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Abstract

Songbirds have long been studied as a model system of sensory-motor learning. Many
analyses of birdsong require time-consuming manual annotation of the individual elements
of song, known as syllables or notes. Here we describe the first automated algorithm for
birdsong annotation that is applicable to complex song such as canary song. We developed
a neural network architecture, “TweetyNet”, that is trained with a small amount of
hand-labeled data using supervised learning methods. We first show TweetyNet achieves
significantly lower error on Bengalese finch song than a similar method, using less training
data, and maintains low error rates across days. Applied to canary song, TweetyNet
achieves fully automated annotation of canary song, accurately capturing the complex
statistical structure previously discovered in a manually annotated dataset. We conclude
that TweetyNet will make it possible to ask a wide range of new questions focused on
complex songs where manual annotation was impractical.

Introduction 1

Songbirds provide an excellent model system for investigating sensorimotor learning [1]. 2

Like many motor skills, birdsong consists of highly stereotyped gestures executed in a 3

sequence [2]. In this and many other ways, birdsong resembles speech: song is learned 4

by juveniles from a tutor, like babies learning to talk [3]. A key advantage of songbirds 5

as a model system for studying vocal learning is that birds sing spontaneously, often 6

producing hundreds or thousands of song bouts a day. This provides a detailed readout of 7

how song is acquired during development, and how this skilled behavior is maintained in 8

adulthood. Leveraging the amount of data that songbirds produce requires methods for 9

high-throughput automated analyses. For example, automated methods for measuring 10

similarity of juvenile and tutor song across development [4, 5] led to important advances 11

in understanding the behavioral [6, 7] and genetic [8] bases of how vocalizations are 12

learned. These examples demonstrate how automated methods that enable analysis of 13

large-scale behavioral datasets contribute to realizing the potential of songbirds as a 14

model system. 15

However, this potential to address central questions of sensorimotor learning is 16

currently hindered by a lack of high-throughput automated methods for scaling up other 17
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types of analyses. The central issue is that many analyses require researchers to annotate 18

song. Annotation is a time-consuming process done by hand (typically with GUI-based 19

applications, e.g., Praat, Audacity, Chipper [9–11]). An example of Bengalese finch 20

song annotated with a GUI is shown in Fig. 1. Researchers annotate song by dividing 21

it up into segments (red lines in Fig. 1), often referred to as syllables or notes, and 22

assigning labels to those segments (letters in Fig. 1). Annotation makes several types 23

of analyses possible. For example, annotation is required to build statistical models of 24

syntax [12–15], to fit computational models of motor learning that precisely quantify how 25

single syllables change over the course of an experiment [16,17], and to relate behavior 26

to neural activity [18–20]. Annotating song greatly increases our ability to leverage 27

songbirds as a model system when answering questions about how the brain produces 28

syntax observed in sequenced motor skills, and how the brain learns to adaptively control 29

muscles. 30

Fig 1. Annotation of birdsong. A. Spectrogram showing a brief clip of Bengalese
finch song with different syllable types. B. Text labels over red segments are applied by
human annotators to assign those segments to various syllable classes. C. Segments
were extracted from song by finding continuous periods above a fixed amplitude
threshold. Red arrow to left of panel C indicates the user-defined amplitude threshold.

Previous work has been done on automating annotation, as we briefly review below in 31

Proposed Method and Related Work, but these methods are challenged by the variable 32

song of some species. To illustrate these challenges, Fig 2A-C presents examples of 33

annotated songs from different species. When a species’ song consists of just a few 34

syllables sung repeatedly in a fixed motif, methods based on template matching or other 35

algorithms (see Proposed Method and Related Work below) can be applied. This is 36

true for zebra finches, as can be seen in a song from one individual shown in Fig 2A. 37

However, many species have songs that are more complex than the stereotyped motif of 38

zebra finches. Complex songs can contain a large vocabulary of syllable types arranged 39

in multiple motifs or phrases, with phrases sequenced according to complex transition 40

statistics. For example, Bengalese finch song contains ”branch points”, where a given 41

syllable may transition to more than one other class of syllable. An example of a branch 42

point is indicated above the spectrogram in Fig 2B. In addition, Bengalese finch song 43

can contain syllables that repeat, with the number of repeats varying from rendition to 44

rendition. Both branch points and repeats prevent existing algorithms from effectively 45

annotating Bengalese finch song (Fig 2E). Canary song is even more complex (Fig 2C). 46

Some individuals may have as many as 50 unique classes of syllables in their repertoire. 47

Bouts of canary song can last more than a minute instead of a few seconds (Fig 2D). 48
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These long songs contain individual syllable types that can be very short, under 10ms, or 49

very long, ranging up to 500ms (Fig 2F). Some syllables are very quiet, and others loud. 50

Because of this extreme range of amplitude, common methods for segmenting audio of 51

song into syllables can fail. Segments are typically defined as points where the smoothed 52

sound envelope or other song-related acoustic features [4] stay above some threshold, 53

indicated by the dashed lines in Fig 3. In the case of canary song, if sound energy or 54

other acoustic features are filtered on timescales short enough to accurately segment the 55

shortest syllables, then the longest syllables will be subdivided. This problem is also 56

commonly encountered when analyzing the variable songs of young zebra finches. Fig 3 57

illustrates how canary song is difficult to segment in an automated manner. Finally, 58

canary song has a hierarchical structure where syllables occur in trilled repetitions, called 59

phrases, that themselves obey long-range syntax rules [12, 21]. Phrases can differ in 60

duration depending on the type of syllable being repeated and similarly inter-syllable 61

silent gaps vary widely in duration (Fig. S1). Because of all this complexity, there are 62

currently no automated methods for accurate annotation of canary song. 63

Fig 2. The challenge of annotating complex songs. A. The zebra finch
repeating motif allows annotation by matching its template spectrogram without
segmenting different syllables (colored bars). B. Bengalese finch songs segmented to
syllables shows variable transitions and changing numbers of syllable repeats. C. A
third of one domestic canary song of median duration segmented to syllables reveals
repetitions (phrase) structure. D. The median, 0.25 and 0.75 quantiles of song
durations (x-axis) and of syllables per song (y-axis) for 2 canary strains, Bengalese
finches and Zebra finches (color coded) E. Variable songs are not suited for template
matching. Songs contain repeating sequences of syllables but because of sequence
variability songs with more syllables (x-axis) share smaller sequence fractions (y-axis) F.
Distributions of syllable duration for one domestic canary. The bird had 20 different
syllable types (x-axis, ordered by mean syllable duration). Box plot shows median, 0.25
and 0.75 quantiles of syllable durations. Whiskers show the entire range.

Proposed Method and Related Work 64

Previous work has been done to automate annotation, as referenced above, that we 65

now briefly review. The crucial point here is that none of the methods work for canary 66

song, for the reasons we outlined and demonstrated in Figs. 2 and 3, necessitating 67

the development of an algorithm like the one we present. However, for birdsong that 68

consists largely of a single fixed motif, like that of zebra finches, several methods have 69
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Fig 3. Examples of failure to segment canary song. A. Several seconds of
domestic canary song, presented as a spectrogram, beneath a plot of a band-pass
filtered sound amplitude. To segment song, an amplitude threshold can be taken,
marked by the dashed line on the amplitude trace, and then an automated program
finds continuous segments of above-threshold amplitude and marks the onset and offset
times of those segments (green, red lines in the spectrogram panel). B. Focusing on
three examples (a-c matching panel A), segmenting by threshold crossing with a fixed
filtering bandwidth does not work well for canaries. Above threshold amplitudes are
shown in bold colored lines and reveal that syllables of type ’a’ are broken into 2
components and syllables of type ’c’ are not separated by low amplitude.

been widely used, including semi-automatic clustering methods [22,23], and template 70

matching [24–26]. Several studies have also applied supervised learning algorithms to 71

annotation, such as Hidden Markov Models [27], k-Nearest Neighbors [28], and support 72

vector machines [29]. These algorithms can annotate more variable song with branch 73

points and repeats, like that of Bengalese finches, but they all require segmenting song 74

to extract the engineered features used to train the algorithms (e.g. acoustic parameters 75

like pitch and duration). To our knowledge there has been no large-scale comparison of 76

performance of these different algorithms, but at least one study suggests they may not 77

generalize well across songs of different individuals [30]. Additionally, feature extraction 78

can fail if segmentation is noisy, e.g. because of changes in audio equipment set-up, 79
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background noises, etc. Here again we stress that canary song exhibits wide ranges 80

in amplitude, and often requires annotators to set multiple thresholds to successfully 81

extract segments. These factors contribute to the lack of automated algorithms for 82

annotating canary song. 83

Given these issues, we sought to develop an algorithm for automated annotation 84

that (1) can learn features from data, and (2) does not require segmented syllables 85

to predict annotations. To meet both these criteria, we developed an artificial neural 86

network that we call TweetyNet, shown in (Fig 4). TweetyNet takes as input windows 87

from spectrograms of song and produces labels for each time bin of that spectrogram 88

window. TweetyNet requires no pre-processing of song spectrograms - most importantly, 89

segmentation of song into syllables is not needed. Silent gaps between syllables are 90

labelled in training data, and these silent labels are assigned to gaps between syllables 91

when TweetyNet inference is applied to a new song. 92

Essentially, the network combines two types of layers found in neural networks:(1) 93

convolutional layers, common in computer vision tasks to learn features of images [31–33], 94

and (2) recurrent layers, often used to predict sequences [34]. A recurrent layer is a 95

natural choice because the input image or spectrogram is defined by two axes (time and 96

frequency) with very different correlation structure. Specifically, the temporal dimension 97

of songbird vocalization, like music and environmental noises, contains regularities in 98

multiple time scales that are unrelated to the regularities of the frequency axes. The 99

bidirectional LSTM (Long-Short-Time-Memory) recurrent layer is designed to capture 100

these temporal correlations. [35, 36]. 101

To predict annotation, we feed consecutive windows from spectrograms to trained 102

networks and then concatenate the output vectors of labeled timebins. Finally, we simply 103

find uninterrupted runs of a single syllable label to annotate song syllables from this 104

framewise classification. As discussed below, this final step can include a ”debounce” 105

step that requires a minimum syllable duration and choosing a single label for consecutive 106

time bins not labeled as silence by majority vote. In the rest of the results below we 107

show that this simple method trained end-to-end provides robust predictions of segment 108

onsets, offsets, and labels. 109

Surprisingly, beyond the work previously cited, we find little research that addresses 110

the problem of learning to classify each time bin of a vocalization, either for human 111

speech or birdsong. The architecture we present here is somewhat similar to early deep 112

networks models for speech recognition, but a crucial difference is that state-of-the-art 113

models in that area map directly from sequences of acoustic features to sequences of 114

words [37]. The success of these state-of-the-art models is attributed to the fact that they 115

learn this mapping from speech to text, **avoiding** the intermediate step of classifying 116

each frame of audio, as has previously been shown [34]. In other words, they avoid the 117

problem of classifying every frame that we set out to solve. The architecture that we 118

develop is most directly related to those that have been used for event detection in audio 119

and video [35, 36] and for phoneme classification and sequence labeling [34, 38]. The 120

closest prior model for segmenting and labeling birdsong is [39]. Several aspects of that 121

study provide context for the contributions of our work. The authors compared different 122

pipelines that combine a neural network for recognizing syllable segments with Hidden 123

Markov Models that learns to predict syllable sequences, and in this way improve the 124

output of the network. They measured performance of these pipelines on a large dataset 125

of hand-annotated Bengalese finch song which they made publicly available [40]. 126

In summary, the key prior art is the important work of Koumura and Okanoya [39]. 127

This work anticipates the overall structure of our model, but through the integration of 128

multiple distinct components that are individually optimized. In contrast, TweetyNet 129

is a single neural network trained end-to-end, meaning it does not require optimizing 130

multiple models. Below we show that TweetyNet meets our criteria for an algorithm 131
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Fig 4. TweetyNet neural network architecture. Top, network schematic.
TweetyNet takes as input a window, specified in time bins, from a spectrogram (red
box, left) and in a sequence of steps (left to right) outputs a label for each time bin
within the window: (1) The convolutional blocks produce a set of feature maps by
performing a cross-correlation-like operation (asterisk) between their input and a set of
learned filters (greyscale boxes). A max-pooling operation down samples the feature
maps. (2) The recurrent layer is made up of Long Short Term Memory (LSTM) units,
and the number of units equals the number of time bins in the spectrogram window.
This step is designed to capture dependencies across time using both forward (F) and

backward (B) passes through time to learn. (3) A projection (
−→
W t,s) onto the different

syllable classes, s = 1..n, resulting in a vector of probabilities at each time bin t that the
label is n. The number of classes, n, is predetermined by the user and includes a class
for no-song time bins. (4) Each time bins is labeled by choosing the class with the
highest probability and the labelled time bins are used to separate continuous song
segments from no-song segments and to annotate each song-segment with a single label.
Bottom, the shapes of tensors (multi-dimensional arrays) that result from each
operation the network performs.

that learns features from data and does not require segmented song to make predictions. 132

To do so we we benchmark TweetyNet on Bengalese finch and canary song, and where 133

possible compare the performance to [39]. Additionally we show that we achieve robust 134

performance: across songs of individuals, which can vary widely even within a species; 135

across many bouts of song from one individual, e.g. across days of song, and; across 136

multiple species. Lastly we show that this performance required only a small amount of 137

manually annotated data to train TweetyNet models accurately enough to recreate and 138

add details to the deep structure of canary syntax. 139
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Results 140

TweetyNet annotates Bengalese finch song with low error rates 141

across individuals. 142

We first set out to test whether our network robustly annotates syllables across a large 143

number of individual birds. To do so, we made use of the publicly available repository 144

of Bengalese Finch song [40], used to benchmark hybrid neural network-HMM models 145

from [39] as referenced in Proposed Method and Related Work. The repository contains 146

song from 10 individual birds, with hundreds of bouts of hand-annotated song for each 147

bird. Each individual’s song had different number of syllables and obeyed a different 148

syntax. To benchmark TweetyNet models on this dataset, we generated learning curves 149

that plot error of the model as a function of the size of the training set (duration in 150

seconds). The learning curves give us an estimate of the smallest amount of hand-labeled 151

training data we would need to obtain the lowest error that the TweetyNet model can 152

achieve. For each bird we split the data into fixed training and test sets, with durations 153

of 900 and 400 seconds respectively. Then for each training set duration we trained 154

10 replicates with a randomly-drawn subset of the training data. We computed error 155

metrics for each training replicate on the held-out test set for each individual. (See 156

Materials and methods for details.) As shown in Fig 5, these learning curves demonstrate 157

that TweetyNet models achieved low error rates across all ten birds. We first looked at 158

frame error, a percentage that measures the number of times the label predicted by the 159

model for each time bin in a spectrogram did not match the ground truth label. For all 160

birds TweetyNet models achieve less than 8% frame error with the smallest training set 161

duration of 30 seconds (Fig 5A). From the learning curve we can estimate that across 162

birds, the lowest frame error that TweetyNet models produce is roughly 4%, and that 163

they achieve this with just 180 seconds (three minutes) of training data. (For specific 164

values, see Table 1.) Larger training sets did not further reduce error. 165

To better understand how well the network segments and labels songs, we used 166

another metric, the syllable error rate, which is analogous to the word error rate that is 167

widely used in the speech recognition literature. This metric is an edit distance that 168

counts the number of edits (insertions and deletions) needed to convert a predicted 169

sequence of syllables into the ground-truth sequence. The error rate is normalized by 170

dividing it by the length of the sequences for comparison across birds (e.g. if one bird 171

sang more syllables per bout than another). Measuring the syllable error rate confirmed 172

that TweetyNet consistently achieved similar error rates across the ten birds, as shown in 173

Fig 5B. Because this metric was also used in [39] (as ”note error rate”), we can compare 174

our results directly to theirs. As indicated by blue circles in Fig 5B, the best-performing 175

models in that study achieved syllable error rates of 0.83 and 0.46 with two and eight 176

minutes of training data, respectively. TweetyNet always achieved much lower syllable 177

error rates. Taken together, the results from benchmarking TweetyNet on this dataset 178

indicate that the architecture performs well across the song of many individual birds. In 179

addition, it dramatically outperforms existing models with less training data, and does 180

so while being trained end-to-end without requiring optimizations of multiple steps in a 181

pipeline. 182

TweetyNet models achieve low error across days even when 183

trained with just the first three minutes of song recorded. 184

We next sought to benchmark TweetyNet in a scenario similar to long-term behavioral 185

experiments for which we hope to automate annotation. For this purpose we used 186

another publicly-available repository [41] with hand-labeled song from four Bengalese 187

finches. Importantly, the repository contains most or all of the songs sung by each 188
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Fig 5. TweetyNet annotates song with low error rates across ten indiviudal
Bengalese finches. Model ‘learning curves’ showing the reduction in annotation error
(y-axis) on a held-out test set as a function of the size of the training set (x-axis).
Shown are the ‘frame error rate’ (A) measuring the percent of mislabeled time bins and
the ‘syllable error rate’ (B) measuring the normalized sequence edit distance. Each
colored line corresponds to one bird from dataset. The solid line indicates mean error
across ten training replicates for each training set duration, and the translucent error
band around the solid lines indicates standard deviation. Thicker black lines indicate
the mean across birds. Circular blue markers indicate mean syllable error rate across
birds reported in [39] for a different algorithm using the same dataset.

bird for multiple consecutive days, as is typically done during a long-term behavioral 189

experiment, and annotation for all those songs (recall that experimenters usually are able 190

to annotate only a limited number). Here we sought to measure how well TweetyNet 191

models would perform when an experimenter takes the first set of songs of some duration 192

n and annotates those songs manually before using them to train a network. This 193

stands in contrast to the experiment in Fig. 5, where we trained multiple replicates with 194

random subsets of songs from a larger training set, in order to obtain a better estimate 195

of expected error rates. Of course our goal is to avoid the need for experimenters to 196

label a large dataset by hand and then use it to train multiple replicates with random 197

subsets of that data, just to find the best performing network. If we show that we can 198

achieve comparable error rates with just the first n minutes of song, we can be more 199

confident that TweetyNet models will robustly segment and label hours of song recorded 200

across days. 201

Using the learning curves in Fig 5 we estimated that three minutes of data was the 202

shortest duration training set we could use to obtain the lowest error rate achieved by 203

models. Thus, we trained single TweetyNet models with the first three minutes of song 204

sung by a bird on one day, and then measured the accuracy of that model using all 205

other songs across multiple days. The test datasets we used to obtain these measures 206

were in almost all cases at least as large as those we used to benchmark models in the 207

learning curves. The mean duration of these test datasets was 1528 seconds (standard 208

deviation of 888.6 seconds, i.e. 25 minutes mean, 14 minutes standard deviation), in 209

contrast to Fig 5 where we measured error with a test set of 400 seconds (6 minutes 210

40 seconds). Hence this approach gave us multiple estimates of how a single trained 211

model performs on relatively large datasets. TweetyNet models trained in this manner 212
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did achieve low frame error (Fig 6A) and low syllable error rates (Fig 6B) across days 213

without exhibiting large fluctuations. The frame error ranged from 2-4% across 3-5 days 214

of song, comparable to those observed when training with a random subset of songs, 215

as in Fig 5. In one case, for one bird, the frame error did increase on the last day, but 216

was still within the low end of the range seen for all birds, and this increase did not 217

appear to translate into an increase in the syllable error rate (Fig 6B and Fig 6C, bird 218

ID or60yw70, red line). 219

We also found that TweetyNet models trained on the first three minutes of song 220

maintained a low syllable error rate across days (Fig 6B and Fig 6C), again comparable 221

to what we observed in the learning curves (Fig 5B). Here we additionally tested whether 222

a simple post-processing step could further lower the error rate. This ”majority vote” 223

transform consists of taking each labeled segment (bordered by two segments that the 224

network predicted were ”unlabeled” / ”silent” segments), finding the label occurred 225

most frequently within that segment, and then assigning that label to all time bins 226

within the segment. As shown in Fig 6C, this simple post-processing step did lower 227

the syllable error rate of TweetyNet models. We did not find that this post-processing 228

step had a large effect on the frame error (not shown in plot), from which we infer 229

that this transform removes small frame errors (e.g. a single time bin) that give rise 230

to spurious extra segments, and correcting these in turn produces a large drop in the 231

syllable error rate. Hence we have shown using Bengalese finch song that TweetyNet 232

outperforms existing models and that, with only minimal cleaning of its output, analyses 233

of behavioral experiments can be scaled up to very large datasets. 234

TweetyNet annotates minutes-long canary songs with low error 235

rates across individuals 236

After demonstrating TweetyNet’s high performance across multiple individuals of the 237

same species and across multiple songs of individual birds, we wanted to test TweetyNet 238

across species. We chose the domestic canary (serinus canaria) - a species for which 239

there are no published annotation algorithms and whose rich song repertoire offers a 240

unique opportunity for neuroscience research [12,21,42–44]. 241

As in our first test in Bengalese finches, we curated training sets of 1-10 minutes of 242

song from 3 canaries and measured the frame error rates in a held-out test set 20-30 243

minutes long. (Training sets are relatively longer than the Bengalese tests since canary 244

songs can be up to a minute or more in length and even sparse sampling of the full 245

repertoire requires these longer training sets.) Still, Fig 7 shows that in three canaries 246

the model learning curves asymptote with 8-10 minute training sets to frame error rates 247

similar to TweetyNet’s performance in Bengalese finches. 248

Unlike TweetyNet’s performance in Bengalese finches, the frame error rates in 249

annotating canary songs cannot be compared to alternative algorithms using published 250

data and results. Furthermore, the length of these songs, usually containing hundreds of 251

syllables, mean that even in very low error rates we expect annotation errors in many 252

songs (Table 1, Fig. S2). These annotation errors can occur at the onset of song and in 253

transitions between canary phrases (Fig 8) and affect analyses of canary syntax. 254

To gauge the effect of such errors, in the next section we evaluate the accuracy of 255

syntax models estimated from TweetyNet’s automatic annotation. 256

Automated analysis of canary song structure. 257

Sequences of canary phrases contain transitions with different ’memory’ depths. Namely, 258

the probability distribution of transition outcomes from a given phrase is captured 259

by Markov chains with variable lengths. As shown in a recent study in Waterslager 260

canaries, this syntax structure is captured parsimoniously by probabilistic suffix trees 261
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Fig 6. TweetyNet models achieve low error across days of Bengalese finch
song, even when trained with just the first three minutes of song recorded.
A. TweetyNet models trained on the first three minutes of song from day 1 achieved
low frame error across days. The mean duration of the set of songs for each day that we
used to measure error was 1528 seconds(888.6 S.D.), (i.e. 25 minutes (14 minutes S.D.)),
Different line colors and styles indicate individual birds B. TweetyNet models trained
on the first three minutes of song from day 1 also demonstrate a low syllable error rate
across days. C. The syllable error rates in B further improve after applying a “majority
vote” post-processing (assigning the dominant label in each continuous segment of time
bins not annotated as ‘silence’, see methods). For one bird (or60yw70), the error did
increase on the last day, but was still within the low end of the range seen for all birds.

Fig 7. TweetyNet segments and labels canary song with low error rates,
similar to Bengalese finches, across individuals. Models were trained on
60s-600s of song from each individual. The mean frame error (lines) of five models
(markers) trained with different randomly-drawn subsets from the training set was
measured on a separate 1500-2000s test set from each individual. The asymptotic error
rates, annotated to the right of the curves, overlaps with the error rates in the
Bengalese finch data sets

(PST) [12, 45]. The root node in these graphical models, appearing in the middle of 262

Fig 9A,B and Fig 10A,B, represents the zero-order Markov, or base rate, frequencies of 263

the different phrases, labelled in different colors and letters. Each branch, emanating 264
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dataset
training set
duration
(s)

frame error
(%)

syllable er-
ror rate

syllable
error rate
(majority
vote)

% Near
Boundary

B.F. 1 120 3.5±0.5 0.05±0.01 n/a n/a

B.F. 1 180 3.4±0.5 0.04±0.01 n/a n/a

B.F. 1 480 3.3±0.5 0.04±0.01 n/a n/a

B.F. 2 180 2.9±1.4 0.2±0.09 0.06±0.04 64.9±14.3

Can. 240 3.9±1.0 0.155±0.072 0.076±0.037 51.1±10.7

Can. 600 3.1±0.8 0.09±0.016 0.051±0.011 58.3±11.3

Can. 6000 2.1±0.8 0.069±0.013 0.031±0.005 68.6±13.9

Table 1. Error metrics of TweetyNet models for different species and
training set sizes For each Bengalese finch (BF) and canary (Can) data set we
evaluate test-set errors metrics for models trained on several training-sets sizes
(measured in seconds). Presented are the mean ± standard deviation across all birds
and experiment replicates. The frame error rate and syllable error rate columns present
the raw error shown in learning curves (Figs. 5,7). The syllable error rate (majority
vote) column shows the syllable error rate after applying post-hoc cleaning of
annotation, where we assigned a single label to each segment by majority vote and
discarded all segments below a set duration (methods). The % Near Boundary column
shows the percent of frame errors involving silent periods that occur within 0-2 time
bins of syllable boundaries (onsets and offsets, see Materials and methods).

from the colored letters in Figs 9,10 represents the set of Markov chains that end in the 265

specific phrase type designated by that label. For example, the ’A’ branch in Fig 9a 266

includes the first order Markov model ’A’ and the second order Markov chains ’FA’ and 267

’1A’ representing the second order dependence of the transition from phrase ’A’. These 268

models are built by iterative addition of nodes up the branch to represent longer Markov 269

chains, or a transition’s dependence on longer sequences of song history. 270

Figures 9 and 10 demonstrate that TweetyNet parses domestic canary song with 271

an accuracy sufficient to extract its long-range order. In both of these figures, we set 272

parameters of the PST estimation algorithm to derive the deepest syntax structure 273

possible without overfitting as practiced in a recent study [12] that used about 600 hand 274

annotated songs of Waterslager canaries. In this example, using 2.2% of the data set, 275

about 40 songs, to train a TweetyNet model and predict the rest of the data reveals the 276

deep structures shown in Fig 9B - comparable to using 600 hand annotated songs of the 277

same bird (Fig 9A). With more training data, Tweetynet’s accuracy improves as does 278

the statistical strength of the syntax model. In Fig 10B a TweetyNet model was trained 279

on 19% of the data, about 340 songs, and predicted the rest of the data. The resulting 280

syntax model can be elaborated to greater depth without overfitting. To crosscheck 281

this deeper model, we manually annotated all 1764 songs of that bird, revealing a very 282

similar syntax model (Fig 10A). 283

In sum, we find that TweetyNet, trained on a small sample of canary song, is accurate 284

enough to automatically derive the deep structure that has formed the basis of recent 285

studies [12,46]. 286

Larger data sets of annotated canary song add details and limit 287

the memory of the syntax structure 288

The increase in syntax detail, presented in Fig 10, is possible because more rare nodes 289

can be added to the PST without over-fitting the data. Formally, the PST precision 290
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Fig 8. Variants of canary song introduce segmentation and annotation
errors. Canary vocalizations contain variations that challenge TweetyNet. The
examples in panels A-E show spectrograms on top of the time-aligned likelihood (gray
scale) assigned by a trained TweetyNet model to each of the labels (y-axis, 30 syllable
types and the tag unl. for the unlabeled segments). Green and red vertical lines and
numbers on top of the spectrograms mark the onset, offset, and labels predicted by the
model. A,B. Transitions between syllables can occur without a silence gap. In this
example, TweetyNet assigns higher likelihood to both syllables (c.f. pink arrow). In rare
variants the model ignores the first syllable (A) C. Syllables produced weakly or
deformed still get higher likelihood (arrows) but may still be ignored because the
unlabeled class gets a higher likelihood. D. Transition between phrases of very similar
syllables (22 →1) introduce label confusion. E. Canaries can produce completely
overlapping syllables. The model assigns high likelihood to both classes but is forced to
choose only one

increase in larger data sets is defined by the decrease in minimal node frequency allowed 291

in the process of building PST models (Fig 11), as measured in model cross validation 292

(methods). In our data set, we find an almost linear relation between the number of 293

songs and this measure of precision - close to a tenfold precision improvement. 294

In Fig 10A, this increased precision allowed reliably adding longer branches to the 295

PST to represent longer Markov chains (in comparison to Fig 9A). In this example, using 296

a dataset 3 times larger revealed a 5-deep branch that initiate with the beginning of song 297
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Fig 9. Example of reproducing long-range syntax dependencies, seen in
Waterslager canaries, in another strain using a TweetyNet model trained
on a small fraction of the data. A. Long-range order found in 600 domestic canary
songs annotated with human proof reader (methods, similar dataset size to [12]).
Letters and colors label different phrase types. Each branch terminating in a given
phrase type indicates the extent to which song history impacts transition probabilities
following that phrase. Each node corresponds to a phrase sequence, annotated in its
title, and shows a pie chart representing the outgoing transition probabilities from that
sequence. The nodes are scaled according to their frequency (legend). Nodes that can
be grouped together (chunked as a sequence) without significantly reducing the power of
the model are labeled with blue text. B. The songs used to create the PST in A are a
subset of 1764 songs. A TweetyNet model was trained using about 2.2% of that dataset
(about 9.5% of the data in A). The PST created from the model’s predicted annotation
of the entire dataset is very similar to A.

(’1ABGN’) indicating a potential global time-in-song dependency of that transition. The 298

PST in Fig 10A also has branches that did not ’grow’ when more songs were analyzed 299

(e.g. the ’B’, ’Q’, and ’R’ branches) - indicating a potential cutoff of memory depth that 300

is crucial in studying the neural mechanisms of song sequence generation. 301

The data sets used in Figs 9A,10A, and Fig 11, are about 10 times larger than 302

previous studies. To ascertain the accuracy of the syntax models, in creating the data 303

sets we manually proof read TweetyNet’s results (see methods). Across 5 different human 304

proof readers we compare the time required to manually annotate canary song with the 305

proof reading time and find that using TweetyNet saves 95-97.5 percent of the labor. 306

307

Taken together, the TweetyNet algorithm allowed us to annotate many more songs 308

of individual complex singers than previously demonstrated, with high accuracy across 309

individuals and across species. This accuracy allowed fully-automated analyses, saved 310

most of the labor, and revealed novel details of canary syntax in a new strain. 311

Discussion 312

The family of songbirds that learns by imitation consists of over 4500 species of birds. 313

Some of these singers, such as the canary, produce songs that are much too complex 314

to be automatically annotated with existing methods, and for these complex singers 315
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Fig 10. Example of how using TweetyNet to process a larger dataset of
canary song adds detail and limits the memory of the syntax structure. A.
The full dataset of 1764 songs from Fig 9, annotated with a human proof reader,
allowed creating a PST with greater detail. Compared to Fig 9A, some branches did not
grow. B. An almost identical PST was created without a human proof reader from a
TweetyNet model trained on 19% of the data. The fluctuation in transition probabilities
accumulates in long sequences and, in this example, increased the minimal sequence
probability included in the PST. This difference prevented the inclusion of the ’N’
branch.

Fig 11. Using datasets more than 5 times larger than previously explored
increases statistical power and the precision of syntax models. A. Ten-fold
cross validation is used in selection of the minimal node probability for the PSTs
(x-axis). Lines show the mean negative log-likelihood of test set data estimated by PSTs
in 10 repetitions (methods). Curves are calculated for datasets that are sub sampled
from about 5000 songs. Red dots show minimal values - the optimum for building the
PSTs. B. The decrease in optimal minimal node probability (y-axis, red dots in panel
A) for increasing dataset sizes (x-axis) is plotted in gray lines for 6 birds. The average
across animals is shown in black dots and line.
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little is known about the syntax structure and organization of song. Even for birds 316

with simple adult songs, a detailed description of song development will require the 317

application of new methods. This is particularly true for early song development where 318

template based extraction of song syllables and clustering of syllable forms provides an 319

incomplete picture of the full variability of song. 320

A recent study illustrated the surprises that await a more detailed analysis of song. 321

The canary, one of the most widely bred species of domesticated songbird, was recorded 322

for 2 hours or more and hundreds of songs were manually annotated and cross validated. 323

This data set revealed a new complexity to the statistical structure of canary song - the 324

song follows long-range rules where specific subsets of syllables follow transition statistics 325

governed by 4th and 5th order Markov processes in phrase types [12]. This rich behavior 326

motivated another recent study to implant miniature microscopes in singing canaries, 327

and the recorded neural signals included hierarchical memory traces corresponding to the 328

complex syntax [46]. The sophistication of the neural representation of song in canaries 329

was largely unanticipated based on decades of neural recordings in simpler singers. 330

The present project was motivated by these recent studies and the knowledge that new 331

fundamental discoveries in vocal learning and neural dynamics will follow if automated 332

annotation of complex song becomes possible. Some methods for automated annotation 333

exist, but previous work suggests these methods have their own limitations, especially 334

when applied to song with many syllable types and variable sequence such as that of 335

Bengalese finches and canaries. 336

The TweetyNet algorithm described here is a work in progress, with many clear 337

paths for improvement. Still the first syllable error rates described here are dramatic 338

improvements over a prior model for song parsing. We used publicly-available datasets 339

of Bengalese finch song to benchmark TweetyNet. We showed that it achieves low error 340

rates across many individuals. On Bengalese finch data, our single network trained end- 341

to-end performs better than a previously proposed hybrid HMM-neural network model 342

and does so with less training data (Fig. 5). We then showed that TweetyNet models 343

achieve low error across days, in thousands of Bengalese finch songs, even when trained 344

with just the first three minutes of song. This experiment, while strongly restricting the 345

data available for model training, demonstrates the usefulness of TweetyNet in ’real-life’ 346

laboratory settings - for experimentalists that want to hand annotate as little as possible. 347

We next reported that TweetyNet was sufficiently accurate to reproduce the recent 348

findings on the complex syntax structure of canary song with fully automated machine- 349

classified song. Specifically, a TweetyNet model trained on just 10 minutes of canary song 350

could accurately recover the statistical structure reported from 600 manually annotated 351

songs - exceeding 100 minutes. Furthermore, a deep network trained on 340 annotated 352

songs, about 19% of the data, could classify a larger data set of more than 1700 songs 353

and build a much more complete statistical model of song revealing additional depth to 354

the long-range syntax rules and extending prior reports on the complexity of the canary 355

song behavior. This more complex statistical model was validated using a manually 356

curated data set of all songs. 357

With a trained model performing at this level it becomes feasible to examine the 358

effect of social context on song syntax, circadian variations in syntax, or the effects of 359

distinct neural perturbations that could effect song syntax while keeping syllable forms 360

intact. On top of sequence variations, many song studies require syllable similarity 361

metrics to examine the effects of such neural or song pertubations, or the ontogeny 362

of syllable forms through development. Here we used TweetyNet to classify the most 363

likely syllable in every time point, focusing not on variations in syllable form but the 364

sequential structure of song syntax. But, the syllable classification is the final processing 365

step in TweetyNet achieved by maximum a-posteriori (MAP, or argmax) estimation 366

following the calculation of similarity to all possible syllables. Thus, the full likelihood 367
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function that TweetyNet produces prior to classification may itself be a useful metric for 368

syllable structure, allowing for example the time course of syllable form to be examined 369

through development or as a result of neural perturbations. A syllable similarity metric 370

that can be assigned at each point in time or frame of a spectrogram without syllable 371

segmentation is, by itself, a new development in the field and can be used, in future 372

development, to improve TweetyNet and to apply it to many more species whose song is 373

difficult to segment. 374

To make TweetyNet useful to a large research community, we developed the vak 375

library - a user-friendly toolbox that enables researchers to apply TweetyNet simply by 376

adapting existing configuration files. This library does not require extensive programming 377

knowledge or expertise in neural networks. The framework will allow users to explore 378

different methods of optimizing neural network models that might improve segmentation, 379

and also generate alternative architectures that could incorporate distinct features and 380

topologies. For example, in many domains transformer networks have recently replaced 381

LSTMs for sequence processing. Substituting transformer layers for the LSTM layer could 382

provide advances here. [47]. Aspects of other deep networks applied to animal motor 383

control may improve TweetyNet. Examples include object detection architectures [48,49] 384

applied to mouse ultrasonic vocalizations and animal motion tracking, and generative 385

architectures applied to birdsong and other vocalizations [50–52]. Lastly we note that in 386

principle TweetyNet and vak library can be applied to any other annotated vocalization, 387

including calls of bats, mouse ultrasonic vocalizations, and dolphin communication. We 388

do not claim to have achieved the best possible method for automated annotation of 389

vocalizations with neural networks using supervised learning methods, although we have 390

aimed to establish a strong baseline for the work that will build upon ours. That said, we 391

are confident our method enables songbird researchers to automate annotation required 392

for analyses that address central questions of sensorimotor learning. 393

Materials and methods 394

Ethics declaration 395

All procedures were approved by the Institutional Animal Care and Use Committees of 396

Boston University (protocol numbers 14-028 and 14-029). Song data were collected from 397

n = 5 adult male canaries. Canaries were individually housed for the entire duration of 398

the experiment and kept on a light–dark cycle matching the daylight cycle in Boston 399

(42.3601 N). The birds were not used in any other experiments. 400

Data availability 401

Open datasets of annotated Bengalese finch song are available at <https://figshare. 402

com/articles/BirdsongRecognition/3470165> and <https://figshare.com/articles/403

Bengalese_Finch_song_repository/4805749>. Audio data sets of canary song are 404

available from the corresponding author on request. 405

Code availability 406

The code implementing the TweetyNet architecture, and code to reproduce figures in this 407

paper, are available at <https://github.com/yardencsGitHub/tweetynet> (version 408

0.4.3, 10.5281/zenodo.3978389). To aid with reproducibility of our experiments, and 409

to make TweetyNet more accessible to researchers studying birdsong and other animal 410

vocalizations, we developed a software library, vak, available at <https://github.com/ 411

NickleDave/vak>. Both TweetyNet and vak are implemented using the following open- 412

source scientific Python libraries: torch [53], torchvision [54], numpy [55,56], scipy [57], 413
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dask [58], pandas [59], matplotlib [60, 61], seaborn [62], jupyter [63], attrs [64] and 414

tqdm [65]. 415

Data collection 416

Use of available datasets 417

Bengalese finch song is from two publicly-available repositories. The first [40] was used for 418

results in 4 and can be found at <https://figshare.com/articles/BirdsongRecognition/419
3470165>. It accompanied the paper [39]. The second [41] was used for results in 420

Fig 5 can be found at <https://figshare.com/articles/Bengalese_Finch_song_ 421

repository/4805749>. Apart from recordings made for this manuscript we used pub- 422

licly available datasets of Waterslager canary songs [12], Bengalese finch songs [39] and 423

Zebra finch songs [66]. 424

Domestic canary song screening 425

Birds were individually housed in soundproof boxes and recorded for 3-5 days (Audio- 426

Technica AT831B Lavalier Condenser Microphone, M-Audio Octane amplifiers, HDSPe 427

RayDAT sound card and VOS games’ Boom Recorder software on a Mac Pro desktop 428

computer). In-house software was used to detect and save only sound segments that 429

contained vocalizations. These recordings were used to select subjects that are copious 430

singers (≥ 50 songs per day) and produce at least 10 different syllable types. 431

Domestic canary audio recording 432

All data used in this manuscript was acquired between late April and early May 2018 – a 433

period during which canaries perform their mating season songs. Birds were individually 434

housed in soundproof boxes and recorded for 7-10 days (Audio-Technica AT831B Lavalier 435

Condenser Microphone, M-Audio M-track amplifiers, and VOS games’ Boom Recorder 436

software on a Mac Pro desktop computer). In-house software was used to detect and 437

save only sound segments that contained vocalizations. Separate songs were defined by 438

silence gaps exceeding 1 second. 439

Audio processing 440

Segmenting annotated phrases of Waterslager canaries 441

The dataset of waterslager canaries was available from a previous project in the Gardner 442

lab [12]. These songs were previously segmented into phrases, trilled repetitions of 443

syllables, and not to individual syllables. To include this data in Fig 2 we needed to 444

break annotated phrase segments into syllable segments. In each segmented phrase, we 445

separated vocalization and noise fluctuations between vocalizations by fitting a 2-state 446

hidden Markov model with Gaussian emission functions to the acoustic signal. The 447

suspected syllable segments resulting from this procedure were proofread and manually 448

corrected using a GUI developed in-house (https://github.com/yardencsGitHub/ 449

BirdSongBout/tree/master/helpers/GUI). 450

Preparing data sets of domestic canaries 451

Bootstrapping annotation with TweetyNet In this manuscript we used annotated 452

domestic canary datasets an order of magnitude larger than previously published. To 453

create these datasets we used TweetyNet followed by manual proofreading of its results. 454

This process, described below, allowed ’bootstrapping’ TweetyNet’s performance. 455
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Song syllables were segmented and annotated in a semi-automatic process: 456

• A set of 100 songs was manually segmented and annotated using a GUI developed 457

in-house (https://github.com/yardencsGitHub/BirdSongBout/tree/master/ 458

helpers/GUI). This set was chosen to include all potential syllable types as well 459

as cage noises. 460

• The manually labeled set was used to train TweetyNet (https://github.com/ 461

yardencsGitHub/tweetynet). 462

• In both the training phase of TweetyNet and the prediction phase for new annota- 463

tions, data is fed to TweetyNet in segments of 1 second and TweetyNet’s output is 464

the most likely label for each 2.7msec time bin in the recording. 465

• The trained algorithm annotated the rest of the data and its results were manually 466

verified and corrected. 467

Assuring the identity and separation of syllable classes The manual steps 468

in the pipeline described above can still miss rare syllable types of mislabel sylla- 469

bles into the wrong classes. To make sure that the syllable classes are well sepa- 470

rated all the spectrograms of every instance of every syllable, as segmented in the 471

previous section, were zero-padded to the same duration. An outlier detection al- 472

gorithm (IsolationForest: <https://scikit-learn.org/stable/modules/generated/ 473

sklearn.ensemble.IsolationForest.html>) was used to flag and re-check potential 474

mislabeled syllables or previously unidentified syllable classes. 475

Preparing spectrograms inputs for TweetyNet Spectrograms were created from 476

audio files using custom Numpy (Bengalese finch) or Matlab (canary) code. All spectro- 477

grams for song from a given species were created with the same parameters (e.g., number 478

of samples in the window for the Fast Fourier Transform). From initial studies we found 479

that it was necessary to perform standard transforms on spectrograms such as a log 480

transform in order for the neural network to learn. We did not notice any difference in 481

the nature of the transform (i.e, we also used log + 1) although here we do not study 482

this systematically. 483

Network Architecture 484

The network takes a 2D window from a spectrogram as input (red box, left in Fig 4) 485

and produces as output labels for each time bin in the window. The spectrogram 486

window passes through two standard convolutional blocks, each of which consists of 487

a convolutional layer and a max pooling layer. The convolutional layer performs a 488

cross-correlation like operation (asterisk in Fig 4) between the spectrogram window and 489

learned filters (greyscale boxes in Fig 4) to produces feature maps. The max pooling 490

layer uses a similar operation to further reduce feature maps to maximum values within 491

a sliding window (orange bin in Fig 4). Importantly, the window size we use in the max 492

pooling layer has a ”width” of one time bin, so that this layer does not down-sample 493

along the time axis (although the convolutional layer does). The output of the second 494

convolutional block passes through a recurrent layer made up of LSTM units, where the 495

number of units equals the number of time bins in the spectrogram window. 496

The final layer in TweetyNet is a projection (
−→
W t,s) of the recurrent layer’s output 497

onto the different syllable classes, s = 1..n, resulting in a vector of n syllable-similarity 498

scores for each spectrogram time bin t. The number of classes, n, is predetermined 499

by the user and includes a class for no-song time bins. At present this non-song class 500

includes both background noises and silence, and future iterations of the model may 501
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distinguish between these for better performance. To segment syllables, the bin-wise 502

syllable-similarity scores are first used to select a single syllable class per time bin by 503

choosing the label with the highest syllable-similarity score. Since similarity scores can 504

be normalized, this is akin to maximum a-posteriori (MAP) label selection. Then, the 505

labelled time bins are used to separate continuous song segments from no-song segments 506

and to annotate each song-segment with a single label using majority decision. 507

Training and benchmarking TweetyNet 508

Benchmarking of TweetyNet was performed with the vak library. We apply standard 509

methods for benchmarking supervised machine learning algorithms, following best 510

practices [67]. We leverage functionality of the vak library that extends best practices 511

for benchmarking to the domain where where dataset size is measured in duration, as 512

described in Learning curves. 513

Data transformations 514

As stated above, the input to the network consists of spectrogram windows. To produce 515

this input, we slid a window of fixed length across spectrograms, essentially creating 516

an array of every possible window from each spectrogram. This array was randomly 517

permuted then fed to the network in minibatches during training, along with the expected 518

output, vectors of labels for each timebin in the spectrogram windows. These vectors 519

of labeled timebins are produced programmatically by vak from annotations consisting 520

of segment labels and their onset and offset times. For Bengalese finch song we used 521

windows of 88 time bins, and for canary song we used windows of 370 time bins. We 522

carried out preliminary experiments where we varied the window size for Bengalese finch 523

song, but did not find that larger windows greatly increased accuracy, although they did 524

increase training time. 525

Learning curves 526

For the studies shown in Figs. 5,7, we created learning curves, that display a metric such 527

as frame error rate as a function of the amount of training data. For each individual 528

bird we fit networks with training sets of increasing size (duration in seconds) and then 529

measured performance on a separate test set. 530

In the case of Bengalese finches, we used training sets with durations ranging from 531

30-480 seconds. For each network trained, audio files were drawn at random from a 532

fixed-size total training set of 900 seconds until the target size (e.g. 60 seconds) was 533

reached. If the total duration of the randomly drawn audio files extended beyond the 534

target duration, they were clipped at the target duration in a way that ensured all 535

syllable classes were still present in the training set. For each bird we trained ten 536

replicates, where each replicate had a different subset of randomly-drawn audio files to 537

create the target training set size. For all Bengalese finches, we measured accuracy on a 538

separate test set with a fixed size of 400s. We chose to use a totally-separate fixed-size 539

set (instead of e.g. using the remainder of the training data set) so we could be sure 540

that any variance in our measures across training replicates could be attributed to the 541

randomly-drawn training set, and not to changes in the test set. We computed metrics 542

such as frame error rate and syllable error rate on the held-out test set for each bird. 543

For canaries we used test set duration of 1500-2000 seconds and training sets of 544

60-600 seconds for the learning curves in Fig. 7. For the result in Table 1 we used a 545

test set of 5000 seconds and a training set of 6000 seconds. The method for generating 546

learning curves as just described is built into the vak library and can be reproduced 547
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using its learncurve functionality in combination with the configuration files we shared 548

(reference link) and the publicly-available datasets. 549

Metrics 550

We measured performance with two metrics. The first is the frame error rate, that simply 551

measures for each acoustic frame (in our case each time bin in a spectrogram) whether 552

the predicted label matches the ground truth label. Hence the range of the frame error 553

rate is between 0 and 1, i.e. can be stated as a percent, and gives an intuitive measure of 554

a model’s overall performance. Previous work on supervised sequence labeling, including 555

bidirectional-LSTM architectures similar to ours, has used this metric [34,38]. 556

The second metric we used is commonly called the word error rate in the speech 557

recognition literature, and here we call it the syllable error rate. This metric is an edit 558

distance that counts the number of edits (insertions and deletions) needed to convert 559

a predicted sequence into the ground-truth sequence. The error rate is normalized by 560

dividing it by the length of the sequences. 561

In Table 1 we provide two additional measures. The first is a lower bound on the 562

percent of all frame errors that can be attributed to slightly-misaligned syllable onsets 563

and offsets. These syllable boundaries are naturally variable in creating the ground truth 564

hand annotated data sets. Spectrogram time bins in which a trained TweetyNet model 565

and the ground truth disagree and only one of them assigns the ’unlabeled’ tag can 566

potentially be around segment boundaries. In Fig. S2 we show the histogram of distances, 567

in spectrogram bins, of such frame errors from ground truth segment boundaries. The 568

majority is concentrated in 0-2 bins away from the boundaries, amounting the overall 569

percents summarized in Table 1. The second is syllable error rate after applying post-hoc 570

cleaning of annotation. This cleanup is done in two steps: (1) discard all segments 571

shorter than 5msec (using 10 msec adds an insignificant improvement in some birds) and 572

(2)assign a single label to each segment of time bins not labeled as ’silence’ by majority 573

vote. 574

Model output as syllable likelihoods 575

In Fig 8 we present model outputs one step prior to assigning the most likely label to each 576

spectrogram time bin. At that stage, one before the argmax(N) step in Fig 4, the model 577

output for a given time bin t is a real-valued affinity a(t, s) ∈ R of all predefined syllable 578

classes s. In Fig 8 we convert these numbers to likelihoods by subtracting the minimum 579

value and normalizing separately for each time bin L(t, s) = a(t,s)−mins′ a(t,s
′)∑

σ [a(t,σ)−mins′ a(t,s
′)] . This 580

transformation was done for presentation only. Applying the commonly-used softmax 581

transform (x→ exp(x)∑
x exp(x)

) is equivalent since we only keep the maximal value. 582

Data analysis - song structure 583

Shared template dependence on number of syllables in song (Fig 2e) 584

In each bird we define an upper bound for repeating parts of songs using pairwise 585

comparisons. For each song we examined all other songs with equal or larger number of 586

syllables and found the largest shared string of consecutive syllables. The fraction of 587

shared syllables is the ratio between the number of shared sequence and the number of 588

syllables in the first, shorter, song. Then, we bin songs by syllable counts (bin size is 10 589

syllables) and calculate the mean and standard deviation across all pairwise comparisons. 590
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Probabilistic suffix tree (Figs 9,10) 591

For each canary phrase type we describe the dependency of the following transition 592

on previous phrases with a probabilistic suffix tree. This method was described in a 593

previous publication from our lab (Markowitz et. al. 2013, code in https://github. 594

com/jmarkow/pst). Briefly, the tree is a directed graph in which each phrase type is a 595

root node representing the first order (Markov) transition probabilities to downstream 596

phrases, including the end of song. The pie chart in Figs 9,10 shows such probabilities. 597

Upstream nodes represent higher order Markov chains that are added sequentially if 598

they significantly add information about the transition. 599

Model cross validation to determine minimal node frequency 600

To prevent overfitting, nodes in the probabilistic suffix trees are added only if they 601

appear more often than a threshold frequency, Pmin. To determine Pmin we replicate the 602

procedure in [12] and carry a 10-fold model cross validation procedure. In this procedure 603

the dataset is randomly divided into a training set, containing 90 percent of songs, and 604

a test set, containing 10 percent of songs. A PST is created using the training set and 605

used to calculate the negative log likelihood of the test set. This procedure is repeated 606

10 times for each value of Pmin, the x-axis in Fig 11a. For data sets of different sizes 607

(curves in Fig 11a, x-axis in Fig 11b) the mean negative log-likelihood across the 10 608

cross validation subsets and across 10 data sets, y-axis in Fig 11a, is then used to find 609

the optimal value of Pmin - the minimum negative log-likelihood that corresponds to the 610

highest precision without over-fitting the training set. All PSTs in Figs 9,10 are created 611

using the cross-validated Pmin. 612
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Supporting information 617

Fig. S1 Consecutive canary phrases can include acoustically-similar sylla- 618

bles but differ in the duration of inter-syllabic gaps.

Fig S1. Example of two consecutive canary phrases that differ mostly in inter-syllable
gaps. In this case, annotation methods that first segment syllables and then use
acoustic parameters to classify them will introduce errors. By simultaneously learning
acoustic and sequence properties, TweetyNet overcomes this weakness.

619

Fig. S2 Most errors of trained TweetyNet models are disagreement on 620

syllable boundaries of 0-2 time bins. 621
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Fig S2. Potential syllable boundary disagreements are time bins in which the ground
truth test set or the trained TweetyNet model disagree and just one of them assigns the
’unlabeled’ silence tag. The histograms show the distances of those time bins from the
nearest syllable boundary in test sets 5000 second long.
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