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Abstract 20 
 21 
To derive meaning from sound, the brain must integrate information across tens (e.g. 22 
phonemes) to hundreds (e.g. words) of milliseconds, but the neural computations that enable 23 
multiscale integration remain unclear. Prior evidence suggests that human auditory cortex 24 
analyzes sound using both generic acoustic features (e.g. spectrotemporal modulation) and 25 
category-specific computations, but how these putatively distinct computations integrate 26 
temporal information is unknown. To answer this question, we developed a novel method to 27 
estimate neural integration periods and applied the method to intracranial recordings from 28 
human epilepsy patients. We show that integration periods increase three-fold as one ascends 29 
the auditory cortical hierarchy. Moreover, we find that electrodes with short integration periods 30 
(~50-150 ms) respond selectively to spectrotemporal modulations, while electrodes with long 31 
integration periods (~200-300 ms) show prominent selectivity for sound categories such as 32 
speech and music. These findings reveal how multiscale temporal analysis organizes 33 
hierarchical computation in human auditory cortex.   34 
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Time is the fundamental dimension of sound, and temporal integration is thus fundamental to 35 
audition. To recognize a complex structure like a word, the brain must integrate information 36 
across a wide range of timescales from tens (e.g. phonemes) to hundreds (e.g. syllables) of 37 
milliseconds (Fig S1)1. But how human auditory cortex accomplishes this feat is unclear.  38 
 39 
One prominent hypothesis posits that short and long-term temporal structure are analyzed 40 
asymmetrically across the two hemispheres, with the left hemisphere integrating over short 41 
timescales, and the right hemisphere integrating over long timescales2–4. Another influential 42 
hypothesis is that the auditory cortex integrates across time hierarchically, with short-term 43 
structure analyzed bilaterally in primary auditory cortex and longer-term structure analyzed in 44 
non-primary regions5–7. This question remains unresolved, despite intensive debate over two 45 
decades, because the integration period of human cortical regions is unknown.  46 
 47 
Understanding temporal integration is critical for understanding how important sound 48 
categories like speech and music are processed2,6,8. While prior studies have revealed non-49 
primary neural populations selective for speech and music9–13, little is known about how these 50 
neural populations integrate information in speech and music. One possibility is that category-51 
selective neural populations integrate over many timescales in order to code category-specific 52 
structure at short14,15 (e.g. phonemes) and long8 timescales (e.g. syllables and words; Fig S1). 53 
Alternatively, short-term structure might be analyzed by general-purpose acoustic 54 
representations in primary auditory cortex16 and then integrated over long timescales to form 55 
category-specific neural representations in non-primary regions.  56 
 57 
Here, we test these hypotheses by developing a novel method for measuring neural integration 58 
periods. Integration periods are often defined as the time window when stimuli alter the neural 59 
response17,18. Although this definition is simple and general, there is no simple and general 60 
method to estimate integration periods. Many methods exist for inferring linear integration 61 
periods with respect to a spectrogram15,19–21, but human cortical responses exhibit prominent 62 
nonlinearities particularly in non-primary regions. Flexible, nonlinear models are challenging to 63 
fit given limited neural data20,22, and even if one succeeds, it is not obvious how to measure 64 
the model’s integration period. Methods for assessing temporal modulation selectivity6,23,24 are 65 
insufficient, since a neuron could respond to fast modulations over a long window or to a 66 
complex structure like a word that is poorly described by its modulation content. Finally, 67 
temporal scrambling can reveal selectivity for naturalistic temporal structure12,18,25, but many 68 
regions in auditory cortex show no difference between intact and scrambled sounds.  69 
 70 
To overcome these limitations, we developed a method that directly estimates the time window 71 
when stimuli alter a neural response (the temporal context invariance or TCI paradigm; Fig 1). 72 
We present sequences of natural stimuli in a random order such that the same segment occurs 73 
in different contexts. While context has many meanings26, here we simply define context as 74 
the stimuli which surround a segment. If the integration period is shorter than the segment 75 
duration, there will be a moment when it is fully contained within each segment. As a 76 
consequence, the response to each segment will be unaffected by the surrounding segments. 77 
We can therefore estimate the integration period by determining the minimum segment 78 
duration needed to achieve a context invariant response.  79 
 80 
TCI does not make any assumptions about the type of response being measured. As a 81 
consequence, the method is applicable to sensory responses from any modality, stimulus set, 82 
or recording method. We applied TCI to intracranial EEG (iEEG) recordings collected from 83 
patients undergoing surgery for intractable epilepsy. Such recordings provide a rare 84 
opportunity to measure human brain responses with spatiotemporal precision, which is 85 
essential to studying temporal integration. We used a combination of depth and surface 86 
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electrodes to record from both primary regions in the lateral sulcus as well as non-primary 87 
regions in the superior temporal gyrus (STG), unlike many iEEG studies that have focused on 88 
just the lateral sulcus27 or STG15,19. The precision and coverage of our recordings was 89 
essential to revealing how the human auditory cortex integrates across multiple timescales.  90 
 91 

 92 
Fig 1. Temporal context invariance (TCI) paradigm. Schematic of the paradigm used to 93 
measure integration periods. Segments of natural stimuli are presented using two different 94 
random orderings. As a consequence, the same segment occurs in two different contexts 95 
(different surrounding segments). If the segment duration is longer than the integration period (top 96 
panel), there will be a moment when the integration period is fully contained within each segment. 97 
As a consequence, the response at that moment will be unaffected by the surrounding context 98 
segments. If the segment duration is shorter than the integration period (bottom panel), the 99 
integration period will always overlap the surrounding context segments, and they can therefore 100 
alter the response. The goal of the TCI paradigm is to estimate the minimum segment duration 101 
needed to achieve a context invariant response. This figure plots waveforms for an example 102 
sequence of segments that share the same central segment. Segment boundaries are 103 
demarcated by colored boxes. The hypothesized integration period is plotted above each 104 
sequence at the moment when it best overlaps the shared segment. 105 

 106 
Results 107 
 108 
We recorded iEEG responses to sequences of natural sound segments that varied in duration 109 
(from 31 ms to 2 sec in octave steps). For each segment duration, we created two 20-second 110 
sequences, each with a different random ordering of the same segments (concatenated using 111 
cross-fading to avoid boundary artifacts). Segments were excerpted from 10 natural sounds 112 
(Table S1), selected to be diverse so they differentially drive responses throughout auditory 113 
cortex. The same natural sounds were used for all segment durations, which limited the 114 
number of sounds we could test given the limited time with each patient; but our key results 115 
were robust across the sounds tested (see Anatomical organization for the results of all 116 
robustness analyses). Because our goal was to characterize integration periods during natural 117 
listening, we did not give subjects a formal task. To encourage subjects to listen to the sounds, 118 
we asked them to occasionally rate how scrambled the last stimulus sequence was (shorter 119 
segment durations sound more scrambled; if patients were in pain or confused we simply 120 
asked them to listen).  121 
 122 
Assessing context invariance via the cross-context correlation. We measured the 123 
broadband gamma power of each electrode to each sound sequence, which is thought to 124 
approximately reflect aggregate neural activity in a local region28,29 (70-140 Hz; results were 125 
robust to the frequency range used). For each electrode, we aligned its response to all 126 
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segments of a given duration in a matrix, which we refer to as the segment-aligned response 127 
(SIR) matrix (Fig 2a). Each row of the SIR matrix contained the response timecourse 128 
surrounding a single segment, aligned to segment onset. Different rows thus correspond to 129 
different segments and different columns correspond to different lags relative to segment 130 
onset. We computed two versions of the SIR matrix using the two different contexts for each 131 
segment, extracted from the two different sequences. The central segment was the same 132 
between the contexts, but the surrounding segments were different.  133 

 134 

 135 
Fig 2. Cross-context correlation. a, Schematic of the analysis used to assess context invariance 136 
for a single electrode and segment duration. See text for description. b, The cross-context 137 
correlation (blue line) and noise ceiling (black line) are shown for two example electrodes from 138 
the left hemisphere of the same patient, one in Heschl’s gyrus (HG, top panel) and one in the 139 
superior temporal gyrus (STG, bottom panel). Each plot shows a different segment duration. The 140 
gray region shows the time interval when the shared segment was present (i.e. the gray region in 141 
panel a). The STG electrode required longer segment durations for the cross-context correlation 142 
to reach the noise ceiling, and the build-up of the cross-context correlation with lag was slower 143 
for the STG electrode.  144 
 145 

Our goal was to assess if there was a lag when the response was the same across contexts. 146 
We instantiated this idea by correlating corresponding columns across SIR matrices from 147 
different contexts (the “cross-context correlation”, schematized in Fig 2a). At segment onset 148 
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(lag=0), the cross-context correlation should be near zero, since the integration period must 149 
overlap the preceding segments, which were random across contexts. As time progresses, the 150 
integration period should start to overlap the shared segment, and the cross-context 151 
correlation should increase. Critically, if the integration period is less than the segment 152 
duration, there should be a lag where the integration period is fully contained within the shared 153 
segment, and the response should thus be the same, yielding a correlation of 1 modulo noise. 154 
To correct for noise, we measured the test-retest correlation when the context was the same, 155 
which provides a noise ceiling for the cross-context correlation.  156 
 157 
The shorter segments tested in our study were created by subdividing the longer segments. 158 
As a consequence, we could also consider cases where a segment was a subset of a longer 159 
segment and thus surrounded by its natural context, in addition to the case described so far 160 
when a segment is surrounded by random other segments. Since our analysis requires that 161 
the two contexts being compared are different, one of the two contexts must always be 162 
random, but the other context can be random or natural. In practice, we found similar results 163 
using random and natural contexts, and thus pooled across both types of context for maximal 164 
statistical power (see Anatomical organization for results comparing random and natural 165 
contexts).  166 

 167 
We plot the cross-context and noise ceiling for segments of increasing duration for two 168 
example electrodes from the same subject: an electrode in left posteromedial Heschl’s gyrus 169 
(HG) and one in the left superior temporal gyrus (STG) (Fig 2b). The periodic variation in the 170 
noise ceiling is an inevitable consequence of correlating across a fixed set of segments (see 171 
Cross-context correlation in the Methods for an explanation). For the HG electrode, the cross-172 
context correlation started at zero and quickly rose. Critically, for segment durations greater 173 
than or equal to 125 milliseconds, there was a lag where the cross-context correlation equaled 174 
the noise ceiling, indicating a context invariant response. For longer segments (250 or 500 175 
ms), the cross-context correlation remained yoked to the noise ceiling for an extended duration 176 
indicating that the integration period remained within the shared segment for an extended time 177 
period. This pattern is what one would expect for an integration period that is ~125 178 
milliseconds, since stimuli falling outside of this window have little effect on the response. 179 
 180 
By comparison, the results for the STG electrode suggest a much longer integration period. 181 
Only for segment durations of approximately 500 milliseconds did the cross-context correlation 182 
approach the noise ceiling, and its build-up and fall-off with lag was considerably slower. This 183 
pattern is what one would expect for a longer integration period, since it takes more time for 184 
the integration period to fully enter and exit the shared segment. Virtually all electrodes with a 185 
reliable response to sound exhibited a similar pattern, but the segment duration and lag 186 
needed to achieve an invariant response varied substantially (Fig S2 shows 20 representative 187 
electrodes). This observation indicates that auditory cortical responses have a meaningful 188 
integration period, outside of which responses are largely invariant, but the extent of this 189 
integration period varies across the cortex.  190 
 191 
Model-estimated integration periods. In theory, one could estimate the integration period 192 
extent as the shortest segment duration for which the peak of the cross-context correlation 193 
exceeds some fraction of the noise ceiling. This approach, however, would be noise-prone 194 
since a single noisy data point at one lag and segment duration could alter the estimated 195 
integration period. To overcome this issue, we used a model to infer the integration period that 196 
best-predicted the cross-context correlation across all lags and segment durations. 197 
 198 
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 199 
Fig 3. Model-estimated integration periods. a, Temporal integration periods were modeled 200 
using a Gamma-distributed window. The width and center of the model integration period were 201 
varied, excluding combinations of widths and centers that resulted in a non-causal window (gray 202 
boxes with dashed red line). b, Schematic showing how the cross-context correlation was 203 
predicted from the model integration period. For each segment duration and lag, we measured 204 
how much the integration period overlapped the shared central segment (𝑤, blue segment) vs. 205 
all surrounding context segments (𝛽#,	yellow, purple, and green segments). The cross-context 206 
correlation should reflect the fraction of the response variance due to the shared segment, 207 
multiplied by the noise ceiling (𝑟'()*). The variance due to each segment is given by the squared 208 
overlap with the model integration period. c, Illustration of how the integration period width (top 209 
panel) and center (bottom panel) alter the model’s prediction for a single segment duration (63 210 
milliseconds). Increasing the width lowers and stretches-out the predicted cross-context 211 
correlation, while increasing the center shifts the cross-context correlation to later lags. d, The 212 
prediction error for model windows of varying widths and centers for the example electrodes 213 
from Figure 2b. Redder colors indicate lower error. e, The measured and predicted cross-214 
context correlation for the best-fit integration period with lowest error (same format as Fig 2b).  215 

 216 
We modeled temporal integration periods using a Gamma-distributed window, which is a 217 
standard, unimodal distribution commonly used to model integration periods (Fig 3a)30. We 218 
varied the width and center of the model integration period, excluding combinations of widths 219 
and centers that resulted in a non-causal window since this would imply the response depends 220 
upon future stimuli. The width of the integration period is the key parameter we would like to 221 
estimate, and was defined as the smallest interval that contained 75% of the window’s mass. 222 
The center of the integration period was defined as the window’s median and reflects the 223 
overall delay between the integration period and the response. We also varied the window 224 
shape from more exponential to more bell-shaped, but found the shape had little influence on 225 
the results (see Anatomical organization).   226 
 227 
The cross-context correlation depends on the degree to which the integration period overlaps 228 
the shared segment vs. the surrounding context segments (Fig 2a). We therefore predicted 229 
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the cross-context correlation by measuring the overlap between the model integration period 230 
and each segment, separately for all lags and segment durations (Fig 3b). The equation used 231 
to predict the cross-context correlation from these overlap measures is shown in Figure 3b 232 
and described in the legend. A formal derivation is given in the Methods. 233 
 234 
Figure 3c illustrates how changing the width and center of the model integration period alters 235 
the predicted correlation. Increasing the width lowers the peak of the cross-context correlation, 236 
since a smaller fraction of the integration period overlaps the shared segment at the moment 237 
of maximum overlap. The build-up and fall-off with lag is also more gradual for wider integration 238 
periods since it takes longer for the integration period to enter and exit the shared segment. 239 
Increasing the center simply shifts the cross-context correlation to later lags, since the delay 240 
is longer, but the width is unchanged. 241 
 242 
We varied the model parameters and calculated the error between the measured and predicted 243 
cross-context correlation (Fig 3d,e). For the example HG electrode, the cross-context 244 
correlation was best-predicted by an integration period with a narrow width (68 ms) and early 245 
center (64 ms) compared with the STG electrode, which was best-predicted by a wider and 246 
more delayed integration period (375 ms width, 273 ms center). These results validate our 247 
qualitative observations and provide us with a quantitative estimate of each electrode’s 248 
integration period.  249 
 250 
Anatomical organization. We identified 190 electrodes with a reliable response to sound 251 
across 18 patients (test-retest correlation > 0.1; p < 10-5 via a permutation test across sound 252 
sequences; 128 left hemisphere; 62 right hemisphere). From these electrodes, we created a 253 
map of integration widths and centers, discarding a small fraction of electrodes (5%) where the 254 
model predictions were not highly significant (p < 10-5 via a phase-scrambling analysis) (Fig 255 
4a). This map was created by localizing each electrode on the cortical surface, and aligning 256 
each subject’s brain to a common anatomical template. By necessity, we focus on group 257 
analyses due to the sparse, clinically-driven coverage in any given patient. Most sound-258 
responsive electrodes were in and around the lateral sulcus and STG, as expected11,15. 259 
 260 
These maps revealed a clear anatomical gradient: integration widths and centers increased 261 
substantially from primary regions near posteromedial HG to non-primary regions near STG. 262 
We quantified this trend by binning electrodes into anatomical regions-of-interest (ROIs) based 263 
on their distance to posteromedial HG (Fig 4b)31. This analysis revealed a three-fold increase 264 
in integration widths and centers from primary to non-primary regions (median integration 265 
width: 84, 152, 281 ms; median integration center: 68, 115, 203 ms; p < 0.001 via a 266 
bootstrapping analysis across subjects comparing the nearest and farthest bins). By contrast, 267 
there was no difference in integration widths or centers between the two hemispheres either 268 
when averaging across all ROIs or comparing individual ROIs (all ps > 0.74). These findings 269 
were robust across the specific sounds tested (Fig S3), the type of context used to assess 270 
invariance (random vs. natural; Fig S4), the shape of the model window (Fig S5), and the 271 
frequency range used to measure broadband gamma (Fig S6). These results demonstrate 272 
human auditory cortex integrates across time hierarchically, with substantially wider and more 273 
delayed integration periods in higher-order regions, but no difference between hemispheres. 274 
 275 
Across all electrodes, we found that integration centers scaled approximately linearly with 276 
integration widths (Fig S7). In part as a consequence of this observation, we found that 277 
integration centers were relatively close to the minimum possible for a causal window even 278 
when not explicitly constrained to be causal (Fig S7) (integration centers were on average 279 
46% greater than the minimum for a Gamma-distributed window). Since the integration center 280 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.09.30.321687doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321687
http://creativecommons.org/licenses/by-nd/4.0/


 
9 

reflects the delay between the integration period and the response, this finding suggests that 281 
auditory cortex responds to sounds about as quickly as possible given the integration period32. 282 
 283 

 284 
Fig 4. Anatomy of model-estimated integration periods. a, Map of integration widths (top) 285 
and centers (bottom) for all electrodes with a reliable response to sound. b, Electrodes were 286 
binned into ROIs based on their distance to a common anatomical landmark of primary auditory 287 
cortex (posteromedial Heschl’s gyrus, TE1.1). This figure plots the median integration width and 288 
center across the electrodes in each bin. Inset shows the ROIs for one hemisphere. Error bars 289 
plot one standard error of the bootstrapped sampling distribution across subjects. 290 

 291 
Category selective responses are limited to electrodes with long integration periods. 292 
What is the consequence of hierarchical temporal integration for the analysis of important 293 
sound categories like speech and music? While prior studies have revealed non-primary 294 
neural populations that respond selectively to sound categories like speech and music9–13, it 295 
is unclear how these neural populations integrate information in speech and music. A priori it 296 
seemed possible that speech and music-selective responses might have diverse integration 297 
periods since sound categories like speech and music have unique structure at many 298 
timescales. For example, the median duration of speech phonemes in the popular TIMIT 299 
corpus is 64 milliseconds while syllables and words are typically hundreds of milliseconds (the 300 
median duration of multiphone syllables and multisyllable words is 197 and 479 milliseconds, 301 
respectively) (Fig S1). But the hierarchy revealed by our integration period maps suggests an 302 
alternative hypothesis: that category-selective responses are limited to neural responses with 303 
wide integration periods. We sought to directly test this hypothesis, and if true, determine the 304 
shortest integration periods at which category-selective responses are present. 305 
 306 
To assess category selectivity, we ran a separate experiment in a subset of 11 patients, where 307 
we measured responses to a larger set of 119 natural sounds, drawn from 11 categories (listed 308 
in Fig 5a). We grouped the electrodes from these patients based on their integration width in 309 
octave intervals (shown in Fig 5a), pooling across both hemispheres because we had fewer 310 
electrodes (104) and because integration periods (Fig 4) and category-selective responses10–311 
12 are similar across hemispheres. We then used several different analyses to measure the 312 
degree of category selectivity in each electrode group. 313 
 314 
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 315 
Fig 5. Category selectivity at different integration period widths. Responses were measured 316 
in a subset of patients to a larger collection of 119 natural sounds from 11 different sound 317 
categories, listed in panel a. Electrodes from these patients were grouped based on the width of 318 
their integration period in octave intervals. We used several different analyses to assess the 319 
degree of category-selectivity in each group. a, The responses from each group were projected 320 
onto the two components that exhibited the greatest category selectivity. We plot the timecourses 321 
for these two components as a 2D trajectory after averaging across the sounds from each 322 
category. Category selectivity, if present, will cause the trajectories to separate from each other. 323 
b, The accuracy of category labels (red line) and cochleagrams (blue line) in predicting electrode 324 
responses as a function of the integration width. This figure plots the squared correlation (noise-325 
corrected) between the measured and predicted response for each feature set. c, The selectivity 326 
of each electrode group for either speech (English and foreign) or music (instrumental, vocal and 327 
drumming), measured along the component that exhibited the greatest speech or music 328 
selectivity. Selectivity was measured as the separation (noise-corrected d-prime) between 329 
responses to sounds from the target category (speech or music) compared with all other sounds. 330 
Independent sounds were used to estimate components and measure their response. Error bars 331 
plot one standard error of the bootstrapped sampling distribution. 332 

 333 
First, we used component methods to visualize any category selectivity present in the 334 
electrodes11. Specifically, we projected the responses from each group onto the two 335 
components that showed the greatest category selectivity (Fig 5a) (estimated using cross-336 
validated linear discriminant analysis). We plot the timecourse of these two components as a 337 
2D trajectory after averaging across the sounds from each category. Category selectivity, if 338 
present, will cause the trajectories for different categories to separate from each other. This 339 
analysis revealed that only electrodes with wide integration periods, above ~200 milliseconds, 340 
show robust category selectivity. Similar results were obtained when analyzing the top two 341 
principal components without any optimization for category selectivity (Fig S8), which 342 
demonstrates that category selectivity is a prominent feature of cortical responses with wide 343 
integration periods. 344 

 345 
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To quantify these trends, we measured how accurately we could linearly predict the response 346 
of each electrode from either a cochleagram or binary category labels (Fig 5b). Cochleagrams 347 
are similar to spectrograms but are computed using filters designed to mimic the pseudo-348 
logarithmic frequency resolution of cochlear filtering30. This analysis thus provides an estimate 349 
of the fraction of the response that can be predicted using a linear spectrotemporal receptive 350 
field15,19,20. The category labels indicated the membership of each sound in each category for 351 
all timepoints with sound energy above a minimum threshold. Prediction accuracies were 352 
noise-corrected using the test-retest reliability of the electrode responses, which provides an 353 
upper bound on the fraction of the response explainable by any model20. 354 
 355 
We found that the prediction accuracy of the category labels more than doubled as integration 356 
widths increased, with a relatively sharp increase at ~200 milliseconds (p < 0.001 via 357 
bootstrapping across subjects). In contrast, the prediction accuracy of cochlear features 358 
decreased (p < 0.05), yielding a significant interaction between feature type and integration 359 
width (p < 0.001). This finding confirms our observation that responses become substantially 360 
more category-selective as integration periods widen.  361 
 362 
We note the absolute prediction accuracies were modest for both the cochleagram and 363 
category labels, never exceeding more than 45% and 60% of the explainable response 364 
variance, respectively (as expected). This fact illustrates the utility of having a model-365 
independent way of estimating integration periods, since even our best-performing models fail 366 
to explain a large fraction of the response, and the best-performing model can vary across 367 
electrodes. 368 
 369 
The component trajectories (Fig 5a) suggested that selectivity for both speech and music 370 
increase as integration periods widen. To directly test this hypothesis, we separately measured 371 
the degree of speech and music selectivity at different integration widths. Selectivity was 372 
measured as the average separation (d-prime) between responses to speech or music vs. all 373 
other sounds, along the component that showed the greatest speech or music selectivity (Fig 374 
5c; Fig S9 shows the response timecourse of these components to each category). Speech 375 
sounds comprised both English and foreign speech, since we found they produced similar 376 
response trajectories, consistent with prior work showing that speech-selective responses in 377 
STG are not driven by linguistic meaning11,12. Non-speech sounds comprised all categories 378 
except vocal music, which produced an intermediate response along the speech-selective 379 
component, likely due to speech in the vocals (Fig S9). Music sounds included instrumental 380 
music, vocal music and drumming, since we have found that all three produce higher-than-381 
average responses in music-selective regions33. We found that selectivity for both speech and 382 
music increased as integration periods widen (p < 0.001 via bootstrapping). This increase was 383 
more prominent for speech than music (note the different y-axes in Fig 5c), plausibly because 384 
speech-selective responses are more prominent particularly in the posterior/middle STG 385 
where many of our electrodes were located11,12,15. But for both speech and music, there was 386 
a marked increase in selectivity starting at ~200 milliseconds. This finding demonstrates that 387 
increased category selectivity is a general feature of neural responses with wide integration 388 
periods that applies to multiple sound categories.  389 
 390 
Discussion 391 
 392 
Our study reveals how the human auditory cortex integrates across multiple timescales when 393 
processing natural sounds. Our findings resolve a longstanding debate by showing that 394 
auditory cortex integrates across time hierarchically, with substantially longer integration 395 
periods in non-primary regions, but no difference between hemispheres. Our results also 396 
reveal the significance of hierarchical temporal integration for the analysis of important sound 397 
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categories like speech and music. In particular, we found that category-selective neural 398 
responses are restricted to electrodes with long integration periods above ~200 milliseconds. 399 
This finding suggests that short-term structure in speech and music is analyzed by general-400 
purpose acoustic representations in primary auditory cortex and then integrated over long 401 
timescales to form category-specific representations in non-primary regions.  402 
 403 
These findings were enabled by a novel method that makes it possible to estimate the 404 
integration period of any sensory response. Unlike prior methods, TCI makes no assumptions 405 
about the type of response being measured; it simply estimates the time window when stimuli 406 
alter the neural response. As a consequence, the method should applicable to any modality, 407 
stimulus set, or recording method. We applied TCI to intracranial recordings from epilepsy 408 
patients, using surface and depth electrodes placed throughout human auditory cortex. As a 409 
consequence, we were able to determine how anatomically and functionally distinct regions of 410 
the human brain collectively integrate across multiple timescales. 411 
 412 
Implications for multiscale temporal integration. Temporal integration plays a central role 413 
in most theories and models of auditory processing2–5,7. But it has remained unclear how the 414 
human auditory cortex integrates across multiple timescales, because there has been no 415 
general method for estimating neural integration periods.   416 
 417 
Hemispheric models posit that the left and right hemisphere are specialized for integrating 418 
across distinct timescales2,5, in part to represent the distinctive temporal structure of sound 419 
categories like speech and music6. Some of the clearest evidence for hemispheric 420 
specialization comes from recent studies that have filtered-out temporal modulations at 421 
different rates in natural stimuli, and shown that removing fast temporal modulations has a 422 
greater impact on responses in the left auditory cortex, particularly when processing 423 
speech6,23. However, the time window that a neuron integrates over cannot be determined 424 
from its modulation tuning. For example, a neuron could respond selectively to fast temporal 425 
modulations over a long temporal window or to a complex structure (e.g. word) that is poorly 426 
described by its modulation content.  427 
 428 
Another common proposal is that the auditory cortex integrates across time hierarchically3,4,7. 429 
Early evidence for hierarchical temporal organization came from the observation that “phase-430 
locking” slows from the periphery to the cortex34,35, which implies that neurons encode 431 
temporal modulations via changes in firing rate rather than responding at particular modulation 432 
phases. But the integration period of a nonlinear response cannot be inferred from the 433 
presence or absence of phase-locking. For example, a neuron could integrate over several 434 
cycles of a modulation and then respond at the predicted peak or trough of the oscillation 435 
(phase-locking) or modulate its firing rate based on the oscillation period (rate coding).  436 
 437 
In auditory cortex, single-unit recordings in ferrets have revealed a slight temporal broadening 438 
of linear spectrotemporal receptive fields in non-primary vs. primary auditory cortex (36 vs. 33 439 
ms between PEG and A1)36. But the overall integration period cannot be inferred from these 440 
estimates since cortical responses exhibit prominent nonlinearities20,22, particularly in non-441 
primary regions31 and particularly when responding to natural sounds37. In humans, several 442 
studies have revealed selectivity for naturalistic temporal structure in non-primary regions. 443 
Examples include selectivity for phonotactic structure above and beyond tuning for individual 444 
phonemes32,38,39, and selectivity for natural speech compared with temporally scrambled 445 
speech12,18,25. But again, integration periods cannot be inferred from this type of data. For 446 
example, primary regions respond similarly to intact and scrambled stimuli, even for stimuli 447 
that are scrambled at timescales well below the integration period of the neural response (e.g. 448 
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30 milliseconds)12. As a consequence, there has been no way to test if primary and non-449 
primary regions differ in their integration period, and if so, by how much.  450 
 451 
Because of these methodological limitations, there are no estimates of integration periods in 452 
human auditory cortex, making it impossible to test how auditory cortex integrates over multiple 453 
timescales. Our study thus resolves a longstanding debate by showing that multiscale 454 
temporal integration is predominantly hierarchical and not hemispheric. These results do not 455 
imply that there is no hemispheric organization for modulation tuning, since as already noted, 456 
one cannot infer the integration period of a neural response from its modulation tuning, or vice 457 
versa. Indeed, integration periods are useful specifically because they abstract away from the 458 
particular features which drive a neural response. As a consequence, integration periods can 459 
be used to compare any two brain regions, even if they respond to very different stimulus 460 
features, like primary and non-primary auditory cortex.  461 
 462 
The hierarchical organization of temporal integration periods appears analogous to the 463 
hierarchical organization of spatial receptive fields in visual cortex40,41, which suggests there 464 
might be general principles that underlie this type of organization. For example, both auditory 465 
and visual recognition become increasingly challenging at large temporal and spatial scales, 466 
because the dimensionality of the input grows exponentially. Hierarchical multiscale analysis 467 
may help overcome this exponential expansion by allowing sensory systems to gradually 468 
recognize large-scale structures as combinations of smaller-scale structures (e.g. a face from 469 
nose and eyes, or a word from several phonemes) rather than attempting to recognize large-470 
scale structures directly from the high-dimensional input3,4,7.  471 
 472 
Implications for the analysis of sound categories. Sound categories like speech and music 473 
have unique acoustic structure at many temporal scales1,3,8,42, from tens to hundreds of 474 
milliseconds (Fig S1). Prior studies have revealed non-primary neural populations selective 475 
for important sound categories like speech and music9–13. But very little is known about how 476 
information in speech and music is integrated in these neural populations. A prior fMRI study 477 
used a scrambling technique called “quilting” to show that speech-selective regions respond 478 
selectively to intact temporal structure up to about 500 milliseconds in duration12. But this study 479 
was only able to identify a single analysis timescale across all of auditory cortex, likely because 480 
scrambling is a coarse manipulation and fMRI a coarse measure of the neural response.  481 
 482 
We were able to identify a broad range of integration periods from tens to hundreds of 483 
milliseconds, and could thus test whether category-selective responses were present at both 484 
short and long integration periods. Our results indicate that category-selective responses are 485 
only robustly present at integration periods above ~200 milliseconds, which corresponds to 486 
about the duration of a multi-phone syllable (Fig S1) (the duration of musical structures is less 487 
stereotyped and thus harder to assess). This finding suggests that short-term structures (e.g. 488 
phonemes) are analyzed by general-purpose acoustic representations in primary auditory 489 
cortex (e.g. spectrotemporal receptive fields)16, and then integrated over long timescales to 490 
form category-specific representations in non-primary regions. This finding does not imply that 491 
speech-selective regions are insensitive to short-term structure such as phonemes, but rather 492 
that speech-selective responses respond to larger-scale patterns, such as phoneme 493 
sequences, consistent with recent work on phonotactics32,38,39. 494 
 495 
We found that both speech and music selectivity increased for integration periods greater than 496 
~200 milliseconds (Fig 5c), which is perhaps surprising given that speech and music have 497 
distinctive temporal structure2,43. This result might be explained by the fact that speech and 498 
music-selective responses emerge at a similar point in the cortical hierarchy10,11, just beyond 499 
primary auditory cortex. If integration periods are predominantly organized hierarchically, as 500 
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suggested by our data, regions with a similar hierarchical position might exhibit similar 501 
integration periods even if they respond to different stimuli.  502 
 503 
Limitations and extensions. As with any method, our results could depend upon the stimuli 504 
tested. We tested a diverse set of natural sounds with goal of characterizing responses 505 
throughout auditory cortex using ecologically relevant stimuli. Because time is short when 506 
working with surgical patients, we could only able to test a small number of sounds, but found 507 
that our key findings were robust to the sounds tested (Fig S3). Nonetheless, it will be 508 
important in future work to test whether and how integration periods change for different 509 
stimulus classes. 510 
 511 
Another key question is whether temporal integration periods reflect a fixed property of the 512 
cortical hierarchy or whether they are shaped by attention and behavioral demands. In our 513 
study, we did not give subjects a formal task because our goal was to measure integration 514 
periods during natural listening without any particular goal or attentional focus. Future work 515 
could explore how behavioral demands shape temporal integration periods by measuring 516 
integration periods in the presence or absence of focused attention to a short-duration (e.g. 517 
phoneme) or long-duration (e.g. word) target44. 518 
 519 
Temporal integration periods indicate the time window in the stimulus that a neural response 520 
is sensitive to, which is distinct from the time window in the neural response that best encodes 521 
a property of the stimulus, sometimes referred to as the “encoding window”17,45–47. For 522 
example, the encoding window for a slow temporal modulation could be quite long, even if the 523 
neural integration period is quite short. Encoding windows thus reflect a complex mixture of 524 
the neural integration period and the temporal properties of the stimulus being encoded.  525 
 526 
A given neural response might effectively have multiple integration periods. For example, 527 
neural responses are known to adapt their response to repeated sounds on the timescale of 528 
seconds48 to minutes49 and even hours50, suggesting a form of long-term memory51. TCI 529 
measures the integration period of responses that are reliable across repetitions, and as a 530 
consequence, TCI will be insensitive to response characteristics that change across repeated 531 
presentations. Future work could try and identify multiple integration periods within the same 532 
response by manipulating the type of context which surrounds a segment. Here, we examined 533 
two distinct types of contexts and found similar results (Fig S4), suggesting that hierarchical 534 
temporal integration is a robust property of human auditory cortex.  535 
 536 
Our study focused on characterizing responses within auditory cortex using a relatively short 537 
range of segment durations (31 milliseconds to 2 seconds) and a diverse set of natural sounds, 538 
including many non-speech and non-music sounds. Future work could characterize integration 539 
periods outside of auditory cortex by using a longer range of segment durations and focusing 540 
on just speech or music, which exhibit longer-term temporal structure8,18,42. For example, a 541 
recent fMRI study provided evidence for multi-second integration periods in regions outside of 542 
auditory cortex by examining the delay needed for responses to speech to become context 543 
invariant52. This study was not able to estimate temporal integration periods within auditory 544 
cortex because the timescale of the fMRI response is an order of magnitude slower than 545 
auditory cortical integration periods. Here, we took advantage of the rare opportunity to record 546 
intracranial responses from the human brain, which is the only human neuroscience method 547 
with the spatiotemporal resolution to estimate integration periods in auditory cortex.  548 

549 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.09.30.321687doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321687
http://creativecommons.org/licenses/by-nd/4.0/


 
15 

Methods 550 
 551 
Participants & data collection. Data were collected from 23 patients undergoing treatment 552 
for intractable epilepsy at the NYU Langone Hospital (14 patients) and the Columbia University 553 
Medical Center (9 patients). One patient was excluded because they had a large portion of the 554 
left temporal lobe resected in a prior surgery. Of the remaining 22 subjects, 18 had sound-555 
responsive electrodes (see Electrode selection). Electrodes were implanted to localize 556 
epileptogenic zones and delineate these zones from eloquent cortical areas before brain 557 
resection. NYU patients were implanted with subdural grids, strips and depth electrodes 558 
depending on the clinical needs of the patient. CUMC patients were implanted with stereotactic 559 
depth electrodes. All subjects gave informed written consent to participate in the study, which 560 
was approved by the Institutional Review Boards of CUMC and NYU.  561 
 562 
Stimuli for TCI paradigm. Segments were excerpted from 10 natural sound recordings, each 563 
two seconds in duration (Table S1). Shorter segments were created by subdividing the longer 564 
segments. Each natural sound was RMS-normalized before segmentation.  565 
 566 
We tested seven segment durations (31.25, 62.5, 125, 250, 500, 1000, and 2000 ms). We 567 
presented the segments of a given duration in two pseudorandom orders, yielding 14 568 
sequences (7 durations x 2 orders), each 20 seconds in duration. The only constraint was that 569 
a given segment had to be preceded by a different segment in the two orders. When we 570 
designed the stimuli, we thought that integration periods might be influenced by transients at 571 
the start of a sequence, so we designed the sequences such that the first 2 seconds and last 572 
18 seconds of each sequence contained distinct and non-overlapping segments so that we 573 
could separately analyze the just last 18 seconds. In practice, integration periods were similar 574 
when analyzing the first 18 seconds vs. the entire 20-second sequence. Segments were 575 
concatenated using cross-fading to avoid click artifacts (31.25 ms raised cosine window; cross-576 
fading was accounted for in our integration period model). Each stimulus was repeated several 577 
times (4 repetitions for most subjects; 8 repetitions for 2 subjects; 6 and 3 repetitions for two 578 
other subjects). Stimuli will be made available upon publication.  579 
 580 
Natural sounds. In a subset of 11 patients, we measured responses to a diverse set of 119 581 
natural sounds from 11 categories, similar to those from our prior studies characterizing 582 
auditory cortex11 (there were at least 7 exemplars per category). The sound categories are 583 
listed in Figure 5a. Most sounds (108) were 4 seconds in duration. The remaining 11 sounds 584 
were longer excerpts of English speech (28-70 seconds) that were included to characterize 585 
responses to speech for a separate study. Here, we just used responses to the first 4 seconds 586 
of these stimuli to make them comparable to the others. The longer excerpts were presented 587 
either at the beginning (6 patients) or end of the experiment (5 patients). The non-English 588 
speech stimuli were drawn from 10 languages: German, French, Italian, Spanish, Russian, 589 
Hindi, Chinese, Swahili, Arabic, Japanese. We classified these stimuli as “foreign speech” 590 
since nearly all were unfamiliar to our subjects, though occasionally a patient had some 591 
familiarity with one language. Twelve sounds were repeated four times to make it possible to 592 
measure response reliability and noise-correct our measures. All other stimuli were presented 593 
once. All sounds were RMS normalized.  594 
 595 
As with the main experiment, subjects did not have a formal task but the experiment was 596 
periodically paused and subjects were asked a simple question to encourage them to listen to 597 
the sounds. For the 4-second sounds, subjects were asked to identify/describe the last sound 598 
they heard. For the longer English speech excerpts, subjects were asked to repeat the last 599 
phrase they heard. 600 
 601 
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Preprocessing. Electrode responses were common-average referenced to the grand mean 602 
across electrodes from each subject. We excluded noisy electrodes from the common-average 603 
reference by detecting anomalies in the 60 Hz power band (measured using an IIR resonance 604 
filter with a 3dB down bandwidth of 0.6 Hz). Specifically, we excluded electrodes whose 60 Hz 605 
power exceeded 5 standard deviations of the median across electrodes. Because the standard 606 
deviation is itself sensitive to outliers, we estimated the standard deviation using the central 607 
20% of samples, which are unlikely to be influenced by outliers. Specifically, we divided the 608 
range of the central 20% of samples by that which would be expected from a Gaussian of unit 609 
variance. After common-average referencing, we used a notch filter to remove harmonics & 610 
fractional multiples of the 60 Hz noise (60, 90, 120, 180; using an IIR notch filter with a 3dB 611 
down bandwidth of 1 Hz; the filter was applied forward and backward).  612 
 613 
We computed broadband gamma power by measuring the envelope of the preprocessed 614 
signal filtered between 70 and 140 Hz (implemented using a 6th order Butterworth filter with 615 
3dB down cutoffs of 70 and 140 Hz; the filter was applied forward and backward). Results were 616 
similar using other frequency ranges (Fig S6). The envelope was measured as the absolute 617 
value of the analytic signal after bandpassing. We then downsampled the envelopes to 100 618 
Hz (the original sampling rate was either 512, 1000, 1024, or 2048 Hz, depending on the 619 
subject). We used simulations to ensure that this procedure would allow us to accurately 620 
recover the integration period of broadband power fluctuations (see Simulations below). 621 
  622 
Occasionally, we observed visually obvious artifacts in the broadband gamma power for a 623 
small number of timepoints. To detect such artifacts, we computed the 90th percentile of each 624 
electrode’s response distribution across all timepoints. We classified a timepoint as an outlier 625 
if it exceeded 5 times the 90th percentile value for each electrode. We found this value to be 626 
relatively conservative in that only a small number of timepoints were excluded (on average, 627 
0.04% of timepoints were excluded across all sound-responsive voxels). Because there were 628 
only a small number of outlier timepoints, we replaced the outlier values with interpolated 629 
values from nearby non-outlier timepoints.  630 
 631 
As is standard, we time-locked the iEEG recordings to the stimuli by either cross-correlating 632 
the audio with a recording of the audio collected synchronously with the iEEG data or by 633 
detecting a series of pulses at the start of each stimulus that were recorded synchronously 634 
with the iEEG data. We used the stereo jack on the experimental laptop to either send two 635 
copies of the audio or to send audio and pulses on separate channels. The audio on one 636 
channel was used to play sounds to subjects, and the audio/pulses on the other were sent to 637 
the recording rig. Sounds were played through either a Bose Soundlink Mini II speaker (at 638 
CUMC) or an Anker Soundcore speaker (at NYU). Responses were converted to units of 639 
percent signal change relative to silence by subtracting and then dividing the response of each 640 
electrode by the average response during the 500 ms before each stimulus. 641 
 642 
Electrode selection. We selected electrodes with a reliable broadband gamma response to 643 
the sound set. Specifically, we measured the test-retest correlation of each electrodes 644 
response across all stimuli (using odd vs. even repetitions). We selected electrodes with a 645 
test-retest Pearson correlation of at least 0.1, which we found to be sufficient to reliably 646 
estimate integration periods in simulations (described below). We ensured that this correlation 647 
value was significant using a permutation test, where we randomized the mapping between 648 
stimuli across repeated presentations and recomputed the correlation (using 1000 649 
permutations). We used a Gaussian fit to the distribution of permuted correlation coefficients 650 
to compute small p-values53. Only electrodes with a highly significant correlation relative to the 651 
null were kept (p < 10-5). We used a low p-value threshold, because we have found that any 652 
electrode with a borderline-significant test-retest response across an entire experiment is very 653 
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noisy. We identified 190 electrodes out of 2847 total that showed a reliable response to natural 654 
sounds based on these criteria.  655 
 656 
Denoising. Responses in non-primary regions were less reliable on average then responses 657 
in primary regions (the median test-retest correlation for each annular ROIs in Fig 4b was 658 
0.32, 0.23, 0.17). We ensured that differences in reliability could not explain our results in two 659 
ways: (1) we ensured that our model-estimated integration periods were unbiased by low data 660 
reliability (see Model-estimated integration periods and Simulations below) (2) we repeated 661 
our analyses using a denoising procedure that substantially increased the reliability of the 662 
electrode responses to a level well-above the point at which reliability might affect our 663 
integration period estimates. Our denoising procedure was motivated by the observation that 664 
iEEG responses are relatively low-dimensional and as a consequence much of the stimulus-665 
driven response variation is shared across subjects54, in contrast with the noise which differs 666 
from subject to subject. We thus projected the electrode responses from one subject onto the 667 
responses from all other subjects (using regression), which has the effect of throwing out 668 
response variation that is not present in at least two subjects. We have found this procedure 669 
to be useful when there are a relatively large number of subjects with responses from a 670 
restricted region of the brain like auditory cortex, as was the case in our study. To examine the 671 
effect of denoising, we measured split-half reliability before and after denoising (Fig S10a). 672 
When we denoised both splits of data, the median correlation increased four-fold from 0.21 to 673 
0.8 (Fig S10a, purple dots). We also found that the reliability improved when only one split 674 
was denoised, which indicates that the analysis discarded more noise than signal (reliability 675 
improved for 93% of electrodes) (Fig S10a, blue dots). Since our results were similar using 676 
original and denoised data (compare Figs 2b&4 with Figs S10b&c), we conclude that our 677 
findings cannot be explained by differences in data reliability.  678 
 679 
Electrode localization. Following standard practice, we localized electrodes as bright spots 680 
on a post-operative computer tomography (CT) image or dark spots on a magnetic resonance 681 
image (MRI), depending on whichever was available in a given patient. The post-op CT or MRI 682 
was aligned to a high-resolution, pre-operative magnetic resonance image (MRI) that was 683 
undistorted by electrodes. Each electrode was then projected onto the cortical surface 684 
computed by Freesurfer from the pre-op MRI scan, excluding electrodes that were greater than 685 
10 mm from the surface. This projection is error prone because faraway points on the cortical 686 
surface can be nearby in space due to cortical folding. To minimize gross errors, we 687 
preferentially localized sound-responsive electrodes to regions where sound-driven responses 688 
are likely to occur54. Specifically, we calculated the likelihood of observing a significant 689 
response to sound using a recently collected fMRI dataset, where responses were measured 690 
to a large set of natural sounds across 20 subjects with whole-brain coverage33 (p < 10-5, 691 
measured using a permutation test). We treated this map as a prior and multiplied it by a 692 
likelihood map, computed separately for each electrode based on the distance of that electrode 693 
to each point on the cortical surface (using a 10 mm FWHM Gaussian error distribution). We 694 
then assigned each electrode to the point on the cortical surface where the product of the prior 695 
and likelihood was greatest (which can be thought of as the maximum posterior probability 696 
solution). We smoothed the prior probability map (10 mm FWHM kernel) so that it would only 697 
affect the localization of electrodes at a coarse level, and not bias the location of electrodes 698 
locally, and we set the minimum prior probability to be 0.05 to ensure every point had non-zero 699 
prior probability. We plot the prior map and its effect on localization in Fig S11. 700 
 701 
Cross-context correlation. We now review our key analysis for estimating context invariance. 702 
MATLAB code implementing these analyses will be made available upon publication. For each 703 
electrode and segment duration, we compiled the responses surrounding all segments into a 704 
matrix, aligned to segment onset (the segment-aligned response matrix or SIR matrix) (Fig 705 
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2a). We calculated a separate SIR matrix for each context, such that corresponding rows 706 
contained the response timecourse to the same segment from different contexts. To detect if 707 
there was a lag where the response was the same across contexts, we correlated 708 
corresponding columns across SIR matrices from different contexts (the cross-context 709 
correlation). We compared the cross-context correlation with the correlation when the context 710 
was identical using repeated presentations of the same sequence (the noise ceiling). 711 
 712 
The noise ceiling exhibited reliable variation across lags, which is evident from the fact that the 713 
cross-context correlation remained yoked to the noise ceiling when the segment duration was 714 
long relative to the integration period (evident for example in the HG electrode’s data for 250 715 
and 500 ms in Fig 2b). This variation is expected since the sounds that happen to fall within 716 
the integration period will vary with lag, and the noise ceiling will depend upon how strongly 717 
the electrode responds to the sounds within the integration period. It is also evident that the 718 
variation in the noise ceiling is periodic. This periodicity is an inevitable consequence of 719 
correlating across a fixed set of segments. To see this, consider the fact that the onset of one 720 
segment is also the offset of the preceding segment. Since we are correlating across segments 721 
for a given lag, the values being used to compute the correlation are nearly identical at the 722 
start and end of a segment (the only difference occurs for the first and last segment of the 723 
entire sequence). The same logic applies to all lags that are separated by a period equal to 724 
the segment duration.  725 
 726 
Because the shorter segments were subsets of the longer segments, we could consider two 727 
types of context: (1) random context, where a segment is flanked by random other segments 728 
(2) natural context, where a segment is a part of a longer segment and thus surrounded by its 729 
natural context. Since the two contexts being compared must differ, one of the contexts always 730 
has to be random, but the other context can be random or natural. In practice, we found similar 731 
results when comparing random-only contexts and when comparing random and natural 732 
contexts (Fig S4). This fact is practically useful since it greatly increases the number of 733 
comparisons that can be made. For example, each 31 millisecond segment had 2 random 734 
contexts (one per sequence) and 12 natural contexts (2 sequences x 6 longer segment 735 
durations). The two random contexts can be compared with each other as well as with the 736 
other 12 natural contexts. For our main analyses, we averaged the cross-context correlation 737 
across all of these comparisons for maximal statistical power. 738 
 739 
We note that the cross-context correlation will typically be more reliable for shorter segment 740 
durations since there are more segments with which to compute the correlation. We consider 741 
this property useful since for electrodes with shorter integration periods there will be a smaller 742 
number of lags at the shorter segment durations that effectively determine the integration 743 
period, and thus it is useful if these lags are more reliable. Conversely, electrodes with longer 744 
integration periods exhibit a more gradual build-up of the cross-context correlation at the longer 745 
segment durations, and our model enables us to pool across all of these lags to arrive at a 746 
robust estimate of the integration period.  747 
 748 
Model-estimated integration periods. We modeled temporal integration periods using a 749 
Gamma-distributed window (ℎ) that we scaled and shifted in time: 750 
 751 

(1)																																																														ℎ(𝑡; 𝛿, 𝜆, 𝛽) = 𝑔 4
𝑡 − 𝛿
𝜆 , 𝛽6	752 

(2)																																																																						𝑔(𝑡; 𝛽) =
𝛽7

Γ(𝛽) 𝑡
79:𝑒97<	 753 

 754 
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The shape is determined by 𝛽 and varies from more exponential to more bell-shaped (Fig S5). 755 
The integration width and center do not correspond directly to any of the three parameters 756 
(𝛿, 𝜆, 𝛽), mainly because the scale parameter (𝜆) alters both the center and width. The 757 
integration width was defined as the smallest interval that contained 75% of the window’s 758 
mass, and the integration center was defined as the window’s median. Both parameters were 759 
calculated numerically from the cumulative distribution function of the window.  760 
 761 
For a given integration window, we predicted the cross-context correlation at each lag and 762 
segment duration by measuring how much the integration period overlaps the shared central 763 
segment (𝑤) vs. the N surrounding context segments (𝛽#) (see Fig 3b): 764 
 765 

(3)																																																																		𝑟'()*
𝑤=

𝑤= + ∑ 𝛽#=@
#A:

 766 

 767 
where 𝑟'()* is the measured noise ceiling, and the ratio on the right is the predicted correlation 768 
in the absence of noise. The predicted cross-context correlation varies with the segment 769 
duration and lag because the overlap varies with the segment duration and lag. When the 770 
integration period only overlaps the shared segment (𝑤 = 1, ∑𝛽# = 0), the model predicts a 771 
correlation of 1 in the absence of noise, and when the integration period only overlaps the 772 
surrounding context segments (𝑤 = 0, ∑𝛽# = 1), the model predicts a correlation of 0. In 773 
between these two extremes, the predicted cross-context correlation equals the fraction of the 774 
response driven by the shared segment, with the response variance for each segment given 775 
by the squared overlap with the integration period. A formal derivation of this equation is given 776 
at the end of the Methods (see Deriving a prediction for the cross-context correlation). For a 777 
given segment duration, the overlap with each segment was computed by convolving the 778 
model integration period with a boxcar function whose width is equal to the segment duration 779 
(with edges tapered to account for cross-fading).  780 
 781 
We varied the width, center and shape of the model integration period and selected the window 782 
with the smallest prediction error. Since the cross-context correlation is more reliable for 783 
shorter segment durations due to the greater number of segments, we weighted the error by 784 
the number of segments used to compute the correlation before averaging across segment 785 
durations. Integration widths varied between 31.25 and 1 second (using 100 logarithmically 786 
spaced steps). Integration centers varied from the minimum possible given for a causal window 787 
up to 500 milliseconds beyond the minimum in 10 millisecond steps. We tested five window 788 
shapes (𝛽 = 1,2,3,4,5).  789 
 790 
We found in simulations that there was an upward bias in the estimated integration widths for 791 
noisy data when using the mean squared error (see Simulations below). We checked that this 792 
bias did not affect our results in two ways. First, we repeated our analyses using denoised 793 
data, whose reliability was well above the point at which the bias has any effect (Fig S10). 794 
Second, we derived a bias-corrected metric, which substantially reduced the bias in 795 
simulations (see Bias correction below). We used this bias-corrected metric for all of our 796 
analyses, but found that the results were very similar with and without bias correction, 797 
indicating that our data were sufficiently reliable to avoid any substantial bias even without 798 
denoising (compare Fig 4 which shows results with correction with Fig S12 which shows 799 
results without correction). 800 
 801 
We assessed the significance of our model predictions by creating a null distribution using 802 
phase-scrambled model predictions. Phase scrambling exactly preserves the mean, variance 803 
and autocorrelation of the predictions but alters the locations of the peaks and valleys. Phase 804 
scrambling was implemented by shuffling the phases of different frequency components 805 
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without altering their amplitude and then reconstructing the signal (using the FFT/iFFT). After 806 
phase-scrambling, we remeasured the error between the predicted and measured cross-807 
context correlation, and selected the model with the smallest error (as was done for the 808 
unscrambled predictions). We repeated this procedure 100 times to build up a null distribution, 809 
and used this null distribution to calculate a p-value for the actual error based on unscrambled 810 
predictions (again fitting the null distribution with a Gaussian to calculate small p-values). For 811 
95% of sound-responsive electrodes (181 of 190), the model’s predictions were highly 812 
significant (p < 10-5). 813 
 814 
Simulations. We tested our complete analysis pipeline using simulated data. Specifically, we 815 
modulated a broadband carrier (Gaussian noise filtered between 70 and 140 Hz) with the 816 
waveform amplitude of the stimuli from our TCI paradigm, integrated within a Gamma-817 
distributed integration period. We added Gaussian noise to manipulate the test-retest reliability 818 
of these responses and thus determine the minimum reliability needed to accurately infer 819 
integration periods. We simulated four different responses to the same stimuli using 820 
independent samples of the broadband carrier and additive noise (for most subjects we had 821 
four repetitions), and iteratively increased or decreased the noise level to achieve a desired 822 
split-half correlation (within a tolerance of 0.001).  823 
 824 
We then applied our complete analysis pipeline to these simulated responses. Our goal was 825 
to assess if we could accurately infer the true integration width from the simulated data. We 826 
thus varied the integration width of the simulated response (from 31 ms to 500 ms in octave 827 
steps), using a fixed shape (𝛽 = 3) and center (set to the minimum value for a casual window). 828 
However, we did not assume that the shape or center were known, and thus varied the shape 829 
and center along with the width when inferring the best-fit integration period, as was done for 830 
the iEEG analyses.  831 
 832 
We found that the estimated integration widths were close to the true widths when the split-833 
half reliability was at least 0.1 (Fig S13), which was the reliability cutoff used to select sound-834 
responsive electrodes. When the test-retest reliability was low, there was an upwards bias in 835 
the estimated widths when using the mean squarer error (Fig S13, top panel), which was 836 
substantially reduced using our bias-corrected metric (Fig S13, bottom panel; see Bias 837 
correction below).  838 
 839 
Anatomical ROI analyses. We grouped electrodes into regions-of-interest (ROI) based on 840 
their anatomical distance to posteromedial Heschl’s gyrus (TE1.1)55 (Fig 4b), which is a 841 
common anatomical landmark for primary auditory cortex31,56. Distance was measured on the 842 
flattened 2D representation of the cortical surface as computed by Freesurfer. Electrodes were 843 
grouped into three 10 millimeter bins (0-10, 10-20, and 20-30 mm), and we measured the 844 
median integration width and center across the electrodes in each bin, separately for each of 845 
the two hemispheres.  846 
 847 
Error bars and significance were computed by bootstrapping across subjects. Specifically, we 848 
resampled subjects with replacement 10,000 times and recomputed the median integration 849 
width or center within each ROI using the resampled dataset. A small fraction of these samples 850 
(1.2%) were discarded because the resampled dataset did not contain any electrodes in one 851 
of the six ROIs (3 distances x 2 hemispheres). To assess whether two ROIs significantly 852 
differed (e.g. nearest vs. farthest, left vs. right), we counted the fraction of samples where the 853 
resampled values were consistently higher or lower in one of the two ROIs (whichever fraction 854 
was lower), subtracted this fraction from 1, and multiplied by 2 to arrive at a two-sided p-value.  855 
 856 
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Category-selective components at different temporal integration periods. To investigate 857 
selectivity for categories, we used responses to the larger set of 119 natural sounds that were 858 
tested in a subset of 11 patients. There were 104 electrodes from these 11 subjects that 859 
passed the inclusion criteria described above (out of 181 total). We grouped these electrodes 860 
based on the width of their integration period in octave intervals, spaced a half-octave apart 861 
(intervals shown in Fig 5a). Each group had between 22 and 43 electrodes. We then used 862 
several different analyses to investigate the degree of category selectivity in each group. 863 
 864 
We used a combination of component methods (Fig 5a,c) and individual-electrode analyses 865 
(Fig 5b) to assess category selectivity. Component methods are commonly used to summarize 866 
responses from a population of electrodes or neurons57. And we have previously shown that 867 
component methods can better isolate selectivity for categories compared with analyzing 868 
individual iEEG electrodes54 or individual fMRI voxels11. To visualize the dominant structure at 869 
each integration period, we projected the responses onto the top two principle components 870 
(PCs) from each group of electrodes (Fig S8). If these components exhibit selectivity for 871 
categories then the average component response to different categories should appear 872 
segregated when plotted as a trajectory. Because the first two PCs might obscure category 873 
selectivity present at higher PCs, we repeated the analysis using the two components that best 874 
separated the categories, estimated using linear discriminant analysis (LDA)58 (Fig 5a). LDA 875 
was applied to timepoints between 250 milliseconds and 4 seconds after stimulus onset to 876 
account for response delays. To avoid statistical circularity, we used half the sounds to infer 877 
components, and the other half to measure their response. And to prevent the analysis from 878 
targeting extremely low-variance components, we applied LDA to the top five PCs from each 879 
electrode group.  880 
 881 
PCs were computed using responses from the TCI experiment, where we had responses from 882 
a larger number of electrodes and subjects (181 electrodes from 18 subjects). We then 883 
estimated the response of these same PCs to the larger set of 119 natural sounds using the 884 
subset of electrodes with responses in both experiments (104 electrodes from 11 subjects). 885 
Since each PC is just a weighted sum of the electrode responses, we simply multiplied the 886 
responses to the 119 natural sounds by the reconstruction weights inferred from the TCI 887 
experiment. Since only a subset of electrodes were tested in both experiments, we inferred 888 
the reconstruction weights using just the electrodes tested in both experiments, by finding the 889 
linear combination of these electrodes that best approximated each PC. 890 
 891 
Feature predictions. As a complement to the component analyses, we measured the degree 892 
to which individual electrode responses could be predicted from category labels (Fig 5b). We 893 
binned the results based on integration width of the electrode, using the same octave-spaced 894 
intervals. And we compared the prediction accuracies for the category labels with those from 895 
a cochleagram representation of sound. 896 
 897 
Cochleagrams were calculated using a cosine filterbank with bandwidths designed to mimic 898 
cochlear tuning31 (29 filters between 50 Hz and 20 kHz, 2x overcomplete). The envelopes from 899 
the output of each filter were compressed to mimic cochlear amplification (0.3 power). The 900 
frequency axis was resampled to a resolution of 12 cycles per octave and the time axis was 901 
resampled to 100 Hz (the sampling rate used for all of our analyses).  902 
 903 
For each category label, we created a binary timecourse with 1s for all timepoints/sounds from 904 
that category, and 0s for all other timepoints. We only labeled timepoints with a 1 if they had 905 
sound energy that exceeded a minimum threshold. The sound energy at each moment in time 906 
was calculated by averaging the cochleagram across frequency, and the minimum threshold 907 
was set to one fifth the mean energy across all timepoints and sounds.  908 
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 909 
We predicted electrode responses between 500 milliseconds pre-stimulus onset to 4 seconds 910 
post-stimulus onset. We used ridge regression to learn a linear mapping between these 911 
features and the response. We included five delayed copies of each regressor, with the delays 912 
selected to span the integration period of the electrode (from the bottom fifth to the top fifth 913 
quintile). Regression weights were fit using the 107 sounds that were presented once, and we 914 
evaluated the fits using the 12 test sounds that were repeated four times each, making it 915 
possible to compute a noise-corrected measure of prediction accuracy59,60: 916 
 917 

(4)																																																						
[0.5 ∗ 𝑐𝑜𝑟𝑟(𝑟:, 𝑝) + 0.5 ∗ 𝑐𝑜𝑟𝑟(𝑟=, 𝑝)]=

𝑐𝑜𝑟𝑟(𝑟:, 𝑟=)
 918 

 919 
where 𝑟: and 𝑟= are two independent measures of the response (computed using odd and even 920 
repetitions) and 𝑝 is the prediction computed from the training data. We used cross-validation 921 
within the training set to choose the regularization coefficient (testing a wide range of values 922 
from 2-100 to 2100 in octave steps).  923 
 924 
Significance and error bars were calculated using bootstrapping across subjects (the same 925 
procedure described above in Anatomical ROI analyses). To test whether the prediction 926 
accuracy increased or decreased as a function of the integration width, we measured the slope 927 
between the noise-corrected prediction accuracy and the integration width (on a logarithmic 928 
scale). We then tested whether the bootstrapped slopes for the category and cochlear 929 
predictions differed significantly from zero and from each other. 930 
 931 
Speech and music selectivity. We separately quantified the degree of speech and music 932 
selectivity at each integration width (Fig 5c). Selectivity was quantified as the degree of 933 
separation between speech/music and all other sounds, along the components that showed 934 
the greatest selectivity for speech/music. Both English and foreign speech sounds were 935 
grouped as speech, since they yielded similar responses, consistent with prior results11,12. 936 
Vocal music was excluded from the speech selectivity analysis since it produced an 937 
intermediate responses along the speech-selective component (Fig S9), as expected since 938 
vocals contain speech11. Instrumental music, vocal music and drumming were grouped as 939 
music, since they produce above average responses in music-selective brain regions33.  940 
 941 
The weights for each component were learned by regressing the electrode responses from 942 
each group against a binary category vector with 1s for all timepoints/sounds from the target 943 
category (e.g. speech) and 0s for all other timepoints/sounds. To avoid over-fitting to low-944 
variance signals, we again applied our analysis to the top 5 PCs from each group. We used 945 
independent sounds to estimate components and measure their response (5-fold cross-946 
validation, each fold had a similar number of sounds per category). To account for the 947 
response delay we only used responses between 250 milliseconds and 4 seconds post-948 
stimulus onset. 949 
 950 
Figure S9 plots the average component response timecourse to each sound category 951 
(averaged across test folds). Figure 5c plots the average separation, measured as the d-prime 952 
between responses to sounds from the target and non-target category across all timepoints 953 
(between 250 milliseconds and 4 seconds post-stimulus onset). D-prime is a standard 954 
measure of the separation between two responses, and is defined as the difference in the 955 
mean response divided by square root of the average variances: 956 
 957 
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(5)																																																																																	
𝜇: − 𝜇=

P𝜎:
=

2 + 𝜎=
=

2

 958 

 959 
The average within-category variance in the denominator of equation 5 is a sum of the 960 
stimulus-driven response variance, which is repeatable across measurements, and the noise 961 
variance, which is not (the means are unbiased by noise assuming the noise is zero mean). 962 
We therefore noise-corrected our d-prime measure by subtracting off an estimate of the noise 963 
variance from the measured within-category variance. We estimated the noise variance as half 964 
of the error variance to repeated presentations of the same stimulus (using the 12 sounds 965 
repeated 4 times)31. We used half of the error variance, since the error reflects the difference 966 
between two independent measurements of the same signal, and the total variance of two 967 
independent signals that are subtracted or summed is additive.  968 
 969 
Significance and error bars were computed via bootstrapping across sounds. Unlike other 970 
analyses, we did not bootstrap across subjects because doing so would have been 971 
inappropriate for this particular analysis. Specifically, each component was computed by 972 
regressing the electrode responses from all subjects against the target category vector, and 973 
thus in the language of regression, electrodes/subjects are features and timepoints/sounds 974 
are observations. While bootstrapping across observations (timepoints/sounds) is standard61, 975 
bootstrapping across features (electrodes/subjects) is inappropriate, because repeating 976 
features does not change the least-squares solution.  977 
 978 
We bootstrapped across sounds by sampling sounds with replacement, separately for the 979 
target and non-target category (e.g. speech and non-speech sounds). We also resampled 980 
sounds from the test set used to calculate the noise variance. We then recalculated the noise-981 
corrected d-prime using the component timecourses for the resampled sounds (repeating 982 
timecourses for sounds sampled more than once). To test if selectivity increased with the 983 
integration width, we measured if the bootstrapped slope between selectivity and the 984 
integration width was significantly greater than 0. 985 
 986 
Deriving a prediction for the cross-context correlation. We now derive the equation used 987 
to predict the cross-context correlation from a model integration period (equation 3). The cross-988 
context correlation is computed across segments for a fixed lag and segment duration by 989 
correlating corresponding columns of SIR matrices from different contexts (Fig 2a). Consider 990 
two pairs of cells (𝑒R,S, 𝑒R,T) from these SIR matrices, representing the response to a single 991 
segment (𝑠) in two different contexts (𝐴, 𝐵) for a fixed lag and segment duration (we do not 992 
indicate the lag and segment duration to simplify notation). To reason about how the shared 993 
and context segments might relate to the cross-context correlation at each moment in time, 994 
we assume that the response reflects the sum of the responses to each segment weighted by 995 
the degree of overlap with the integration period (Fig 3b): 996 
 997 

(6)																																																																𝑒R,S = 𝑤𝑟(𝑠) +	X𝛽#𝑟Y𝑐R,S,#Z
@

#A:

	998 

(7)																																																																𝑒R,T = 𝑤𝑟(𝑠) +	X𝛽#𝑟(𝑐R,T,#)
@

#A:

	 999 

 1000 
where 𝑟(𝑠) reflects the response to the shared central segment, 𝑟(𝑐R,S,#) and 𝑟(𝑐R,T,#) reflect 1001 
the response to the n-th surrounding segment in each of the two contexts (i.e. the segment 1002 
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right before and right after, two before and two after, etc.), and 𝑤 and 𝛽# reflect the degree of 1003 
overlap with the shared and surrounding segments, respectively (illustrated in Fig 3b).  1004 
 1005 
Below we write down the expectation of the cross-context correlation in the absence of noise, 1006 
substitute equations 6 & 7, and simplify. Moving from line 8 to line 9 takes advantage of the 1007 
fact that contexts A and B are no different in structure and so their expected variance is the 1008 
same. Moving from line 10 to line 11, we have taken advantage of the fact that surrounding 1009 
context segments are random, and thus all cross products that involve the context segments 1010 
are zero in expectation, canceling out all of the terms except those noted in equation 11. 1011 
Finally, in moving from equation 11 to 12, we take advantage of the fact that there is nothing 1012 
special about the segments that make up the shared central segments compared with the 1013 
surrounding context segments, and their expected variance is therefore equal and cancels 1014 
between the numerator and denominator.  1015 
 1016 

(8)																																	Ε[𝑟'\]RR] =
Ε^_𝑒R,S𝑒R,T`

PΕ^_𝑒R,S= `Ε^_𝑒R,T= `
	1017 

(9) 																																																	= 	
Ε^_𝑒R,S𝑒R,T`
Ε^_𝑒R,S= `

		1018 

(10) 																																															=
Ε^_Y𝑤𝑟(𝑠) +	∑ 𝛽#𝑟Y𝑐R,S,#Z@

#A: ZY𝑤𝑟(𝑠) +	∑ 𝛽#𝑟Y𝑐R,T,#Z@
#A: Z`

Ε^ aY𝑤𝑟(𝑠) +	∑ 𝛽#𝑟Y𝑐R,S,#Z@
#A: Z=b

	1019 

(11) 																																															= 	
𝑤=Ε^[𝑟=(𝑠)]

𝑤=Ε^[𝑟=(𝑠)] + ∑ 𝛽#=Ε^ a𝑟Y𝑐R,S,#Z
=b@

#A:

	1020 

(12) 																																															= 	
𝑤=

𝑤= + ∑ 𝛽#=@
#A:

 1021 

 1022 
We multiplied equation 12 by the noise ceiling to arrive at our prediction of the cross context 1023 
correlation (equation 3).  1024 
 1025 
Bias correction. Here, we derive the correction procedure used to minimize the bias when 1026 
evaluating model predictions via the squared error.  1027 
 1028 
Before beginning, we highlight a potentially confusing, but necessary distinction between noisy 1029 
measures and noisy data. As we show below, the bias is caused by the fact that our correlation 1030 
measures are noisy in the sense that they will not be the same across repetitions of the 1031 
experiment. The bias is not directly caused by the fact that the data is noisy, since if there are 1032 
enough segments the correlation measures will be reliable even if the data are noisy, which is 1033 
what matters since we explicitly measure and account for the noise ceiling. To avoid confusion, 1034 
we use the superscript (𝑛) to indicate noisy measures, (𝑡) to indicate the true value of a noisy 1035 
measure (i.e. in the limit of infinite segments), and (𝑝) to indicate a “pure” measure computed 1036 
from noise-free data.  1037 
 1038 
Consider the error between the measured (𝑟'\]RR

(#) ) and model-predicted (𝑝'\]RR
(#) ) cross-context 1039 

correlation for a single lag and segment duration (the model prediction is noisy because of 1040 
multiplication with the noise ceiling which is measured from data): 1041 
 1042 
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(13)																																																																											a𝑟'\]RR
(#) − 𝑝'\]RR

(#) b
=
 1043 

 1044 
Our final cost function averaged these pointwise squared errors across all lags and segment 1045 
durations weighted by the number of segments used to compute each correlation (which was 1046 
greater for shorter segment durations). Here, we analyze each lag and segment duration 1047 
separately, and thus ignore the influence of the weights which is simply a multiplicative factor 1048 
that can be applied at the end after bias correction.  1049 
 1050 
Our analysis proceeds by writing the measured (𝑟'\]RR

(#) ) and predicted (𝑝'\]RR
(#) ) cross-context 1051 

correlation in terms of their underlying true and pure measures (equations 14 to 17). We then 1052 
substituting these definitions into the expectation of the squared error and simplify (equations 1053 
18 to 21), which yields insight into the cause of the bias. 1054 
 1055 
The cross-context correlation (𝑟'\]RR

(#) ) is the sum of the true cross-context correlation plus error: 1056 
 1057 
(14)																																																																			𝑟'\]RR

(#) = 𝑟'\]RR
(<) + 𝑒'\]RR 1058 

 1059 
And the true cross-context correlation is the product of the pure/noise-free cross-context 1060 
correlation (𝑟'\]RR

(d) ) with the true noise ceiling (𝑟'()*
(<) ): 1061 

 1062 
(15)																																																																			𝑟'\]RR

(<) = 𝑟'\]RR
(d) 𝑟'()*

(<)  1063 
 1064 
The predicted cross-context correlation is the product of the noise-free prediction (𝑝'\]RR

(d) ) times 1065 
the measured noise ceiling (𝑟'()*

(#)): 1066 
 1067 
(16)																																																																	𝑝'\]RR

(#) = 𝑝'\]RR
(d) 𝑟'()*

(#) 1068 
 1069 
And the measured noise ceiling is the sum of the true noise ceiling (𝑟'()*

(<) ) plus error (𝑒'()*
(#) ): 1070 

 1071 
(17)																																																																			𝑟'()*

(#) = 𝑟'()*
(<) + 𝑒'()* 1072 

 1073 
Below we substitute the above equations into the expectation for the squared error and 1074 
simplify. Only the error terms (𝑒'\]RR and 𝑒'()*) are random variables, and thus in equation 20, 1075 
we have moved all of the other terms out of the expectation. In moving from equations 20 to 1076 
21, we make the assumption / approximation that the errors are uncorrelated and zero mean, 1077 
which causes all but three terms to dropout in equation 21. This approximation, while possibly 1078 
imperfect, substantially simplifies the expectation and makes it possible to derive a simple bias 1079 
correction procedure, as described next.  1080 
 1081 

(18)		Ε ef𝑟'\]RR
(#) − 𝑝'\]RR

(#) g
=
h = Ε ijf𝑟'\]RR

(d) 𝑟'()*
(<) + 𝑒'\]RRg − 4𝑝'\]RR

(d) f𝑟'()*
(<) + 𝑒'()*g6k

=

l	1082 

(19) 																																										= Ε ef𝑟'()*
(<) f𝑟'\]RR

(d) − 𝑝'\]RR
(d) g + 𝑒'\]RR − 𝑝'\]RR

(d) 𝑒'()*g
=
h	1083 

(20) 																																										= 𝑟'()*
(<) = f𝑟'\]RR

(d) − 𝑝'\]RR
(d) g

=
+ 	Ε[𝑒'\]RR= ] +	f𝑝'\]RR

(d) g
=
Ε[𝑒'()*= ]	1084 

+2𝑟'()*
(<) f𝑟'\]RR

(d) − 𝑝'\]RR
(d) g Ε[𝑒'\]RR] − 2𝑟'()*

(<) f𝑟'\]RR
(d) − 𝑝'\]RR

(d) g 𝑝'\]RR
(d) Ε[𝑒'()*]	1085 
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−2𝑝'\]RR
(d) Ε[𝑒'()*𝑒'\]RR]	1086 

(21) 																																									≈ 𝑟'()*
(<) = f𝑟'\]RR

(d) − 𝑝'\]RR
(d) g

=
+ 	Ε[𝑒'\]RR= ] +	f𝑝'\]RR

(d) g
=
Ε[𝑒'()*= ] 1087 

 1088 
The first term in equation 21 is what we would hope to measure: a factor which is proportional 1089 
to the squared error between the pure cross-context correlation computed from noise-free data 1090 
(𝑟'\]RR
(d) ) and the model’s prediction of the pure cross-context correlation (𝑝'\]RR

(d) ). The second 1091 
term does not depend upon the model’s prediction and thus can be viewed as a constant from 1092 
the standpoint of analyzing model bias. The third term is potentially problematic, since it biases 1093 
the error upwards based on the squared magnitude of the predictions, with the magnitude of 1094 
the bias determined by the magnitude of the errors in the noise ceiling. This term results in an 1095 
upward bias in the estimated integration width, because narrower integration periods have 1096 
larger squared magnitudes on average. This bias is only present when there is substantial 1097 
error in the noise ceiling, which explains why we only observed the bias for data with low 1098 
reliability (Fig S13, top panel). 1099 
  1100 
We can correct for this bias by subtracting a factor whose expectation is equal to the 1101 
problematic third term in equation 21. All we need is a sample of the error in the noise ceiling, 1102 
which our procedure naturally provides since we measure the noise ceiling separately for 1103 
segments from each of the two contexts and then average these two estimates. Thus, we can 1104 
get a sample of the error by subtracting our two samples of the correlation ceiling and dividing 1105 
by 2 (averaging is equivalent to summing and dividing by 2 and the noise power of summed 1106 
and subtracted signals is equal). We then take this sample of the error multiply it by our model 1107 
prediction, square the result, and subtract this number from the measured squared error. This 1108 
procedure is done separately for every lag and segment duration. 1109 
 1110 
We found this procedure substantially reduced the bias when pooling across both random and 1111 
natural contexts (Fig S13, bottom panel), as was done for all of our analyses except those 1112 
shown in Figure S4. When only considering random contexts, we found this procedure 1113 
somewhat over-corrected the bias (inducing a downward bias for noisy data), perhaps due to 1114 
the influence of the terms omitted in our approximation (equation 21). However, our results 1115 
were very similar when using random or natural contexts (Fig S4), when using either the 1116 
uncorrected (Fig S12) or bias-corrected error (Fig 2), and when using highly denoised data 1117 
(Fig S10). Thus, we conclude that our findings were not substantially influenced by noise and 1118 
were robust to details of the analysis.  1119 
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 1272 
Fig S1. Histogram of phoneme, syllable, and word durations in TIMIT. Durations of phonemes, 1273 
multi-phoneme syllables, and multi-syllable words in the commonly used TIMIT database. Phonemes 1274 
and words are labeled in the database. Syllables were computed from the phoneme labels using the 1275 
software tsylb262. The median duration for each structure is 64, 197, and 479 milliseconds, respectively.  1276 
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 1277 
Fig S2. Cross-context correlation for 20 representative electrodes. Electrodes were selected to 1278 
illustrate the diversity of integration periods. Specifically, we partitioned all sound-responsive electrodes 1279 
into 5 groups based on the width of their integration period, estimated using a model (Fig 3 illustrates 1280 
the model). For each group, we plot the four electrodes with the highest SNR (as measured by the test-1281 
retest correlation across the sound set). Electrodes have been sorted by their integration width, which 1282 
is indicated to the right of each plot, along with the location, hemisphere and subject index for each 1283 
electrode. Each plot shows the cross-context correlation and noise ceiling for a single electrode and 1284 
segment duration (indicated above each column). There were more segments for the shorter durations, 1285 
and as a consequence, the cross-context correlation and noise ceiling were more stable/reliable for 1286 
shorter segments (the number of segments is inversely proportional to the duration). This property is 1287 
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useful because at the short segment durations, there are a smaller number of relevant time lags, and 1288 
it is useful if those lags are more reliable. The model used to estimate integration periods pooled across 1289 
all lags and segment durations, taking into account the reliability of each datapoint (see Model-1290 
estimated integration periods in the Results and Methods).  1291 
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 1292 

 1293 
Fig S3. Split-half analysis across the sound set. Sound segments were excerpted from 10 sounds. 1294 
To assess the robustness of our results to the sounds tested, we estimated integration periods using 1295 
segments drawn from two non-overlapping splits of 5 sounds each (listed on the left). Since many non-1296 
primary regions only respond strongly to speech or music10–12, we included speech and music in both 1297 
splits. Format is analogous to Figure 4 but only showing integration widths (integration centers were 1298 
also similar between splits).  1299 
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 1300 

 1301 
Fig S4. Comparing random and natural contexts. Shorter segments were created by subdividing 1302 
longer segments, which made it possible to consider two types of context: (1) random context, in which 1303 
each segment is surrounded by random other segments (2) natural context, where a segment is a 1304 
subset of a longer segment and thus surrounded by its natural context. When comparing responses 1305 
across contexts, one of the two contexts must always be random so that the contexts differ. But the 1306 
other context can be random or natural. Our main analyses pooled across both types of comparison. 1307 
Here, we show integration widths estimated by comparing either purely random contexts (top panel) or 1308 
comparing random and natural contexts (bottom panel). Format is analogous to Figure 4.   1309 
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 1310 
Fig S5. Results for different model window shapes. We modeled integration periods using window 1311 
shapes that varied from more exponential to more Gaussian (the parameter 𝛽 in equations 1&2 controls 1312 
the shape of the window, see Methods). For our main analysis, we selected the shape that yielded the 1313 
best prediction for each electrode. This figure plots integration widths estimated using three different 1314 
fixed shapes. Format is analogous to Figure 4.   1315 
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 1316 

 1317 
Fig S6. Results for different frequency ranges. For our primary analysis, we measured the 1318 
broadband power of each electrode between 70 and 140 Hz. This figure shows the results of measuring 1319 
integration widths from three different subsets of this broader range (equally spaced on a logarithmic 1320 
scale). Format is analogous to Figure 4. Results were similar to those of our main analysis, but using 1321 
a lower frequency range (70-88 Hz) appeared to limit the shortest integration widths that were 1322 
detectable by our paradigm, plausibly because faster power fluctuations are better conveyed by a faster 1323 
carrier. 1324 

1325 
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 1326 
Fig S7. Relationship between integration widths and centers. This figure shows a scatter plot 1327 
between integration centers and widths. Each dot corresponds to an electrode and larger dots indicate 1328 
that multiple electrodes were assigned to that pairing of centers/widths. The integration width places a 1329 
lower bound on the integration center for a causal window (blue line). Integration centers scaled 1330 
approximately linearly with the integration width (orange line), and remained relatively close to the 1331 
minimum possible for a casual window. On the left, we show results when integration periods were 1332 
explicitly constrained to be causal, and on the right, we show results without this constraint. Results 1333 
were similar in the two cases because the inferred integration periods were close-to-causal without 1334 
being explicitly constrained to be so.  1335 
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 1336 

 1337 
Fig S8. Principal components at different integration periods. Electrodes were grouped based on 1338 
the width of their integration period in octave intervals (shown above each plot). Responses were then 1339 
projected onto the top two principal components from each group. This figure shows the average 1340 
component response timecourse to each category, plotted as a trajectory. Format is the same Figure 1341 
5a.   1342 
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 1343 
Fig S9. Response components most selective for speech or music. Electrodes were grouped 1344 
based on the width of their integration period in octave intervals (shown above each plot). The 1345 
responses from each group were then projected onto the components that showed the greatest speech 1346 
(top panel) or music selectivity (bottom panel). The speech-selective component was optimized to 1347 
separate responses to English and foreign speech from all other sounds (excluding vocal music which 1348 
has speech). The music-selective component was optimized to separate responses to instrumental 1349 
music, vocal music, and drumming from all other sounds. Each line reflects the average component 1350 
response timecourse to one sound category. The timecourses have been smoothed so that lines for 1351 
different categories can be clearly seen (100 millisecond FWHM Gaussian kernel). Independent sounds 1352 
were used to estimate components and measure their response. Figure 5c quantifies how well 1353 
separated speech and music are along each component. Separation was calculated using the 1354 
response timecourses to individual sounds without any smoothing (using all timepoints between 250 1355 
milliseconds and 4 seconds post-stimulus onset).   1356 
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 1357 

 1358 
Fig S10. Integration periods estimated from denoised data. a, Data were denoised by projecting 1359 
electrode responses from one subject onto those from all other subjects. This procedure leads to a 1360 
boost in SNR because the stimulus-driven response is more consistent across subjects than the noise. 1361 
Each dot shows the split-half reliability of one electrode before (x-axis) or after (y-axis) denoising. The 1362 
denoising procedure was either applied to both splits of data (purple dots) or to only one split of data 1363 
(blue dots). Applying the analysis to both splits reveals the overall change in reliability. Applying the 1364 
analysis to one split provides a fairer test of whether the denoising analysis removes more signal or 1365 
noise. b, The cross-context correlation for the same example electrodes shown in Fig 2b, but measured 1366 
from denoised responses. The trends are similar but the noise ceiling is much higher. c, Integration 1367 
widths estimated from denoised responses. Same format as Figure 4.  1368 
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 1369 
Fig S11. Constraining the anatomical localization of electrodes. a, Map showing the probability of 1370 
observing a significant response to sound at each point in the brain. The map was computed using 1371 
whole-brain fMRI responses to large collection of 192 natural sounds across a large cohort of 20 1372 
subjects33. b, Electrode localization based on mapping each electrode to the nearest point on the 1373 
cortical surface. Due to cortical folding, nearby points in space can be faraway on the cortical surface. 1374 
A s a consequence, small localization errors can cause electrodes to be mapped to the wrong region. 1375 
Such errors like explain why some electrodes have been localized to the supramarginal gyrus, which 1376 
abuts the superior temporal gyrus where responses to sound are much more common. c, To minimize 1377 
gross localization errors, we treated the probability map of sound-driven responses shown in panel A 1378 
as a prior and used to it constrain the localization (see Electrode localization in the Methods). Because 1379 
the prior map is highly smooth this approach did not substantially affect the localization of electrodes 1380 
at a fine spatial scale.  1381 
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 1382 
Fig S12. Results using the squared error uncorrected for bias. For our main analysis we quantified 1383 
prediction accuracy using a bias-corrected variant of the squared error. Here, we plot integration widths 1384 
estimated using the uncorrected squared error. Results were similar using the uncorrected and bias-1385 
corrected error (compare with Fig 4), suggesting our data were sufficiently reliable that the bias had 1386 
little effect.  1387 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.09.30.321687doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321687
http://creativecommons.org/licenses/by-nd/4.0/


 
44 

 1388 
Fig S13. Results of model simulation. We simulated a response that integrated sound amplitude 1389 
within a Gamma-distributed integration period. The integrated amplitudes were then used to modulate 1390 
the power of a broadband gamma signal. We tested our ability to infer the correct integration width 1391 
using our complete analysis pipeline. Black dots show the estimated width for a single simulated 1392 
response, and red dots show the median width across 100 simulations. Results are plotted for different 1393 
SNRs, manipulated by adding variable amounts of noise to achieve a desired test-retest reliability (the 1394 
split-half correlation of the simulated data is shown above each plot). When using the squared error to 1395 
measure prediction accuracy, we found there was an upward bias for low SNRs (top panel). To address 1396 
this issue, we derived a variant of the squared error that largely corrected the bias (bottom panel) (see 1397 
Bias correction in Methods).  1398 
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Table S1. Sound sources used for TCI experiment. 1399 
 1400 
English speech 
German speech 
Big band music 
Pop song 
Drum solo 
Laughter 
Cat meows 
Geese 
Cicadas 
Clock ticking 

 1401 
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