The final libraries (8 cycles of PCR 
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amplification) were diluted to 5 nM and sent to Macrogen (Rockville, MD, USA) for sequencing (2x151 bp) on 
the Illumina HiSeq X. 
 
Chromium Linked-Read sequencing (University of Michigan, contributed by Sarah Emery and Yifan Wang) 

Pulverized, frozen brain tissue and dural fibroblasts (FIBRO) from a deceased, neurotypical, male individual 
(5154) were received from the Lieber Institute for Brain Development (Baltimore, MD). Dural fibroblast were 
cultured in DMEM (Gibco/ Life Technologies) supplemented with 10% FBS (Gibco/Life Technologies), 2% 
Glutamax (Gibco/ Life Technologies), and 1% Antibiotic, Antimycotic (Gibco/Life Technologies). Cells were 
cultured for 3-10 weeks and passaged when they reached 85%-95% confluence. 

Genomic DNA (gDNA) was extracted from 5154 brain tissue and dural fibroblasts using the MagAttract HMW 
DNA Kit (Qiagen, Germantown, MD). The length of gDNA was determined by either standard gel electrophoresis 
in 0.4% agarose or pulse field gel electrophoresis in 1% agarose and 0.5 x TBE for 16 hours at 6 V/cm and a 
1200 angle with an initial switch time 1 second and a final switch time-6 seconds. For 5154 brain gDNA, 5154 
FIBRO, an aliquot containing 1-5 µg of gDNA was sent to HudsonAlpha Discovery (Huntsville, AL) for linked-
read sequencing using 10x Genomics technology (Pleasanton, CA). Long Ranger v2.2 (10x Genomics) was 
used to align reads and then call and phase SNPs to obtain haplotype information for each read. 
 
Data uniform processing at Amazon Web Services (Mayo Institute, contributed by Taejeong Bae)  

All sequencing data generated by each BSMN node were uploaded to the shared S3 bucket of the Amazon 
Web Services (AWS). We uniformly processed the data in the AWS system to prepare aligned bam files. We 
implemented a mapping workflow similar to the best practices protocol suggested by GATK. The original FASTQ 
files, or those obtained from the conversion of BAM files, were split by flowcell lanes using an in-house awk script 
so that reads in each lane form the same read group in alignment. For each sample, the reads from FASTQ files 
were aligned to the human reference genome GRCh37d5 (ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz) 
using bwa (version 3.7.16a), sorted per each read group, and merged into a single BAM file with sambamba 
(version 0.6.7). The merged BAM files were marked for duplicate reads using PICARD (v2.12.1). Then, we 
performed indel realignment and base quality recalibration using GATK (v3.7-0), resulting in the final uniformed 
processed BAM files. This mapping workflow was installed and run in an AWS cluster prepared by AWS 
ParallelCluster (https://github.com/aws/aws-parallelcluster). 
 
Calling variants in the reference brain 
Method 1 (University of California in San Diego, contributed by Xiaoxu Yang) 

Both tissue-specific and tissue-shared mosaic variants were called from the WES sequencing data. Brain- 
and fibroblast- specific variants were called using Mutect2 (GATK3.8)25 and Strelka227; the bam files from the 
brain sample (combined and non-combined from independent sequencing libraries) and fibroblast sample were 
treated as “tumor-normal” and “normal-tumor” pairs separately and cross-compared between each other. 
Variants called by both callers were listed. Mosaic variants shared between the brain and fibroblast samples 
were called using the single mode of MosaicHunter36 by either combing all brain replicates or calling each 
separate sample. Variants that passed all the MosaicHunter filters also were listed. Mosaic candidates from the 
combined lists were further filtered using the following criteria: (i) the variant had more than 3 reads for the 
alternative allele; (ii) the variant was not present in UCSC repeat masker or segmental duplications; (iii) the 
variant was at least 2bp away from a homopolymeric tract; and (iv) the variant exhibited a gnomAD allele 
frequency lower than 0.05. Variants that exist in the 1000 genome project (phase 3) also were excluded from 
the analysis. Variants from both exome data sources were tested and a combination of tissue-specific mosaic 
variants and tissue-shared mosaic variants were collected and the credible interval of VAFs were calculated 
using a Bayesian based method described previously37. 
 
Method 2 (Yale University and Institut de Biologia Evolutiva, contributed by Irene Lobon) 
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Somatic SNVs were called for each single sample using VarScan 238 with relaxed parameters (–min-
coverage 1 –min-reads2 1 –p-value 1 and –min-var-freq 0.000001) to increase sensitivity. Calls were excluded 
if they overlapped the following somatic non-callable regions: (i) the 1000 Genomes strict mask non-pass 
positions; (ii) the WGAC segmental duplications track; (iii) the dbSNP common database; or (iv) positions with a 
mappability <1 for the corresponding read length. A Fisher exact test was used to filter out false-positive calls 
caused by random sequencing errors and a binomial test across the samples was used to remove germline 
heterozygous variants. Regions with higher coverage were determined using a Chi-squared test. Strand biased 
candidates were identified with a Poisson and a Fisher exact test. Variants within 5 bp of indels, near 
homopolymers, or within 300 bp of each other were also filtered during the analysis. Similarly, calls with a biased 
position in the reads for one of the alleles were also excluded from the analysis. Additionally, somatic SNVs were 
called with GATK 3.825 Haplotype Caller (-ploidy 4) and filtered with the somatic non-callable, sequencing error, 
and binomial tests. The final call set consisted of mosaic SNVs passing all VarScan2 filters in at least three 
samples and all Haplotype Caller filters in at least one sample.  
 
Method 3 (Harvard University, contributed by Alon Galor and Max Sherman) 

To generate a list of high-confidence brain somatic variants for the common experiment sample, we 
considered three high-quality, high-depth Mixed-Brain samples generated from the Replicate 6, Replicate 4, and 
Replicate 3 datasets. We produced putative somatic variant calls for each of these three samples with Mutect2 
(v2.3.5)26, using the highest-depth common experiment fibroblast sample available, generated by Replicate 6, 
as a matched normal sample. Only variants flagged as “PASS” were retained for further analysis. We then 
leveraged Mutect2 to generate a Panel of Normals, using 75 200X WGS Brain samples. To construct this panel, 
we ran Mutect2 in its tumor-only mode on each of these 75 samples, making use of non-default parameters to 
produce more lenient calls. If a putative call from the common experiment sample was present at greater than a 
1% allele fraction in two or more of the Panel of Normals samples, it was filtered out. Subsequently, we removed 
putative calls coinciding with Mutect2 tumor-only calls (again, using the same non-default parameters described 
above) of the remaining Mixed-Brain fibroblast samples. Next, we excluded putative somatic variants in the 
1000G, ExAC, and ESP5600 common variant databases, as well as those located in inaccessible regions, 
according to criteria outlined by the 1000 Genome Project Strict Mask. We also removed putative somatic 
variants in indel, copy number variant, segmental duplication, and structural variation genomic regions. To 
generate indel calls, we employed the GATK Best Practices Germline Variant Calling Workflow. Variants in 
structural variant regions were defined as those in a 200bp region, centered at the SNV, where the number of 
clipped reads was in the ≥ 95th percentile of 200bp regions genome-wide. Variants were deemed to lie in a copy 
number variant or segmental duplication region if a 200bp region, centered at the SNV, had GC-normalized 
depth in the ≥ 95th percentile of 200bp regions genome-wide. 

In order to prioritize variants, we further tiered them using evidence available for the calls in additional bulk 
brain tissue samples and single brain cells. In particular, we annotated putative SNVs observed on exactly one 
haplotype in phased bulk tissue, deemed significantly present in other Mixed-Brain samples by a joint-genotyping 
likelihood method, or present in single cells, as determined by an in-house method for analyzing single cells for 
evidence of mosaic events. 
 
Method 4 (Kennedy Krieger Institute, contributed by Jeremy Thorpe) 

Candidate somatic variants were identified leveraging high-depth whole genome sequencing of four brain 
prefrontal cortex and cultured dural fibroblast samples. Paired brain-fibroblast variant calling was performed with 
MuTect2 (v4.0.1.0)26, Strelka2 (v2.8.4)27, and MosaicHunter (v1.0)36. Additionally, single brain samples were 
analyzed with the GATK (v3.8-0) HaplotypeCaller with ploidy 5 parameter. Germline InDels and CNVs were 
called with the GATK Best Practices Germline Variant Calling Workflow and CNVkit (v1.1), respectively. 

Quality filters were applied to mosaic SNV candidates. Variants were  excluded if they: (1) occurred in error-
prone genomic intervals, as defined by the 1000 Genomes Strict Mask and/or UCSC RepeatMasker; (2) 
clustered within 1 kbp; (3) were within the 50 bp adjacent to InDels; (4) had a read depth >2 standard deviations 
of mean coverage; (5) were likely germline events occurring as GnomAD single nucleotide polymorphisms >0.1% 
allele frequency; (6) occurred within a CNV; (7) exhibited a read strand bias using binomial test; (8) were 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2020. ; https://doi.org/10.1101/2020.10.10.332213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.10.332213
http://creativecommons.org/licenses/by/4.0/


   

 

   
 

16 

heterozygous sites using binomial test; (9) failed a Fisher’s exact test for allele strand bias; (10) had minor allele 
frequency <0.01 to exclude likely false-positive, low frequency events. Following removal of low quality sites, 
candidates were tiered using additional bulk and single cell datasets. 

We tiered candidates by leveraging biological replicates, bulk 10X sequencing, and single cell data. 
Candidates were tiered on supporting evidence of the mosaic allele in multiple independent replicates, single 
cell allele support, and concordance of mosaic alleles within a single haplotype by haplotype phasing of 10X 
data. 
 
Method 5 (Mayo Clinic, contributed by Taejeong Bae) 

For calling somatic variants, we applied a single sample approach using the GATK (3.7-0) Haplotype Caller 
to each high-depth WGS dataset. To increase sensitivity towards calling somatic variants present at <10% 
variant allele frequencies, we used ploidy options of 2 to 10 for GATK Haplotype Caller. We took only “PASS” 
calls from each raw call set. Those “PASS” SNVs were filtered out using common variant databases, such as 
the 1000 Genomes, ExAC, GnomAD, ESP5600, and Kaviar to exclude known germline variants. Then, we 
filtered out the SNV sites residing in the genomic region of non-P bases of the 1000 Genomes Project Strict 
Accessibility Mask to filter out calls in problematic genomic regions. Remaining heterozygous germline variants 
were excluded by applying binomial test (P < 0.00001), which identifies variants with 0.50 VAFs given the 
numbers of total reads and supporting reads. For checking strand bias of each candidate site, we used binomial 
test (P < 0.05) for evenness of the counts of both strand reads and a Fisher’s Exact test (P < 0.05) to identify 
imbalance of strand ratios between reference (REF) and alternative (ALT) bases. We filtered out the sites having 
either bias. We excluded the sites having more than two alleles (multi-allelic sites). Finally, the germline CNV 
status for the +/- 1kb region of each candidate site was checked using the genotype function of CNVnator. We 
removed the sites with >2.5 estimated copy number as likely duplicated regions. 
 
Method 6 (University of Michigan, contributed by Yifan Wang) 

Candidate variants from paired brain and dural fibroblast samples were called using MuTect and Strelka with 
the default parameters. At the same time, candidate variants from single brain samples were called using the 
GATK Haplotype Caller with parameter of ploidy set to 5. Candidate mosaic SNV sites then were filtered out 
using multiple quality filters. We first filtered out variants that overlapped with repetitive regions or low mappability 
regions, including regions covered by UCSC RepeatMasker simple repeats, Segmental Duplications, Simple 
Repeat tracks, regions not covered by 1000 Genomes Project Strict Accessibility Mask, as well as any variants 
not within +/- 3 standard deviations of mean sequencing coverage. We excluded common variants in GnomAD 
with a population allele frequency larger than 0.1%. During the process of counting alleles at candidate positions, 
reads with mapping quality scores lower than the 90 percentile of control sites (sites with high confidence), with 
more than 3% mismatches, as well as candidate sites exhibiting a base quality score lower than 20 were 
excluded from further analysis. After accounting for different alleles at candidate positions, we excluded sites 
with a candidate allele frequency larger than 0.01 in the control sample NA12878 (from the Genome in a Bottle 
Project). We applied a Fisher’s Exact test to exclude the sites whose alternative alleles are enriched on one 
strand compared to the other. We then filtered out sites with a known indel within +/- 5 base pairs of the variant. 
In the end, we had an allele frequency cutoff at 0.03 to exclude the extremely low frequency sites.  

After removing the low quality sites, we applied a binomial test with false-discovery protection using the 
Benjamini-Hochberg procedure39 to filter out the heterozygous sites. We also used the haplotype information 
from the 10X linked-read common reference brain sequencing dataset to further filter out false-positive sites. We 
additionally removed candidate sites located within 100 bp of each other. 
 
Validation with targeted PCR amplicon-based sequencing approaches 

Different PCR amplicon-based sequencing approaches were used to validate mosaic SNV candidates 
identified using the different computational pipelines. Each of the validation procedures is described below. 
 
Amplicon 1 (Yale University, contributed by Liana Fasching and Simone Tomasi) 
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We validated the called SNVs by PCR amplicon-seq using following samples: (i) reference tissue - pulverized 
cortex DNA; (ii) reference tissue – fibroblast DNA; and (iii) control lymphoblastoid cell line DNA - NA12878. We 
determined the genomic location of each SNV using the Genome Browser. We designed each primer pair by 
selecting an 800 nucleotide long DNA template surrounding the SNV (400 nucleotide up- and 399 nucleotides 
down-stream of each SNV) using Primer340. The specificity of primers was confirmed by UCSC in silico PCR 
(http://genome.ucsc.edu/cgi-bin/hgPcr) (Table S5). 

The PCR amplification was performed using the Phusion High-Fidelity DNA polymerase (ThermoFisher). 
The optimal annealing temperature was predicted using the Tm calculator tool provided by the ThermoFisher 
website. The presence and size of each amplicon was confirmed by gel electrophoresis (2% agarose gel). In 
samples where we detected multiple PCR products, DNA bands with the correct amplicon sizes were extracted 
via gel extraction and purification using 2% agarose precast gels (E-Gel EX, Invitrogen) and gel imager (E-Gel 
Safe Imager connected to E-Gel iBase, Invitrogen), according to the recommendations provided by the 
manufacturer. Amplified DNA fragments were purified using the QIAquick PCR Purification Kit (Qiagen). 
Samples were multiplexed and sequenced under following conditions: MiSeq paired-end, 300 bp, 3 
samples/lane. 
 
Amplicon 2 (University of Michigan, contributed by Sarah Emery and Yifan Wang) 

Putative mosaic SNVs were validated by high throughput sequencing of amplicons that contain the SNV and 
then calculating the relative abundance of reads containing the alternate allele. Primers were designed using 
Primer 3 software40 with 300-400 bp of genomic sequencing surrounding the SNV as the input. Since the read 
length of the amplification product is ~300 bp, we were able to gain an overlapped region between the paired 
reads. With the overlapped regions containing the somatic SNV candidates, we were able to sequence each 
candidate site twice and increase the accuracy of sequencing result by excluding reads with non-concordant 
bases from the pair ended reads at the candidate SNV positions. If possible, SNPs known to be heterozygous 
in our samples were included in the amplified sequence used as input. Primers were tested in silico41 to confirm 
they uniquely target the correct region of the genome. Phusion® High-Fidelity DNA Polymerase (New England 
Biolabs) was used according to instructions provided by the manufacturer for amplification and primers were 
cycled under varying conditions to determine optimal PCR mix and annealing temperature. To generate 
amplicons for sequencing, either NA12878 or gDNA from the 5154 common reference brain tissue was used as 
template. The PCR product was purified with 0.7x SPRIselect beads (Beckman Coulter) and 10% of product was 
visualized on an agarose gel to confirm that only one amplicon of the correct size was present. If the size of the 
amplicon agreed with the size predicted from the primer design, we then sequenced the targeted amplified 
genomic fragment using an Illumina MiSeq sequencer. If the size was incorrect, we designed a second set of 
primers to obtain unique amplification. If none of the primers worked, the candidate was flagged with ‘primer not 
designed’. Protocols and reagents from NEBNext® Ultra™ DNA Library Prep Kit for Illumina® (New England 
Biolabs) were used for end repair, dA-tailing, and to ligate NextFlex adapters (Perkin Elmer, Waltham, MA) onto 
amplicons. After ligation, reactions were purified with 0.7x SPRIselect beads (Beckman Coulter) and PCR 
enrichment of adapter-ligated DNA was performed for 10 cycles using NEBNext® Ultra™ DNA Library Prep Kit 
(New England Biolabs). Amplified libraries were purified with 0.7x SPRIselect beads and sequenced with MiSeq 
Reagent Kit v3, 600 cycle PE on MiSeq sequencer (Illumina, San Diego, CA). 
 
Amplicon 3 (Mount Sinai School of Medicine, Chaggai Rosenbluh) 

We sent all 400 target sites to Paragon Genomics and obtained a CleanPlex Custom NGS Panel allowing 
us to perform two multiplex PCR-based targeted resequencing assays for a total of 382 target sites. Eighteen of 
400 sites were deemed not reliably targetable. The panels were designed using a proprietary primer design 
algorithm (sequences are available upon request) and proprietary background cleaning and molecular barcoding 
technologies to amplify the regions of interest and attach adapters for Illumina sequencing. The panel was 
iteratively optimized in-silico to prior to amplifying DNA from the common sample.  The amplicons ranged in size 
from 250 bp to 425 bp (including the adapter sequences). A single MiSeq run provided ample coverage for all 
successfully targeted sites. 
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Amplicon 4 (Harvard University, contributed by Javier Ganz)  
Targeted validation was attempted on 100 candidate mosaic variants and primers for 98 of those were 

successfully generated using BatchPrimer342. PCR primers were synthesized with flanking Ion Torrent adapters 
P and A. Each primer pair was unique and their sequence served as a barcode for variant identification. Phusion 
HotStart II DNA Polymerase (Thermo)CR was used for DNA amplification over 25 cycles following manufacturer 
guidelines. PCR products were pooled and purified using AMPure XP technology (Agencourt) to be sequenced 
on the Ion Torrent S5 platform (Ion 530 chip). After demultiplexing and trimming, reads were mapped using BWA-
MEM and locally realigned with GATK. Average coverage of mappable reads was 96350X per variant. Mosaic 
fractions were identified using custom scripts based on SAMtools mpileup.  
 
Amplicon 5 (Kennedy Krieger Institute, contributed by Jeremy Thorpe)  

We validated candidate mosaic SNVs by targeted, high coverage amplicon sequencing. PCR primers were 
designed with Primer340 to generate amplicons from 300-500 bp and in silico verified to minimize the possibility 
off-target products. Amplicon sizes and purity were confirmed by PCR followed by agarose gel electrophoresis. 
Amplicons were quantitated, purified, and pooled for each of the NA12878 and 5154 brain tissue samples. NGS 
libraries were prepared using Illumina TruSeq Nano DNA kit and following standard Illumina NGS library 
preparation protocols. Libraries were sequenced with MiSeq Reagent Kit v3, 600 cycle PE on a MiSeq. Following 
demultiplexing and trimming, paired-end reads were merged with FLASH43 and aligned with BWA-MEM to 
hs37d5 human reference genome. The average depth of sequencing was 103335x per candidate. Target 
mosaicism was assessed by SAMtools mpileup and custom scripts. 
 
Amplicon sequencing data analysis pipeline (contributed by Yifan Wang)  

We constructed a framework for uniform processing of PCR amplicon validation data. The PCR amplicon 
paired-end sequencing data was assembled to a single read using PEAR44 with the non-concordant bases 
between the two reads set to N with a base quality of zero. We then aligned the reads to GRCh37d5 using bwa 
mem. Indel realignment was performed using the Genome Analysis Toolkit25. After pre-processing, we applied 
a series of filters to evaluate the putative mosaic SNV calls. We required a minimum of 200 reads covering the 
candidate mosaic SNV prior to making a “call” decision. Sites with fewer than 200 reads covering the candidate 
SNV were assigned the flag of ‘read not enough’. We then compared the allele fractions of the candidate mosaic 
SNV in the amplicon data from common reference brain sample and from NA12878. Since the same mosaic 
SNV event is unlikely to occur in two different individuals, we reasoned that bona fide mosaic SNVs should only 
be present in the brain sample. We applied a hard cutoff that removed any site with a candidate allele fraction 
>0.01 in NA12878 and additionally applied a skellam test to compare the putative mosaic SNV allele frequencies 
in the two samples. Together, these criteria excluded likely false-positive mosaic SNV calls that arise from 
sequencing errors in certain genomic contexts. We additionally established an empirical error model to exclude 
false-positive mosaic SNVs that likely arose during DNA amplification, library preparation, and/or sequence 
processing. We further evaluated PCR amplicon sequencing errors by assessing the mismatch rate (second 
allele frequency) in the overlapping region of the paired-end reads. We then used the 95th percentile of the 
mismatch rate distribution found for each type of base change as the sequencing error cutoff for base changes 
at the candidate positions. Finally, we excluded candidate mosaic SNVs with >0.40 VAFs, as they likely represent 
germline SNPs. 

We performed some additional final checks on the validated mosaic SNV events. First, we tested whether 
there was a positive correlation between the putative mosaic SNV VAFs in the WGS and PCR amplicon-based 
sequencing experiments (Fig. S12). Second, we tested whether there was a positive correlation between the 
ratios of the second highest allele frequency and the third highest allele frequency with the putative somatic SNV 
VAF in the WGS dataset (Fig. S12); the third highest allele frequency did not correlate with the variant allele 
frequency (Fig. S12). 

 
Variant validation using single cells (contributed by Alon Galor and Max Sherman) 

To distinguish a true mosaic variant from a multiple displacement amplification artifact in single cell 
sequencing, we adapted the method of Dong et al.24. First, we augmented their kernel smoothing method to 
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utilize phased genotypes45 as this improves estimation of allelic imbalance at a given locus. Phasing was 
performed on the GATK HaplotypeCaller germline variants from Replicate 6 bulk brain tissue using Eagle46 and 
the 1000 Genomes Phase 3 reference panel47. Second, we determined the optimal kernel size to maximize 
accuracy using PaSD-qc48, which was determined to be 10 kb. Third, we instituted a likelihood ratio test to 
distinguish a first-round amplification artefact from a true mosaic variant; let 𝑓(𝑋; 𝑝)  be the probability of 
observing reads 𝑋 where 𝑝 is the expected proportion of alternate reads. Under the null hypothesis that the reads 
are generated due to amplification artefact, 𝑝 = 0.125 . Under the alternate hypothesis that the reads are 
generated due to a true mosaic variant, 𝑝 = 0.125 + 𝜃  where 𝑝  is the allelic balance estimated by kernel 
smoothing24. Since the models of the two hypotheses are nested,  −2 × (log 𝑓(𝑋; 0.125 + 𝜃)/𝑓(𝑋; 0.125)) ∼ 𝑋67. 
We applied this model at all 400 sites at which we attempted amplicon validation across the 12 deeply sequenced 
single cells to obtain high quality single cell genotypes. Scripts for running this model are available at 
https://github.com/parklab/SCGenotyper_mini. 

 
Variant validation using 10X linked-read data (contributed by Yifan Wang and Jeffrey Kidd)  

We used haplotype information provided by 10X Genomics linked-read sequencing data to eliminate false 
positive mosaic SNV calls and to provide support for bona fide mosaic SNVs. Briefly, the 10X Genomics linked-
read approach is a barcoded short-read sequencing technology, where individual HMW genomic DNA molecules 
(~50 kb) initially are attached to a bead then incorporated into droplets. Within each droplet, the HMW DNA 
fragments are fragmented into small pieces, assigned a unique barcode, and then undergo amplification. The 
resultant DNA libraries from each individual droplet then were subject to standard Illumina short-read sequencing. 
Short reads containing the same barcodes were aligned and re-assembled into larger linked-reads using the 
LongRanger pipeline (https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-long-
ranger). Overlapping individual HMW fragments that shared informative germline SNP alleles were used re-
construct longer, continuous haplotype segments. This results in the assignment of sequencing reads derived 
from the initial HMW fragments to individual haplotypes. Using this information, we identified and removed 
candidate mosaic SNVs that were found on both parental haplotypes, which likely arose from systematic 
sequencing errors. Moreover, the haplotype information could be used to identify candidate mosaic SNVs that 
were represented >90% of the reads on a single parental haplotype and are likely germline SNPs. By comparison, 
bona fide somatic SNVs are detected as a minor allele on a single parental haplotype. Tools for analyzing linked-
read BAMs are available at: https://github.com/KiddLab/hapfilter-10X 
 
Variant validation using ddPCR (contributed by Reenal Pattni) 

We performed ddPCR using the primers and probe listed in Table S6. We initially designed 29 ddPCR assays 
to assess candidate mosaic SNVs present at <3% VAFs and/or near know SVs (Table S3).This initial set 
included: (i) 4 mosaic SNVs at higher VAFs (12%-28% in amplicon sequencing); (ii) 5 mosaic variants at lower 
VAFs (1%-2.5% in amplicon sequencing); (iii) 3 SNVs deemed to be germline SNVs; and (iv) 17 false-positive 
calls (including 6 that were present at <0.5% VAFs). The ddPCR reaction mixture (20 μL) contained 2 μL of bulk 
gDNA or NA12878 (25ng) template, 250 nM of each primer (reference and assay specific pairs), and 250 nM 
TaqMan probe (Ref-HEX and assay specific-FAM dye labeled) in a 1× Bio-Rad Supermix (Bio-Rad, Hercules, 
CA, USA). The 20µl PCR reaction was mixed with Bio-Rad droplet generator oil and partitioned into 15,000–
20,000 droplets using the Bio-Rad QX-100 droplet generator (Bio-Rad). The generated droplets were transferred 
to a 96-well PCR reaction plate and sealed with a pierceable sealing foil. PCR conditions were 10 min at 95°C, 
40 cycles of denaturation for 30 s at 94°C, assay specific anneal/extension temperatures 50°C-57.5°C (as noted 
in table) for 60 s with ramp rate of 2.5°C s-1, followed by 10 min at 98°C and a hold at 4°C. Post-PCR amplification 
each droplet was checked for fluorescence to count the number of droplets that yielded positive/negative results, 
using the Bio-Rad QX-100 droplet reader (Bio-Rad) and frequencies calculated based on total droplet counts 
per well. In the end, we were able to design informative ddPCR validation tests for 13 candidate mosaic SNVs. 
For the remaining 16 variants, we could not design effective probes because the variants were within AT rich or 
repetitive regions or the assay failed to separate clusters at various annealing temperatures. 
 
Validation result consolidation (contributed by Yifan Wang and Alexej Abyzov) 
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We tested 383 sites using PCR amplicon-based sequencing (Fig. 3). Of these, 280 were determined to be 
false positive calls, 64 had read support above background levels (eventually called as 9 germline SNVs, 17 
false positive calls, and 38 true mosaic SNVs), and 39 had a discordant validation status between two different 
BSMN groups (eventually called as 2 germline SNVs, 32 false positive calls, and 5 true mosaic SNVs).  

To further evaluate the discordant calls, we considered experiments yielding overlapping end sequence 
reads as more reliable because they resulted in higher quality sequencing data (i.e., higher confidence base 
calls, reduced indels, and better mappability); these analyses allowed us to resolve 11/39 candidates.  Other 
information that allowed the interrogation of the remaining calls included: (1) determining the number of 
haplotypes observed in 10X genomics linked-read sequencing datasets (i.e., “3 haplotypes” were observed for 
true positive calls and “4 haplotypes” were observed for false positive calls); (2) eliminating SNVs at a <0.005 
VAF in the PCR amplicon-based sequencing experiments (as such variants are unlikely be called from WGS 
data); (3) eliminating calls with fewer than 3 reads per WGS replicate; (4) eliminating variants within 
homopolymer tracts, CNVs, within 3 bps of indels, and near a germline Alu insertion (Fig. S8). We also applied 
the above criteria to invalidate 17/64 candidates with read support above background levels. Furthermore, 9/64 
and 2/39 discordant candidates were germline SNVs, as their VAF approached 0.5 and only “2 haplotypes” were 
observed for the candidate calls in 10X linked-read sequencing data. Following ddPCR, one SNV candidate 
initially assigned as a false positive was reassigned as a true SNV. Finally, based on the examination of 10X 
linked-read sequencing datasets, one of the 17 candidates that lacked enough data from the PCR amplicon-
based sequencing experiments (“NED”; not enough data) was determined to be a germline SNV. By 
consolidating all validation results, we arrived at a confident set of 43 mosaic SNVs. 
 
Panel of normal (PON) mask using 1000 Genomes 2504 whole genome sequencing libraries (contributed 
by Yifan Wang and Jeffrey Kidd) 

We applied a PON mask for all the candidate somatic SNV sites to exclude the possible sequencing artifacts 
using the 1000 Genomes Project whole genome sequencing libraries. We collected the counts for reference 
alleles and alternative alleles for each candidate site in each of the 2504 samples with a read quality cutoff at 20 
and a base quality cutoff at 20. Candidate sites that have greater than 0.05 candidate allele frequency in more 
than 5 samples were identified as false positives. Thus, the PON mask filter out possible recurrent artifacts that 
are induced during sequencing or library preparation. 
 
Classifying false-positive calls (contributed by Max Sherman)  

We consolidated the above filtering strategies into a naïve Bayes classifier and assessed our ability to 
characterize the 400 putative candidate mosaic SNVs using a “leave-one-out” cross-validation method. Briefly, 
we iteratively trained the model on validation results from 399 mosaic SNVs and predicted the validation status 
of the held-out SNV. This classifier uses features such as the allele count of a candidate somatic SNV across 
the 2504 samples in the 1000 Genomes Project as well as Chromium 10X linked read and single cell properties 
to aid in the discrimination of true somatic SNVs from false-positive calls (see below). Given that trade-offs 
between maximizing the number of true-positive calls and excluding false-negative calls are inevitable in 
statistical modeling, we ultimately arrived at conservative calling parameters, where the classifier achieved 90% 
precision, 42% sensitivity, and 99% specificity. While this model suffers with respect to sensitivity, the chosen 
values maximize the rejection of false-positive calls at the expense of removing some false-negative calls (Table 
S4). For example, false-negative calls were mostly present at low VAFs (median = 0.013) and lacked haplotype 
support in Chromium 10X linked-read (i.e., 15/25 false-negative calls lacked haplotype support, whereas only 
4/18 true-positive calls lacked haplotype support) and/or single cell sequencing datasets (i.e., 22/25 false-
negative calls lacked support in single cell datasets as compared to 9/18 true-positive calls). Overall, these 
results were consistent with our prior observations and indicated that integrating various sequence 
characteristics can distinguish between bona fide mosaic SNVs and false-positive signals.  Indeed, these criteria, 
as well as additional filtering strategies, have been consolidated for use in a recently developed machine-learning 
algorithm, MosaicForecast32.  
 
Naive Bayes classifier combining validation approaches (contributed by Max Sherman)  
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We trained a naïve Bayes classifier to provide the probability that a given site will pass or fail amplicon 
validation based on the properties of the site in the 75 WGS panel of normal samples, 10X sequencing from the 
common brain tissue, and single cell whole-genome sequencing. Given a set of training sites, we calculated the 
conditional likelihood of a site having the following properties given its validation status (pass or fail): 

• Panel of normal properties: 
o Presence of alternate reads in ≤ 5 of the 75 panel of normal samples 
o Presence of alternate reads in > 5 of the 75 panel of normal samples 

• 10X properties: 
o PASS 10X filters (see above Methods) 
o FAIL 10X filters for any reason 
o No 10X information available due to lack of alternate reads 

• Single cell properties: 
o No alternate reads present in any single cells 
o Alternate reads present in < 4 single cells 
o Alternate reads present in ≥ 4 single cells 
o Locus flagged as PASS by single cell genotyping method 
o Locus flagged as LOWQUAL by single cell genotyping method 
o Locus flagged as ARTIF by single cell genotyping method 
o Locus has no flag assigned by single cell genotyping algorithm 

The conditional likelihood was calculated as the number of sites exhibiting that property and having a certain 
validation status divided by the number of sites with that validation status. To prevent events of probability zero, 
each category was given a prior pseudocount of 1. The prior probability of passing (failing) was calculated as 
the number of test sites in the training data which passed (failed) amplicon validation divided by the number of 
test sites in the training data. 

Let 𝐵 be a binary random variable which takes on the value 0 if the site fails validation and 1 if it passes 
validation. Let 𝑆 be the set of properties given above for some new locus: 

Pr(𝐵	|	𝑆) = 	
∏ Pr(𝑠	| 𝐵)Pr(𝐵)	E∈G

∏ Pr(𝑠	| 𝐵 = 0) Pr(𝐵 = 0) +	∏ Pr(𝑠	| 𝐵 = 1) Pr(𝐵 = 1)	E∈G 	E∈G
. 

 
The sensitivity and specificity of this approach was calculated using leave-one-out cross-validation on the 400 
sites.   
 
Implementation of the best practices workflow (contributed by Taejeong Bae) 

The best practices workflow was implemented as a computational pipeline composed of a series of bash job 
scripts compatible with the job scheduler and Sun Grid Engine. The software includes the steps of uniform data 
processing, variant calling with GATK at various ploidies, and variant filtering. It is accessible at:  
https://github.com/bsmn/bsmn-pipeline. Although the pipeline is executable at any cluster system using Sun Grid 
Engine as a job scheduler, we used AWS ParallelCluster (https://github.com/aws/aws-parallelcluster) as the 
running environment for the BSMN project. The configuration used for setting up the ParallelCluster is available 
at: https://github.com/bintriz/bsmn-aws-setup. 
 
Cell lineage tree reconstruction (contributed by Taejeong Bae) 

To reconstruct a cell lineage tree from single cell data, we examined whether the union set of 49 SNVs 
identified in our validation call set and by the application of the best practices workflow to DLPFC replicate 6 
WGS were shared among twelve NeuN+ neuron single cell datasets. An SNV was considered “present” if we 
could find at least one supporting read in a single cell. The VAFs of the 49 SNVs also were estimated from the 
following WGS datasets: DLPFC (4 samples), NeuN+ (2 datasets) and NeuN- (1 dataset) DLPFC cell fractions, 
cerebellum (1 dataset), dura mater (1 dataset), and dural fibroblasts (2 datasets). We conducted hierarchical 
clustering of SNVs based upon their VAFs in different tissues using average linkage with Canberra distance. 
Clustering of single cells was performed by assessing shared genotypes using Jaccard distance. The final 
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lineage tree was constructed by manual inspection of shared genotypes in each cell and the SNV VAF values 
across tissues. SNVs defining earlier developmental lineages have higher VAFs than SNVs defining later 
developmental sub-lineages. Six SNVs with highest VAFs clustered together and were present in two distinct 
groups of single cells (the L1 and L2 lineages). We found that 4/6 SNVs (SNVs 1-4) denote the L1 lineage and 
2/6 SNVs (SNVs 10 and 11) denote the L2 lineage. This analysis was conducted using the SciPy package of 
python. Notably, one single cell dataset lacked the 49 SNVs and was excluded from the analysis.  

Two calls (SNV6 and SNV16) were not validated in our PCR amplicon-based sequencing experiments, but 
passed the 10X Genomics linked-read haplotype test. Further analyses indicated that SNV6 and SNV16 
exhibited consistent VAFs across multiple sequencing replicates, that no apparent alignment or sequencing 
artifact artifacts surround the SNV site, and that these SNVs defined sub-branches of L1 and L2 lineages. 
Moreover, SNV16 appeared together with SNV17 in a single cell and had similar VAFs, suggesting they 
represent markers for a sub-branch of the L2 lineage and, consequently, SNV16 is a bona fide mosaic SNV. 
 
Predicting early cell lineages from bulk DNA (contributed by Taejeong Bae) 

To identify mosaic SNV pairs that putatively were marking different cell lineages in WGS bulk DNA, we 
calculated all possible pairwise SNV VAF anti-correlation values for the 49 somatic mosaic SNVs identified in 
our validation set and best practices pipeline. For each pairwise comparison, we calculated the mean distance 
of VAFs of the SNV pair across multiple tissue samples according to the diagonal line: VAF1 + VAF2 = 0.5. We 
then used that distance as a score to rank SNV pairs by how well they fit the diagonal line (the lower score is 
better). The eight best scores corresponded to SNV pairs, where one represented the L1 lineage and the other 
one represented the L2 lineage. For seven pairs the scores were differed significantly (<0.05) from the other 
tested pairs (Fig. S11). 
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Figure 1: Assessment of existing tools to detect simulated mosaic SNVs in DNA mixing experiments (a & b) 
or candidate somatic SNVs in the common reference brain sample (c & d). (a) Genomic DNAs from four 
commonly-used human lymphoblastoid cell lines were mixed at various proportions (x-axis) and subjected to WGS; 
germline SNPs from the cell lines are present at a range of allele frequencies (y-axis) in the different mixes and act 
as a proxy for mosaic SNVs. (b) VAF of simulated SNVs (x-axis) vs. sensitivity of detection (y-axis) for the three 
described SNV callers. (c) A Venn diagram demonstrating that existing tools are widely discordant in their ability to 
call mosaic SNVs present in the common brain sample. (d) The distribution of candidate SNV VAFs (x-axis) and the 
numbers of candidate mosaic SNV calls (y-axis) detected by existing tools. 
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Figure 2: Overview of the mosaic SNV discovery and validation pipeline. (a) WGS or WES datasets were generated 
by six BSMN working groups using a commonly-shared, homogenized DLPFC sample from a neurotypical individual and 
isogenic dural fibroblasts. Six different analytical methods initially were used to call mosaic SNVs. WGS data also was 
generated from sorted NeuN+ and NeuN- cells from DLPFC, cerebellum, and dura mater samples. Chromium 10X linked-
read sequencing data was generated from DLPFC and dural fibroblast samples. Single-cell WGS sequencing was 
conducted on twelve NeuN+ neurons from the DLPFC. These datasets were used to validate mosaic SNVs. (b) Overlap 
of putative mosaic SNV calls using different analytical approaches. Indicated are the numbers of mosaic SNV calls (x-
axis) and the numbers of mosaic SNV calls identified using different analytical approaches (y-axis; circles with connecting 
lines indicate candidate SNVs identified by multiple approaches). (c) Candidate SNVs were subject to validation 
experiments using four complementary approaches. (d) Rationale of the empirical substitution error model applied to 
validate mosaic SNVs in PCR amplicon-based sequencing experiments. (e) An example of the empirical nucleotide error 
profiles encountered in a PCR amplicon-based sequencing experiment. Shown is the cumulative fraction of sites (x-axis) 
and per site noise levels (y-axis). 
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Figure 3: Summary of validation results for 400 candidate mosaic SNVs. Vertical lines represent candidate mosaic 
SNVs. Shaded rectangles to the right of the figure provide the keys to interpret the shading presented for each candidate 
SNV. There was concordance in true positive mosaic SNV calls (PASS; green rectangle at bottom of figure) in multiple 
datasets and secondary validation experiments. Chromium linked-read haplotype phasing and single cell sequencing 
datasets also were effective in supporting a subset of bona fide mosaic SNV calls. By comparison, the VAFs of false-
positive calls (red rectangle) are inconsistent across different datasets and often occur within or near insertion/deletion 
(indel) mutations, short tandem repeat sequences (STRs), homopolymeric nucleotide stretches, or copy number variants 
(CNVs). Importantly, the panel of normals (PON) filter, but not the comparison to WGS data from a control sample (i.e., to 
NA12878), was highly effective at identifying contaminating false-positive SNV calls (orange rectangle) and germline SNPs 
(gray rectangle). We lacked sufficient data to evaluate a subset of candidate SNVs (purple rectangle, NED – not enough 
data). The two green triangles at the top of the figure denote mosaic SNVs that validation experiments deemed to be false-
positive calls; however, cell lineage analyses demonstrated that they are likely bona fide mosaic SNVs (see text & Fig. 4). 
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Figure 4. Best Practices Workflow to Call Mosaic Variants. (a) Schematic of the filtering strategies used to call mosaic 
SNVs using WGS and WES data. (b) GATK (at different ploidy settings) and Mutect2 were used to call simulated mosaic 
SNVs at different VAFs (x-axis) and sensitivities (y-axis) in DNA mixing experiments. (c) Reconstructed cell lineage trees 
using a cohort of mosaic SNVs (Table S2) present in eleven single-cell datasets from the common brain sample. Indicated 
are the names of each SNV (SNV1, SNV2, etc.) and the estimated SNV VAFs (from 250X WGS data). (d) SNVs marking 
the L1 (x-axis) and L2 (y-axis) lineages show anti-correlated VAFs across multiple brain and tissue samples, suggesting 
these SNVs differentiate the earliest cell lineages in this sample. Solid line, linear regression of the SNV anti-correlation 
values across all samples. Shaded areas is the corresponding 95% confidence intervals. Dashed line, linear regression of 
the SNV anti-correlation values when only brain samples are included in the analysis. 
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