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1 Methods 1

Dynamic Curve Features 2

De Lichtenberg Measures 3

In [1] the authors introduced a periodicity detection algorithm designed to identify 4

genes in yeast that oscillated with the cell division cycle. The de Lichtenberg algorithm 5

(DL) measures how periodic a signal is at a specified period by quantifying and 6

combining statistical measures of gene expression periodicity and strength of regulation 7

(Eq. 1). For each gene expression profile two empirical p-values, preg and pper, are 8

independently computed. Respectively, these p-values estimate the probabilities that 9

the observed fold-change variability (Eq. 2) and rhythmicity at a specified period (Eq. 10

3) of the expression profile occurred, in some sense, at random. These statistics are then 11

combined in a manner which accentuates expression profiles that are simultaneously 12

highly-periodic and highly-variable. Explicitly, let G ∈ G be the gene expression profile, 13

measured at timepoints T = (t1, . . . , tn), corresponding to gene G in the set of all 14

measured gene expression profiles in a collection, G. Then 15

DL(G) := preg(G)pper(G)

[
1 +

(
preg(G)

0.001

)2
][

1 +

(
pper(G)

0.001

)2
]
. (1)

The p-value preg(G) is meant to be the probability that a “random” curve appears more 16

highly regulated than G. This variability metric, denoted Reg(G), and defined by 17

Reg(G) = std (log10 (G/mean(G))) (2)

captures the deviation of the time series about its mean, with a small value indicating 18

little variation over time about the mean expression level. Thus, Reg(G) may be 19

interpreted as the magnitude of regulation of the gene G. The rationale of this study is 20

rooted in the expectation that Reg(G) will actually be largest among those genes which 21
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are primarily responsible for generating an observed program of dynamic transcript 22

abundance. 23

In practice, to estimate preg(G), an empirical null distribution of curve variability 24

metrics is generated by first creating a large number of random expression curves 25

through selection at each experimental time point the expression value of a transcript 26

chosen from G uniformly at random. The variability metric (Reg) of each random curve 27

is then computed and preg(G) is taken as the fraction of random curves whose 28

regulation score is larger than Reg(G). 29

Likewise, for each gene G, many simulated curves are generated by randomly 30

permuting the expression values of G and comparing the periodicity metric (called a 31

Fourier score in [1]) of the randomized curve to that of G. The p-value pper(G) is the 32

fraction of simulated curves whose periodicity score (Per) is larger than that of G. This 33

periodicity metric is taken to be 34

Per(G) :=
√

(G · cos(ωT ))2 + (G · sin(ωT ))2, (3)

where ω is a specified period, and therefore reflects the magnitude of the Fourier 35

coefficient at that period. A new implementation of the DL algorithm was written for 36

use in this analysis and is available as a Python 3 module under the MIT License [2]. 37

JTK-CYCLE Measures 38

JTK-CYCLE (JTK) was developed as a periodicity-detection algorithm to identify 39

circadian rhythmically expressed genes in mice [3]. Since then it has been successfully 40

applied to time series transcriptomics data collected from many other species exhibiting 41

rhythmic phenotypes. JTK correlates a gene’s expression profile to that of a reference 42

curve with known periodicity properties, and computes a significance of that correlation. 43

Usually, and in this analysis, sinusoidal template curves are generated with 44

user-specified periods and at various phase shifts determined by the sampling times of 45

the expression profiles. A pattern of “ups” and “downs” is computed—by comparing 46

the expression level at each time with all subsequent times—for both the expression 47

curve G and the equivalently sampled sinusoidal template curves. Then the total 48

number of agreements (concordances) and disagreements (discordances) in the up-down 49

pattern of G and that of the known periodic curves are computed, giving the Kendall 50

rank correlation coefficient between the curves. By precomputing the exact null 51

distribution of Kendall’s tau correlation [4] using the Harding algorithm [5], an exact 52

Bonferroni-adjusted p-value is rapidly computed for each gene, G, and is denoted here 53

by pjtk(G). An implementation of JTK in Python by Alan Hutchinson [6] was modified 54

for use in this analysis and is available as a Python 3 module under the MIT License [7]. 55

Precision-Recall Curves & Average Precision 56

Given a ranking of N genes by some metric that is meant to discriminate between core 57

and non-core, for some choice of threshold, we examine the true positives (TP) 58

compared to false positives (FP) and/or false negatives (FN). The precision of the 59

classifier’s ranking at a given threshold is the fraction of true core genes among all genes 60

ranked above that threshold, i.e. TP / (TP + FP). The recall is the fraction of true core 61

genes appearing above the chosen threshold: TP / (TP + FN). Any ranking can achieve 62

a perfect recall of 1 if the threshold is chosen so permissively as to label all genes as 63

core. However, given the goal to reduce hypothesis space and limit the amount of 64

experimental validation needed to identify core regulatory elements, a permissive choice 65

of threshold is of little practical utility. Thus, in this context, a meaningful measure of 66

classifier skill is the precision at a given recall. For example, the precision at a recall of 67
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10 percent characterizes how many knock-out experiments one would expect to perform, 68

in accordance with a given algorithm’s ranking of genes, before 10 percent of the core 69

regulatory elements are identified. It is this interpretation that may be of particular 70

value to a researcher interested in using a ranking algorithm to prioritize experiments. 71

In some rare cases, if a scoring algorithm is particularly discriminating between two 72

classes, the scores may be bimodally distributed and well-separated, allowing a 73

data-driven justification of a threshold. Usually, this is not the case, and a threshold 74

must be chosen arbitrarily. Thus, better measures of classifier performance incorporate 75

algorithm performance across all thresholds. These measures assess the ranking itself, 76

quantifying the skill of the classifier to rank the members of the true class (core) above 77

the members of the other class (non-core). One such measure is the so-called average 78

precision (AP) of the precision-recall (PR) curve defined to be
∑N

n=1 Pn∆Rn, where 79

∆Rn is the change in the recall level caused by moving the decision threshold from the 80

(n− 1)st gene to the nth gene in the list of genes ranked by some metric, and Pn is the 81

precision of the metric when the threshold is set to the metric of the nth gene in the 82

ranked list. 83
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2 Tables 84

Table S1. Ranks among all transcription factors of core genes using the
DL×JTK score.

S. cerevisiae M. Musculus A. thaliana
Gene MA RNA Gene MA RNA Gene LDHC LL LDHC

TOS4 16 1 DBP 2 1 CCA1 11 3
SWI5 1 4 NPAS2 3 2 LHY 6 11
YOX1 2 5 ARNTL 1 4 LUX 30 16
ASH1 14 8 NR1D1 4 20 PRR7 12 17
FKH1 10 9 NR1D2 5 45 RVE8 15 21
ACE2 5 11 RORC 10 67 PRR9 49 30
SWI4 12 13 NFIL3 8 71 TOC1 44 34
PLM2 11 15 TEF 11 87 PRR5 48 45
NDD1 13 17 BHLHE41 6 123 CHE 97 138
HCM1 8 18 HLF 69 164 RVE4 63 222
STB1 7 21 CLOCK 7 419 RVE6 453 908
YHP1 15 22 BHLHE40 195 501
FKH2 49 28 ARNTL2 982 671
FHL1 20 40 RORA 283 823
SWI6 176 50 RORB 1210 NA
MBP1 151 66
MCM1 266 146

No. of TFs† 304 307 1373 1118 1415 1415

LL LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA:
Microarray; RNA: RNAseq
† Counts are based on post-processed datasets (see Materials and Methods)
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Table S2. The top 25 highest DL-ranked genes among all transcription
factors.

Rank
S. cerevisiae M. Musculus A. thaliana

MA RNA MA RNA LDHC LL LDHC

1 ASH1* RME1 ARNTL* NPAS2* LHY* RVE1
2 RME1 YOX1* DBP* DBP* BBX19 PIF4
3 SWI5* ASH1* NPAS2* CDX4 COL2 BBX18
4 HST4 TOS4* NR1D1* GM14444 RVE8* COL5
5 NUT1 KAR4 BHLHE41* ARNTL* TOC1* LHY*
6 HST3 RTT107 NR1D2* NR1D1* COL1 STH
7 CIN5 SWI5* NFIL3* CREB5 COL9 PRR7*
8 ACE2* SWI4* EGR1 PPARD STH RVE8*
9 MET4 TEC1 TEF* NPAS3 TGA3 COL1
10 SWI4* HST4 PPARD POU4F1 RVE1 COL2
11 YOX1* ASF1 RORC* FOXO6 HYH AT2G28200
12 ISW2 HST3 MAFB DMRTA2 BBX18 PIL6
13 RGT2 RLF2 KLF10 EGR1 AT1G26790 MYBL2
14 MET18 WTM1 RFXANK GM20422 PRR7* CCA1*
15 RGT1 ACE2* CLOCK* EGR3 HB-12 BBX8
16 SIP4 ZNF1 TSC22D3 TBX1 PRE1 HSFA8
17 TOS4* STB1* KLF13 MAFF STO CDF3
18 RTT107 WTM2 NR0B2 GM6710 PIL6 ABF1
19 ESC2 CSE2 ZFP36l1 EN2 CCA1* TOC1*
20 ASF1 GAT1 ATF5 ZBTB7C EPR1 EPR1
21 WTM2 OTU1 SREBF1 MESP1 LZF1 AT1G70000
22 HAP5 HCM1* STAT5B NR1D2* BZS1 STO
23 HPA2 PHD1 GTF2IRD1 ZFP987 ASG4 BBX16
24 EDS1 MAL13 ZBTB21 GM14401 CDF3 ATCTH
25 RTG2 RGT2 SOX9 GM14305 CO LUX*

Recall 35.3% 47.1% 66.7% 35.7% 45.5% 54.5%

LL LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA:
Microarray; RNA: RNAseq
* Core transcription factors in Dataset S3.
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Table S3. The top 25 highest PerReg-ranked genes among all transcription
factors.

Rank
S. cerevisiae M. Musculus A. thaliana

MA RNA MA RNA LDHC LL LDHC

1 RME1 YOX1* NR1D1* CDX RVE1 MYBL2
2 ASH1* TOS4* NPAS2* NPAS2* LHY* CCA1*
3 SWI5* RME1 DBP* GM14444 CCA1* LHY*
4 HST3 ASH1* ARNTL* FOXO6 COL2 COL2
5 ACE2* SWI5* EGR1 NR1D1* STH PRR7*
6 SWI4* KAR4 NR1D2* POU4F1 MYBL2 PRR5*
7 YOX1* HST3 MYC GM20422 AT1G26790 PIF4
8 HST4 ZNF1 NFIL3* DMRTA2 PRR7* STH
9 SIP4 RTT107 BHLHE41* NPAS3 HYH COL5
10 ASF1 MGA1 TEF* EGR1 PRR5* RVE1
11 TOS4* SWI4* RORC* DBP* BBX16 CDF3
12 RTT107 SIP4 ZBTB16 CREB5 LZF1 LZF1
13 STB1* ACE2* PPARD TBX1 BBX18 LUX*
14 EDS1 PHD1 MAFB EGR3 CDF2 CDF1
15 GAT1 MAL33 KLF10 MESP1 EPR1 COL1
16 HAP4 HST4 NR0B2 GM6710 CDF1 ATCTH
17 HPA2 TEC1 RFXANK ARNTL* COL1 CDF2
18 GAL3 RLF2 BCl6 EN2 BBX19 BBX18
19 WTM1 ASF1 ZFP931 ZBTB7C LUX* ABF1
20 RLF2 FKH1* NR3C2 GM14401 PIF4 COL9
21 NDT80 MSS11 CLOCK* GM14305 PRR9* EPR1
22 XBP1 MTH1 ONECUT1 BHLHE22 CDF3 AT1G26790
23 TEC1 RPI1 KLF9 PPARD RVE2 BBX16
24 MSN4 STB1* ZBTB7C OVOl2 RVE8* AT5G44260
25 HCM1* HCM1* FOXQ1 FOXP3 TGA3 HYH

Recall 47.1% 52.9% 66.7% 28.6% 63.6% 45.5%

LL LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA:
Microarray; RNA: RNAseq
* Core transcription factors in Dataset S3.
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3 Figures 85
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Fig S1. Precision-recall curves of classifiers identifying core from non-core
TFs among all genes (A) and among only TFs (B) in S. cerevisiae
microarray dataset. Between changes in recall, Rn−1 < Rn, precision is plotted as a
constant equal to the precision Pn at the minimum decision-threshold rank giving a
recall of Rn, so that the area under the curve is equal to average precision. The
horizontal dashed line indicates the baseline average precision of a random classifier.
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Fig S2. Precision-recall curves of classifiers identifying core from non-core
TFs among all genes (A) and among only TFs (B) in S. cerevisiae RNAseq
dataset. Between changes in recall, Rn−1 < Rn, precision is plotted as a constant
equal to the precision Pn at the minimum decision-threshold rank giving a recall of Rn,
so that the area under the curve is equal to average precision. The horizontal dashed
line indicates the baseline average precision of a random classifier.
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Fig S3. Precision-recall curves of classifiers identifying core from non-core
TFs among all genes (A) and among only TFs (B) in M. Musculus
microarray dataset. Between changes in recall, Rn−1 < Rn, precision is plotted as a
constant equal to the precision Pn at the minimum decision-threshold rank giving a
recall of Rn, so that the area under the curve is equal to average precision. The
horizontal dashed line indicates the baseline average precision of a random classifier.
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Fig S4. Precision-recall curves of classifiers identifying core from non-core
TFs among all genes (A) and among only TFs (B) in M. Musculus
RNAseq dataset. Between changes in recall, Rn−1 < Rn, precision is plotted as a
constant equal to the precision Pn at the minimum decision-threshold rank giving a
recall of Rn, so that the area under the curve is equal to average precision. The
horizontal dashed line indicates the baseline average precision of a random classifier.
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Fig S5. Precision-recall curves of classifiers identifying core from non-core
TFs among all genes (A) and among only TFs (B) in A. thaliana
microarray LDHC dataset. Between changes in recall, Rn−1 < Rn, precision is
plotted as a constant equal to the precision Pn at the minimum decision-threshold rank
giving a recall of Rn, so that the area under the curve is equal to average precision. The
horizontal dashed line indicates the baseline average precision of a random classifier.
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Fig S6. Precision-recall curves of classifiers identifying core from non-core
TFs among all genes (A) and among only TFs (B) in A. thaliana
microarray LL LDHC dataset. Between changes in recall, Rn−1 < Rn, precision is
plotted as a constant equal to the precision Pn at the minimum decision-threshold rank
giving a recall of Rn, so that the area under the curve is equal to average precision. The
horizontal dashed line indicates the baseline average precision of a random classifier.
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Fig S7. The number of permutations for computing DL Reg p-val vs. the
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per total number of genes before filtering for transcription factors (blue line) and after
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