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Abstract  

 

Algorithms for active module identification (AMI) are central to analysis of omics data. Such 

algorithms receive a gene network and nodes' activity scores as input and report sub-networks that 

show significant over-representation of accrued activity signal (‘active modules’), thus representing 

biological processes that presumably play key roles in the analyzed biological conditions. Although 

such methods exist for almost two decades, only a handful of studies attempted to compare the 

biological signals captured by different methods. Here, we systematically evaluated six popular AMI 

methods on gene expression (GE) and GWAS data. Notably, we observed that GO terms enriched in 

modules detected by these methods on the real data were often also enriched on modules found on 

randomly permuted input data. This indicated that AMI methods frequently report modules that are 

not specific to the biological context measured by the analyzed omics dataset. To tackle this bias, we 

designed a permutation-based method that evaluates the empirical significance of GO terms reported 

as enriched in modules. We used the method to fashion five novel performance criteria for evaluating 

AMI methods. Last, we developed DOMINO, a novel AMI algorithm, that outperformed the other 

six algorithms in extensive testing on GE and GWAS data. Software is available at 

https://github.com/Shamir-Lab.   
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Introduction 

 

The maturation of high-throughput technologies has led to an unprecedented abundance of omics 

studies. With the ever-increasing volume of publicly available genomic, transcriptomic and proteomic 

data (Perez-Riverol et al, 2019), it remains a challenge to uncover biological and biomedical insights 

out of it. As data accumulated over the last two decades strongly indicate that the functional 

organization of the cell is fundamentally modular, a leading approach to this challenge relies on 

biological networks, simplified yet solid mathematical abstractions of complex intra-cellular systems. 

In these networks, each node represents a cellular subunit (e.g. a gene or its protein product) and each 

edge represents a relationship between two subunits (e.g. a physical interaction between two proteins) 

(reviewed in (McGillivray et al, 2018)). A biological module is described as a connected subnetwork 

of - molecules that take part in a common biological process. As such, modules are regarded as 

functional building blocks of the cell (Hartwell et al, 1999; Alon, 2003; Barabási & Oltvai, 2004). 

The challenge of identifying modules in biological networks, frequently referred to as network-based 

module identification or community detection, has yielded many computational methods (for a recent 

comparative study see (Choobdar et al, 2019)), and successfully identified molecular machineries 

that perform basic biological functions and underlie pathological phenotypes (Ideker & Sharan, 2008; 

Barabási et al, 2011). However, such analysis is limited as it is based on a static snapshot of an abstract 

universal cell provided by the network, while the state of the cell greatly varies under different 

physiological conditions. One very powerful way to overcome this limitation is by integrating the 

analysis of omics data and biological networks. This approach overlays molecular profiles (e.g., 

transcriptomic, genomic, proteomic or epigenomic profiles) on the network, by scoring nodes or 

weighting edges. This additional layer of condition-specific information is then used to detect 

modules that are relevant to the analyzed molecular profile (Mitra et al, 2013).  A prominent class of 

such algorithms seek subnetworks that show a marked over-representation of accrued node scores 

(Ideker et al, 2002; Mitra et al, 2013; Reyna et al, 2020). Modules detected by such methods are often 

called ‘active modules’, and following this terminology we refer to nodes’ scores as ‘activity scores’ 

and to the task of detecting active modules using such scores as Active Module Identification (AMI). 

(The task is sometimes called community detection with node attributes (Yang et al, 2014)  Hereafter, 

for brevity, where clear from the context, we refer to active modules reported by AMI methods simply 

as modules.  

Modules detected by AMI algorithms are expected to capture context-specific molecular processes 

that correlate with the specific cellular state or phenotype that is probed by the analyzed omics profile 

(Mitra et al, 2013). Different AMI methods use different scoring metrics, objective functions and 

constraints. For example, activity scores may be binary or continuous, the objective function could 
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penalize for including low-scoring nodes, and constraints can limit the number of ‘non-active’ nodes 

in a module. While the metrics by which modules are scored may differ from one method to another, 

the activity scores are always derived from the data (e.g. log2( 𝑓𝑜𝑙𝑑 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) for 

transcriptomic data). As the AMI problem has been proven to be NP-hard (Ideker et al, 2002), many 

heuristics were suggested for solving it (Mitra et al, 2013; Creixell et al, 2015). 

Solutions reported by AMI methods comprise a set of active modules. A common downstream 

analysis is to ascribe each module some biological annotations that will point to the biological 

processes that it affects (Leiserson et al, 2015; Cerami et al, 2010; Barel & Herwig, 2018). This is 

most commonly done by testing enrichment of the modules for GO terms (The Gene Ontology 

Consortium, 2019). AMI solutions would ideally break down complex biological states into distinct 

functional modules, each mediating one or several highly related biological processes. For example, 

biological responses to genotoxic stress often comprises the concurrent activation and repression of 

multiple biological processes (e.g., DNA repair, cell-cycle arrest, apoptosis), each mediated by a 

single or a few dedicated signaling pathways (Kyriakis & Avruch, 2012; Ashcroft et al, 2000).     

Another key advantage of AMI methods is the amplification of weak signals, where a reported active 

module comprises multiple nodes that individually have only marginal scores, but when considered 

in aggregate score significantly higher. This merit of AMI methods is especially critical for the 

functional interpretation of Genome-Wide Association Studies (GWASs) (Cowen et al, 2017; Carter 

et al, 2013). Numerous GWASs conducted over the last decade have demonstrated that the genetic 

component of complex diseases is highly polygenic (Khera et al, 2018; Musunuru & Kathiresan, 

2019; Sullivan & Geschwind, 2019), affected by hundreds or thousands of genetic variants, the vast 

majority of which have only a very subtle effect. Therefore, most "risk SNPs" do not pass statistical 

significance when tested individually after correcting for multiple testing (Stringer et al, 2011; Boyle 

et al, 2017). This stresses the need for computational methods that consider multiple genetic elements 

together, to allow detection of biological pathways that carry high association signal. As a first step 

in this challenge, gene-level scores are inferred from the scores of the genetic variants that map to the 

same gene (Lamparter et al, 2016; de Leeuw et al, 2015). These gene scores then serve as activity 

scores by AMI methods for integrated analysis of GWAS data and biological networks. Recently, 

such analyses successfully elucidated novel process that are implicated in the pathogenesis of 

inflammatory bowel disease, Schizophrenia and  Type-2 diabetes (Nakka et al, 2016; Chang et al, 

2015; Fernández-Tajes et al, 2019).  

In this study, we first aimed to systematically evaluate popular AMI algorithms across multiple gene 

expression (GE) and GWAS datasets based on enrichment of the called modules for GO terms. 

Remarkably, our analysis revealed that AMI algorithms often reported modules that showed 
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enrichment for a high number of GO terms even when run on permuted datasets. Moreover, some of 

the GO terms that were often enriched on permuted datasets were also enriched on the original dataset, 

indicating that AMI solutions frequently include modules that are not specific to the biological context 

measured by the analyzed omics dataset. To tackle this bias, we designed a procedure for validating 

the functional analysis of AMI solutions by comparing them to null distributions obtained on 

permuted datasets. We used the empirically validated set of GO terms to define novel metrics for 

evaluation of AMI algorithm results. Finally, we developed DOMINO (Discovery of active Modules 

In Networks using Omics) – a novel AMI method, and showed its advantage in comparison it to the 

previously developed algorithms. 

 
Results 

 
AMI algorithms suffer from a high rate of non-specific GO term enrichments   

We set out to evaluate the performance of leading AMI algorithms. Our analysis included six 

algorithms – jActiveModules (Ideker et al, 2002) in two strategies: greedy and simulated annealing 

(abbreviated jAM_greedy and jAM_SA, respectively), BioNet (Beisser et al, 2010), HotNet2 

(Leiserson et al, 2015), NetBox (Cerami et al, 2010) and KeyPathwayMiner (Baumbach et al, 2012) 

(abbreviated KPM). These algorithms were chosen based on their popularity, computational 

methodology and diversity of original application (e.g., gene expression data, somatic mutations) 

(Table S1). As we wished to test these algorithms extensively, we focused on those that had a working 

tool/codebase that can be executed in a stand-alone manner, have reasonable runtime and could be 

applied to different omics data types. Details on the execution procedure of each algorithm are 

available in the Appendix. We applied these algorithms to two types of data: (1) a set of ten gene-

expression (GE) datasets of diverse biological physiologies (Table S2) where gene activity scores 

correspond to differential expression between test and control conditions, and (2) a set of ten GWAS 

datasets of diverse pathological conditions (Table S3) where gene activity scores correspond to 

genetic association with the trait (Methods). Note that for uniformity, we use the term activity also 

for the GWAS scores. In our analyses, we mainly used the Database of Interacting Proteins (DIP; 

(Xenarios et al, 2002)) as the underlying global network. Although the DIP network is relatively small 

- comprising about 3000 nodes and 5000 edges, in a recent benchmark analysis (Huang et al, 2018) 

it got the best normalized score on recovering literature-curated disease gene sets, making it ideal for 

multiple systematic executions.  

First, applying the algorithms to the GE and GWAS datasets we observed that their solutions showed 

high variability in the number and size of active modules they detected (Figure S1 and 
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Figure S2).  On the GE datasets, jAM_SA tended to report a small number of very large modules 

while HotNet2 usually reported a high number of small modules (Figure S1). jAM_SA showed the 

same tendency for reporting large modules also on the GWAS datasets (Figure S2). Next, to 

functionally characterize the solutions obtained by the algorithms, we tested the modules for enriched 

GO terms using the hypergeometric (HG) test with the genes in the entire network as the background 

set. Specifically, we used GO terms from the Biological Process (BP) ontology, using only terms with 

5-500 genes. To avoid potential bias caused by the underlying network and datasets, we excluded 

from each GO class genes that were included in it based on physical interaction, expression pattern, 

genetic interaction or mutant phenotype (GO evidence codes: IPI, IEP, IGI, IMP, HMP, HGI and 

HEP). Next, as part of our evaluation analysis, we applied the algorithms also on random datasets 

generated by permuting the original gene activity scores uniformly at random. Notably, we observed 

that modules detected on the permuted datasets, too, were frequently enriched for GO terms (Figure 

1A) Moreover, different algorithms showed varying degree of overlap between the enriched terms 

obtained on real and permuted datasets (Figure 1B). These findings imply that many terms reported 

by AMI algorithms do not stem from the specific biological condition that was assayed in each 

dataset, but rather from other non-specific factors that bias the solution, such as the structure of the 

network, the methodology of the algorithm and the distribution of the activity scores. 
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Figure 1. A. Comparison of GO enrichment results obtained on the original CBX GE dataset and on one 
random permutation of the original gene activity scores of this dataset. The histograms show the distributions 

of GO enrichment scores obtained for the modules detected on the original and permuted datasets. The Venn 

diagrams show the overlap between the GO terms detected in the two solutions. B. Comparison of GO terms 
reported on the original and permuted datasets. We used 1-Jaccard score to measure the dissimilarity between 

the GO terms detected on the two datasets. Values closer to 1 indicate low similarity (that is, lower bias). Each 

bar shows, per algorithm, this measure on the ten datasets, averaged over 100 random permutations. Datasets 

are ordered from left to right as in Tables S2 and S3. Dashed lines show the median score.    
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A permutation-based method for filtering false GO terms 

The high overlap between sets of enriched GO terms obtained on real and permuted datasets indicates 

that the results of most AMI algorithms tested are highly susceptible to false calls that might lead to 

functional misinterpretation of the analyzed omics data. We looked for a way to filter out such non-

specific terms while preserving the ones that are biologically meaningful in the context of the 

analyzed dataset.  For this purpose, we developed a procedure called the EMpirical Pipeline (EMP). 

It works as follows: Given an AMI algorithm and a dataset, EMP permutes genes’ activity scores in 

the dataset and executes the algorithm. For each module reported by the algorithm, it performs GO 

enrichment analysis. The overall reported enrichment score for each GO term is its maximal score 

over all the solution’s modules (Figure 2A). The process is repeated many times (typically, in our 

analysis, 5,000 times), generating a background distribution per GO term (Figure 2B). Next, the 

algorithm and the enrichment analysis are run on the real (i.e. non-permuted) dataset (Figure 2C). 

Denoting the background CDF obtained for GO term 𝑡 by 𝐹𝑡, the empirical significance of 𝑡 with 

enrichment score s is 𝑒(𝑡)  =  1 − 𝐹𝑡(𝑠). EMP reports only terms 𝑡 that passed the HG test (q-value 

≤ 0.05 on the original data) and had empirical significance 𝑒(𝑡)  ≤  0.05 (Figure 2D). We call such 

terms empirically validated GO terms (EV terms). In addition, for each AMI algorithm solution, we 

define the Empirical-to-Hypergeometric Ratio (EHR) as the fraction of EV terms out of the GO terms 

that passed the HG test (Figure 2E-F).  
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Figure 2. Overview of the EMpirical Pipeline (EMP) procedure. A. The AMI algorithm and the GO enrichment 
analysis are applied on multiple (typically, n=5000) permuted activity scores. B. A null distribution of 

enrichment scores (-log10Pval) is produced per GO term. C. The AMI algorithm is applied to the original (un-

permuted) activity scores, to calculate the real GO enrichment scores. D. For each GO term, the real 

enrichment score is compared to its corresponding empirical null distribution to derive an empirical score. In 
this example, GO_3 passed the HG test, but failed the empirical test and thus was filtered out. E, F. 

Distributions of HG enrichment scores for all the GO terms that passed the HG test and for the subset of the 

EV terms obtained on the shEZH expression dataset by jActiveModules with greedy strategy (E) and NetBox 

(F). EHR measures the ratio between the number of EV terms and the number of GO terms that passed 

the HG test. The high EHR score obtained by NetBox (close to 1.0) demonstrates the advantage of this alg. 

in avoiding false terms.  
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The DOMINO algorithm 

Our results demonstrated that popular AMI algorithms often suffer from high rates of false GO terms. 

While the EMP method is a potent way for filtering out non-specific GO term calls from AMI 

solutions, this procedure is computationally demanding, as it requires several thousands of 

permutation runs. In our analyses, using a 44-cores server, EMP runs typically took several days to 

complete, depending on the algorithm and the dataset. Seeking a more frugal alternative that can be 

used on a desktop computer, we developed a novel AMI algorithm called DOMINO (Discovery of 

active Modules In Networks using Omics), with the goal of producing highly confident active modules 

characterized by high validation rate (that is, high EHR values).  

DOMINO receives as input a set of genes flagged as the active genes in a dataset (e.g., the set of 

genes that in the analyzed transcriptomic dataset passed a test for differential expression) and a 

network of gene interactions, aiming to find disjoint connected subnetworks in which the active genes 

are over-represented. DOMINO has four main steps:  

0. Partition the network into disjoint, highly connected subnetworks (slices).  

1. Detect relevant slices where active genes are over-represented 

2. For each relevant slice S 

a. Refine S to a sub-slice S' 

b. Repartition S' into putative modules 

3. Report as final modules those that are over-represented by active genes. 

 Step 0 - Partitioning the network into slices. This time-consuming preprocessing step is done once 

per network (and reused for any analyzed dataset). In this step, the network is split into disjoint 

subnetworks called slices. Splitting is done using a variant of the Louvain modularity algorithm 

(Blondel et al, 2008) (Methods).  Each connected component in the final network that has more than 

three nodes is defined as a slice (Figure 3A).  

Step 1 - Detecting relevant slices. Each slice that contains more active nodes than a certain threshold 

(see Methods) is tested for active nodes over-representation using the Hypergeometric (HG) test, 

correcting the p-values for multiple testing using FDR (Benjamini & Hochberg, 1995).  In this initial 

step we use a lenient threshold of q-values < 0.3 to accept a slice as a relevant one (Figure 3B). 

Step 2a - Refining the relevant slices into sub-slices. From each slice, the algorithm extracts a single 

connected component that captures most of the activity signal. The single component is obtained by 

solving the Prize Collecting Steiner Tree (PCST) problem (Johnson et al, 2000) (Methods). The 

resulting subgraph is called a sub-slice (Figure 3C).   
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Step 2b - Partitioning sub-slices into putative active modules. Each sub-slice that is not over-

represented by active nodes and has more than 10 nodes is partitioned using the Newman-Girvan 

algorithm (Methods). The resulting parts, as well as all the sub-slices from step 2a of ≤ 10 nodes, are 

called putative active modules (Figure 3D).   

Step 3 - Identifying the final set of active modules.  Each putative active module is tested for over-

representation of active nodes using the HG test. In this step, we correct for multiple testing using the 

more stringent Bonferroni correction. Those with q-value < 0.05 are reported as the final active 

modules (Figure 3E). 

 

 
 

Figure 3. Schematic illustration of DOMINO. A. The global network is partitioned by the Louvain 

modularity algorithm into slices (encompassed in purple line). B. A slice is considered relevant if it passes a 

moderate HG test for enrichment for active nodes (𝐹𝐷𝑅 𝑞 ≤  0.3). C. For each relevant slice the most active 
sub-slice is identified using PCST (red areas). D. Sub-slices are further partitioned into putative active 

modules using the Newman-Girvan (NG) modularity algorithm. E. Each putative active module that passes a 

strict over-representation test for active nodes (𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑞𝑣𝑎𝑙 ≤  0.05) is included in the final solution. 

 

A                     B 

E 

                               Step 0: slices                       Step 1: relevant slices 

                           Step 2a: sub-slices               Step 2b: putative modules 

                           Step 3: final modules 

C                    D 
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Systematic evaluation of AMI algorithms on gene-expression and GWAS datasets  

We next carried out a comparative evaluation of DOMINO and the six AMI algorithms described 

above over the same ten GE and ten GWAS datasets. This evaluation task is challenging as there are 

no “gold-standard” solutions to benchmark against. To address this difficulty, we introduce five novel 

scores as evaluation criteria of AMI algorithms. These scores are based on the EMP method and the 

GO terms that pass this empirical validation procedure. The scores are described in Methods and the 

results on all algorithms are summarized in Figures 4-6. 

(a) EHR (Empirical-to-Hypergeometric Ratio). EHR summarizes the tendency of an AMI algorithm to 

capture biological signals that are specific to the analyzed omics dataset, i.e. GO terms that are enriched 

in modules found on the real but not on permuted data. EHR has values between 0 to 1, with higher values 

indicating better performance. In our evaluation, DOMINO and NetBox scored highest on EHR. In both 

GE and GWAS datasets, DOMINO performed best with an average above 0.8. (Figure 4A-B). 

Importantly, these high EHR levels were not a result of reporting low number of terms: DOMINO reported 

on average more enriched GO terms than the other algorithms, except NetBox on GE datasets (Figure 

4C-D).  

Figure 4. EHR and number of reported terms. A. Average EHR for the GE datasets. B. Average EHR for the 

GWAS datasets. C. The number of EV terms reported for the GE datasets. D. The number of EV terms 

reported for the GWAS datasets. The grey dots indicate results for each dataset. Error bars indicate SD 

across datasets. 
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(b) Module-level EHR (mEHR). While the EHR characterizes a solution as a whole by considering 

the union of GO terms enriched on any module, biological insights are often obtained by functionally 

characterizing each module individually. We therefore next evaluated the EHR of each module 

separately. Specifically, for each module, we calculated the fraction of its EV terms out of the HG 

terms detected on it (Methods). Modules with high mEHR score are the biologically most relevant 

ones, in the context of the analyzed omics dataset, while modules with low mEHR mostly capture 

non-specific signals. The comparison between mEHR scores obtained by the different AMI 

algorithms is summarized in Figure 5A. Notably, solutions can have a broad range of mEHR scores 

(for example, in NetBox solution on the IEM dataset, the best module has mEHR=0.78 while the 

poorest has mEHR=0). To summarize the results over multiple modules, we averaged the k top 

scoring modules (from k=1 to 20; Figure 6A). In this criterion, DOMINO scored highest, followed 

by NetBox. The results for GWAS datasets are shown in Figure S3 and Figure S4A.  

Furthermore, the EMP procedure enhances the functional interpretation of each module by 

distinguishing between its enriched GO terms that are specific to the real data (i.e., the EV terms) and 

those that are recurrently enriched also on permuted ones. This utility of EMP is demonstrated, as one 

example, on a module detected by NetBox on the ROR GE dataset (Figure 5B). This study examined 

roles of the ROR2 receptor in breast cancer progression, and the GO terms that passed EMP validation 

are highly relevant for this process (e.g., GO terms related to steroid hormone mediated signaling 

pathways). In contrast, GO terms that failed passing this validation procedure represent less specific 

processes (e.g., “DNA-templated transcription, initiation”).  

 

(c) Biological richness. This criterion aims to measure the diversity of biological processes captured 

by a solution. Our underlying assumption here is that biological systems are complex and their 

responses to triggers typically involve the concurrent modulation of multiple biological processes. 

For example, genotoxic stress concurrently activates DNA damage repair mechanisms and apoptotic 

pathways and suppresses cell-cycle progression. However, merely counting the number of EV terms 

of a solution would not faithfully reflect its biological richness because of the high redundancy 

between GO terms. This redundancy stems from overlaps between sets of genes assigned to different 

GO terms, mainly due to the hierarchical structure of the ontology. We therefore used REVIGO 

(Supek et al, 2011) to derive a non-redundant set of GO terms based on semantic similarity scores 

(Lord et al, 2003; Resnik, 1999). We defined the biological richness score of a solution as the number 

of its non-redundant EV terms (Methods). The results in Figure 6B show that on the GE datasets, 

DOMINO and NetBox performed best. On the GWAS datasets, DOMINO performed best (Figure 

S4B).  Note that the interpretation of this criterion is condition dependent. High biological richness 

can be revealing or an indication of spurious results. 
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(d) Intra-module homogeneity. While high biological diversity (richness) is desirable at the solution 

level, each individual module should ideally capture only a few related biological processes. Solutions 

in which the entire response is partitioned into separate modules where each represents a distinct 

biological process are easier to interpret biologically and are preferred over solutions with larger 

modules that represent several composite processes. To reflect this preference, we introduced the 

intra-module homogeneity score, which quantifies how functionally homogeneous the EV terms 

captured by each module are (Methods; Figure S5). For each solution, we take the average score of 

its modules. On the GE datasets, NetBox performed best (Figure 6C). On the GWAS datasets, 

DOMINO scored highest (Figure S4C). 
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Figure 5.  AMI algorithms evaluated by the module-level EHR (mEHR) criterion on GE datasets. A. mEHR 

scores for each algorithm and dataset. Up to ten top k modules are shown per datasets, ranked by their 

mEHR. Dot size represents module's size. B. An example of a module from the solution reported by NetBox 

on the ROR dataset (mEHR=0.88). The nodes’ color indicates expression fold change (log scale) in the 

dataset. The black nodes are the network neighbors of the module’s nodes. Nodes with purple border have 

significant activity scores (that is, significant differential expression; 𝑞𝑣𝑎𝑙 < 0.05). The EV terms for this 

module are shown in red and those that did not pass the empirical validation in blue. 

 

(e) Robustness. This criterion measures how robust an algorithm's results are to subsampling of the 

data. It compares the EV-terms obtained on the original dataset with those obtained on randomly 

subsampled datasets. Running 100 subsampling iterations and using the EV terms found on the 

original dataset as the gold-standard GO terms, we compute AUPR and average F1 scores for each 

solution (Methods). On the GE datasets, solutions produced by DOMINO and NetBox showed the 
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highest robustness over a wide range of subsampling fractions (Figure 6D-E). On the GWAS datasets, 

DOMINO's solutions scored highest (Figure S4D-E).  

A breakdown of the evaluation criteria by their properties is shown in Figure 6F. 

Table 1 summarizes the benchmark results. DOMINO performed best on the GE datasets in five of 

the six criteria, and in all six criteria on the GWAS datasets. NetBox came second, performed best or 

timed for best in two criteria and second in the rest.  

In addition, DOMINO ran much faster than the other algorithms, taking 1-3 orders of magnitude less 

time (Tables S4-S6). This speed allows to run DOMINO and the EMP procedure in reasonable time 

on a desktop machine. We also noticed that runtimes were markedly shorter on permuted datasets, 

probably since after permutation activity scores are spread more uniformly across the network, 

producing smaller modules. 

 

Analysis of large-scale networks 

Our benchmark used the highly informative but relatively small DIP network (~3k nodes and ~5k 

edges) in order to allow systematic evaluation of multiple AMI methods on many datasets. Yet, much 

larger networks are currently available. To examine how DOMINO performs on larger network, we 

applied it on two state-of-the-art human networks: the HuRI network (8,272 nodes and 52,549 edges) 

(Luck et al, 2020) and STRING (with >18K nodes and >11M edges) (Szklarczyk et al, 2017). We 

also tested NetBox, the second-best performer in our benchmark, on these larger networks. The edges 

of the STRING network are weighted with a confidence score, ranging from 0 to 1000, based on the 

strength of their supporting evidence. To make the execution of the EMP feasible, we kept only edges 

with score > 900. The resulting network had 11,972 nodes and 243,385 edges. Setting a running time 

limit of 5 hrs, DOMINO completed all runs on both the HuRI and STRING networks, while NetBox 

did so on these two network for 8/10 and 2/10 of the GE datasets and for 9/10 and 9/10 of the GWAS 

datasets, respectively.  Notably, DOMINO consistently outperformed NetBox on 23 of the 24 criteria 

on both networks and both types of datasets (Table 2).  DOMINO also performed overall better when 

using different HG q-value thresholds (External Table 1). Taken together, these results demonstrate 

that DOMINO maintains high performance when applied to large networks as well.  
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Figure 6. Evaluation results for the GE datasets. A. Module-level EHR scores. The plot shows the average 

mEHR score of the 𝑘 top modules, as a function of 𝑘 in each solution. Modules were ranked, for each 

solution, by their mEHR score. Then, for each solution with 𝑛 modules we calculate the average mEHR of 

the top 𝑚𝑖𝑛(𝑘, 𝑛) modules. Finally, we averaged the results and got the average mEHR of an algorithm. B. 

Biological richness. The plot shows the median number of non-redundant terms (richness score) as a 
function of the Resnik similarity cutoff (Methods). C. Intra-module homogeneity scores as a function of the 

similarity cutoff. D. Robustness measured by the average AUPR over the datasets, shown as a function of the 

subsampling fraction. E. Robustness measured by the average F1 over the datasets shown as a function of 
the subsample fraction. In D and E, 100 samples were drawn and averaged for each dataset and 

subsampling fraction. F. A breakdown of the evaluation criteria by their properties. Richness, EHR and 

robustness score solutions based only on the whole set of the reported GO terms, without taking into account 

the results for individual modules. In contrast, mEHR and intra-module homogeneity score solutions in a 
module-aware fashion. From another perspective, biological richness and intra-module homogeneity 

consider the relations among the reported GO terms, while EHR, mEHR, and robustness do not.  
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Analyzing the network contribution to non-specific GO enrichment bias 

 

Understanding the causes for over-reporting of enriched GO terms is a key question that arises from 

our study. One prominent potential cause is the network topology, as the modules sought are 

connected subnetworks, and connectivity also reflects functional similarity. To explore the 

contribution of the network to the GO enrichment bias, we next detected modules in the underlying 

DIP network without use of any condition-specific activity profile, and identified the GO terms these 

modules were enriched for. Overall, 2,450 out of 6,573 (37%) BP GO terms were detected by this 

analysis, and we refer to them as net-terms. Notably, while net-terms were in general highly over-

represented among the GO terms reported by AMI solutions (Figure 7A-B), these terms did not show 

higher rejection rate by the EMP procedure than the other BP GO terms (Figure 7C-D) (see 

Appendix for full details of this analysis).  These results show that simple exclusion of GO net-terms 

from AMI analyses cannot replace the empirical validation to lessen over-reporting of non-specific 

GO terms.   Better understanding of the bias origin is required.  

Figure 7. Comparison of the GO terms identified by each benchmarked algorithm to the terms identified by 

using the network only (net-terms). A-B. Average number of net-terms and other terms. Only terms reported 

in four datasets or more were included.  Note that no terms were reported in more than four GWAS datasets 

by DOMINO and NetBox, which obtained the best overall results (Table 1). A. GE; B. GWAS. C-D. Average 

rejection ratio of net-terms and other terms. The rejection ratio of a GO term in an algorithm is the fraction of 

datasets in which the term appeared as significant but was not empirically validated (see Appendix). C. GE; 

D. GWAS.  P-values were calculated by comparing the rejection ratios between net-terms and other terms 

using Mann-Whitney U one-sided test. 
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Discussion 

The fundamental task of active module identification (AMI) algorithms is to identify active modules 

in an underlying network based on context-specific gene activity profiles. The comparison of AMI 

algorithms is challenging due to the complex nature of the solutions they produce. Algorithms differ 

markedly in the number, size, and properties of the modules they detect. Although AMI algorithms 

have been extensively used for almost two decades (Ideker et al, 2002), there is no accepted 

community benchmark for this task and no consensus on evaluation criteria. As active modules are 

often used to characterize the biological processes that are most relevant in the context of the profiled 

activity, we analyzed the solutions produced by AMI algorithms from the perspective of enrichment 

for GO terms annotating biological processes.  

Previous works reported that the scheme used by the popular jActiveModule algorithm to score active 

modules is biased towards large modules, and suggested ways to alleviate this bias (Nikolayeva et al, 

2018) (Reyna et al, 2020). Our study reports on a different bias that is prevalent in AMI solutions: 

their tendency to report non-specific GO terms. Early on in our analysis, we observed that many 

enriched GO terms also appear on permuted datasets, suggesting that such enrichment stems from 

some proprieties of the network, algorithm or the data that bias the results. To overcome this bias, we 

developed the EMP procedure, which empirically calibrates the enrichment scores and filters out non-

specific terms. This procedure can be applied to any AMI algorithm. 

To exemplify their merits, studies that present a novel AMI method usually report a collection of 

enriched gene sets (e.g., GO terms or pathways) obtained on the algorithm’s solution and are 

biologically relevant to the analyzed condition. While this approach is valid for demonstrating 

capabilities of an algorithm, it is problematic for a systematic evaluation of algorithms, due lack of 

gold-standard bias-free set of biologically relevant GO terms for a given condition. An additional 

difficulty is the hierarchical structure of GO ontology. A previous benchmark of AMI algorithms used 

as an evaluation criterion the fold enrichment of the output genes using a single set of biologically 

relevant genes (He et al, 2017). In our work, we defined five novel evaluation criteria based on the 

GO terms enriched in a solution, each emphasizing a different aspect of the solution (Figure 6F).   

We used these criteria to benchmark six popular AMI algorithms and DOMINO, a novel algorithm 

we developed, on ten GE and ten GWAS datasets, which collectively cover a very wide spectrum of 

biological conditions. Overall, DOMINO performed best, indicating its ability to produce "clean", 

stable and concise modules. NetBox also scored high in our evaluation. Interestingly, both DOMINO 

and NetBox use binary gene activity scores. One may expect that binarizing measured activity scores 

could degrade relevant biological signals. However, at least on our benchmark, binarizing the data 
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helped in reducing noise and detecting modules that are specifically relevant for the analyzed 

conditions. Further study of this observation is needed. 

Notably, the algorithms that we tested substantially differ in their empirical validation rates. Some 

algorithms produced solutions with very low EHR (<0.5), and therefore running the EMP on them 

was critical. While empirical correction is desirable and adds confidence to the reported results, it is 

computationally highly demanding even with a relatively small network such as DIP. Naturally, using 

larger networks makes this procedure even slower (Tables S4-S6). A notable advantage of DOMINO 

is the high validation rates: on our benchmark its average EHR and mEHR were above 0.84, 

suggesting that DOMINO can be confidently run without empirical validation when computational 

resources are limited.  

A common caveat in any report comparing a novel method to extant ones is that the new method may 

be better tuned to the data than the other methods. This may introduce a bias in the reported results. 

In our case, we could not tune each of the other AMI methods due to the long running time of EMP. 

Community efforts like the DREAM challenges (Choobdar et al, 2019) help reduce potential  bias by 

allowing authors to calibrate their own methods on a common set of test datasets. To enable additional 

testing, the code of DOMINO, EMP and the evaluation criteria is freely available at 

https://github.com/Shamir-Lab/. 

In summary, in this study we (1) reported on a highly prevalent bias in popular AMI algorithms, which 

leads to non-specific calls of enriched GO terms, (2) developed a procedure to allow for the correction 

of this bias, (3) introduced novel criteria for evaluation of AMI solutions, and (4) developed 

DOMINO – a novel AMI algorithm with low rate of non-specific calls and better performance across 

most of the criteria.  
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Table 1. Summary of the benchmark analysis.  

 

 

  

Per algorithm, average score over the ten datasets is shown. Best score in each criterion is in bold.  

*Results are average over the top 10 modules 

†Results shown for subsampling fraction=0.8 
# Results shown for Resnik cutoff=3 

 

Table 2. Performance of DOMINO and NetBox on the larger networks.  

 

Network Alg. EHR mEHR* 
Robustness 
(F1)† 

Robustness 
(AUPR)† 

Biological 
Richness# 

Intra-Module 
Homogeneity# 

  GE datasets 

HURI NetBox 0.505±0.482 0.435 0.223±0.228 0.458±0.416 10±25.738 1.084±1.694 

 DOMINO 0.881±0.313 0.536 0.3±0.289 0.642±0.38 6.5±17.515 1.354±1.48 

STRING NetBox 0.18±0.38 0.185 0.144±0.305 0.177±0.374 0±39.314 0.477±1.019 

 DOMINO 0.939±0.046 0.892 0.547±0.282 0.788±0.285 43±43.818 2.326±0.687 

  GWAS datasets 

HURI NetBox 0.3±0.483 0.233 0.08±0.144 0.234±0.399 0±3.9 0.165±0.371 

 DOMINO 0.939±0.585 0.356 0.547±0.251 0.506±0.447 4.5±9.878 2.445±0.533 

STRING NetBox 0.425±0.438 0.372 0.328±0.342 0.422±0.438 12±27.683 1.392±1.371 

 DOMINO 0.692±0.371 0.796 0.389±0.231 0.532±0.346 13±18.093 1.986±1.629 

 

Per algorithm, average score over the ten datasets is shown. Best score in each criterion is in bold.  

*Results are average over the top 10 modules 

†Results shown for subsampling fraction=0.8 
# Results shown for Resnik cutoff=3 

 Alg. EHR mEHR* 

Robustness 
(F1)† 

Robustness 
(AUPR)† 

Biological 
Richness# 

Intra-Module 
Homogeneity# 

 GE datasets 

jAM_greedy 0.052±0.137 0.049 0.046±0.117 0.062±0.123 2.5±9.837 0.325±0.748 

jAM_SA 0.236±0.25 0.24 0.174±0.188 0.204±0.229 22±18.02 1.335±1.097 

Bionet 0.398±0.4 0.444 0.182±0.15 0.321±0.322 20±23.819 1.929±1.302 

NetBox 0.719±0.425 0.635 0.438±0.266 0.632±0.417 24±32.301 2.575±1.453 

KPM 0.149±0.296 0.185 0.13±0.241 0.159±0.297 8±15.621 0.698±0.983 

DOMINO 0.891±0.129 0.876 0.486±0.192 0.776±0.174 30.5+12.69 2.376±0.754 

HotNet2 0.424±0.429 0.387 0.183±0.158 0.288±0.23 9±6.004 0.951±0.791 

  GWAS datasets 

jAM_greedy 0.151±0.2 0.131 0.105±0.138 0.125±0.171 3.5±15.481 1.165±1.287 

jAM_SA 0.053±0.155 0.033 0.046±0.134 0.058±0.173 0±11.83 0.327±0.736 

Bionet 0.298±0.466 0.323 0.138±0.21 0.267±0.407 2±8.634 0.857±1.211 

NetBox 0.694±0.497 0.782 0.335±0.298 0.617±0.456 11±8.485 1.172±1.338 

KPM 0.134±0.312 0.155 0.144±28 0.16±0.324 0±9.073 0.438±0.719 

DOMINO 0.844±0.307 0.884 0.452±0.268 0.673±0.291 11±9.55 2.085±1.61 

HotNet2 0.081±0.241 0.033 0.016±0.037 0.061±0.183 0±0.843 0.036±0.115 
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Methods: 

1. The Louvain algorithm in DOMINO   

The Louvain algorithm is a fast community detection method for large network (Blondel et al, 2008) . 

This method aims to optimize an objective function by iteratively moving nodes between community 

to improve the objective function and fusing together the nodes of each community. In our benchmark 

we used a variant (Lambiotte et al, 2008) that incorporates a resolution parameter denoted 𝑟, which 

we set to 0.15.  

 

2. Threshold for testing relevant slices 

Slices that contain only a few active nodes are unlikely to be relevant. Testing multiple such slices 

would diminish the significance of genuine relevant slices. Therefore, we test for relevance only slices 

that satisfy either 

#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑙𝑖𝑐𝑒

#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
≥ 0.1 . 

or 

#𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑙𝑖𝑐𝑒

# 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑙𝑖𝑐𝑒
≥ 𝛼. 

where 

𝛼 = 𝑚𝑖𝑛(0.7,
# 𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

# 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
 ∗ (1 +

100

√# 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
) 

 

3. The PCST application in DOMINO   

In PCST (Johnson et al, 2000), nodes have values called prizes, and edges have values called 

penalties. All values are non-negative. The goal is to find a subtree 𝑇 that maximizes the sum of the 

prizes of nodes in 𝑇 minus the sum penalties of the edges in it, i.e.,  ∑ 𝑝(𝑣) − ∑ 𝑐(𝑒)𝑒∈ 𝑇𝑣∈𝑇   where 

𝑝(𝑣) is the prize of node 𝑣, and 𝑐(𝑒) is the cost of edge 𝑒. 

The node prizes are computed by diffusing the activity of the nodes using influence propagation with 

the linear threshold model (Kempe et al, 2015). The process is iterative: Initially, the set of active 

nodes is as defined by the input. In each iteration, an inactive node is activated if the sum of the 

influence of its active neighbors exceeds 𝜃 =  0.5. The influence of a node that has 𝑘 neighbors on 

each neighbor is 
1

𝑘
. Activated nodes remain so in all subsequent iterations. The process ends when no 

new node is activated. If v became active in iteration 𝑙 then 𝑝(𝑣) = β𝑙, where 𝛽 = 𝑚𝑎𝑥(0, 1 − 3 ∗

# 𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

# 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
. We define the penalty of edge 𝑒 as 𝑐(𝑒) = 0 if it is connected to an active 

node, and 𝑐(𝑒) = 1 − 𝜖 otherwise (we used 𝜖 = 10−4).  
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PCST is NP-hard but good heuristics are available. In DOMINO we used FAST-PCST (Hegde et al, 

2014). The resulting subgraph obtained by solving PCST on each slice is called its sub-slice. See 

Figure 3C. 

 

4. The Newman-Girvan algorithm in DOMINO   

The Newman-Girvan (NG) algorithm is a community detection method (Girvan & Newman, 2002). 

This method iteratively removes edges using the Betweenness-centrality metric for edges and 

recomputes the modularity score for each intermediate graph. Let 𝑀𝑖 be the modularity score for the 

graph in iteration 𝑖. The process continues until a stopping criterion is met. The stopping criterion we 

used in step (2b) is 
𝑙𝑜𝑔 (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏−𝑠𝑙𝑖𝑐𝑒)

𝑙𝑜𝑔 (# 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
≤ 𝑀𝑖..   

 

5. Derivation of p-values and q-values for the GE and GWAS datasets 

For the GE datasets, we calculated p-values for differential expression between test and control 

conditions using edgeR (Robinson et al, 2010) for RNA-seq and student t-test for microarray datasets. 

We computed q-values using Benjamini-Hochberg FDR method (Benjamini & Hochberg, 1995). For 

GWAS, we used SNP-level p-values for association with the analyzed trait to derive gene-level 

association p-values using PASCAL (Lamparter et al, 2016), using the sum chi-square option and 

flanks of 50k bps around genes. We computed q-values using Benjamini-Hochberg FDR method 

(Benjamini & Hochberg, 1995). 

 

6. Criteria for evaluating AMI solutions 

We defined five novel criteria to allow systematic evaluation of solutions provided by AMI 

algorithms. For a specific solution we considered the list of BP GO terms that passed the HG 

enrichment test (HG terms) and the terms that passed the EMP validation procedure (EV terms).  

 

Solution-Level Criteria 

a) Empirical to Hypergeometric Ratio (EHR). We define the Empirical-to-Hypergeometric Ratio 

(EHR) as the ratio between the number of EV-terms and reported HG terms. EHR summarizes 

the tendency of an algorithm to report non-specific GO terms, with values close to 1.0 indicating 

good solutions while values close to 0 indicating poor ones. EHR reflects the precision (true 

positive rate) of a solution.  

b) Biological Richness. This criterion quantifies the biological information collectively captured by 

the solution’s EV-terms. As there is high redundancy among GO terms - mainly due to the 

hierarchical structure of the GO ontology - we use the method implemented in REVIGO (Supek 
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et al, 2011) to derive a non-redundant set of EV terms. This method is based on a similarity matrix 

of GO terms, which is generated using Resnik similarity score (Resnik, 1999). The biological 

richness score is defined as the number of non-redundant EV terms in a solution. We calculated 

this measure using different similarity cutoffs (1.0 to 4.0 in REVIGO). 

c) Solution Robustness. This criterion evaluates the robustness of a solution to incomplete gene 

activity data. It compares the EV terms obtained on the original dataset with those obtained on 

randomly subsampled datasets, where non-sampled gene levels are treated as missing. We 

repeated this procedure for subsampling fractions 0.6, 0.7, 0.8, and 0.9, iterating each fraction 100 

times. Using the EV terms of the full dataset as the positive set, we computed average precision, 

recall and F1 scores across these iterations. Another perspective is provided by the examination 

of the frequency by which GO terms are detected in the subsampled datasets: higher frequency 

for a specific EV term implies higher robustness. We measured this robustness aspect of a solution 

using AUPR, in which EV terms are ranked according to their frequency across iterations (again, 

using EV terms detected on the full dataset as the positive instances). Note that cases in which an 

algorithm results in many empty solutions (that is, solutions with no enriched GO terms) and a 

few non-empty ones that are enriched for true EV terms can yield a high but misleading AUPR 

score. Therefore we validated that the fraction of non-empty solutions obtained by the algorithms 

on the subsampled runs is high: all the algorithms achieved around 60% or more non-empty 

solutions on GE data (Figure S6).  

 

Module-Level Criteria 

a) Module-Level EHR (mEHR). This criterion calculates a single module’s EHR. We define the 

module-level EHR (mEHR), as the ratio between the number of a module's EV terms and HG 

terms (Figure S5). We score each solution by averaging the mEHR of its 𝑘 top-ranked modules 

(𝑘 values ranging from 1-20). 

b) Intra-Module Homogeneity. This index measures the homogeneity of the biological signal that 

is captured by each module compared to the biological signal in the entire solution. For its 

calculation, we build a (complete) graph for the solution's EV terms (GO graph) in which nodes 

represent the EV terms and the weights on the edges are the pairwise Resnik similarity score 

(Figure S5B). Next, edges whose weight is below a cutoff are removed. The intra-module 

homogeneity is defined as the module's relative edge-density in this GO graph:  
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(
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑑𝑢𝑙𝑒′𝑠 𝐺𝑂 𝑔𝑟𝑎𝑝ℎ

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑠𝑖𝑧𝑒)

(
# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′𝑠 𝐺𝑂 𝑔𝑟𝑎𝑝ℎ

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒)
 

We calculate the intra-module homogeneity score for a solution by averaging its modules' scores 

(Figure S5B). We repeat this test for a range of similarity cutoffs – from 1.0 to 4.0. This criterion 

provides a complementary view on top of the one captured by the biological richness criterion, by 

characterizing the biological coherence of the reported modules. 
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Appendix 

 

AMI tools - execution details  

The AMI algorithms that we tested differ in preprocessing, input and output. We describe below the 

specific execution details for each algorithm. 

jActiveModules (Ideker et al, 2002). jActiveModules was written as a plugin for Cytoscape 

(Shannon et al, 2003), a powerful platform for network analysis of biological data. We modified the 

codebase of jActiveModules so we could run it independently of Cytoscape.  jActiveModules expects 

a list of genes and their p-values as the gene activity scores. We increased the default number of 

requested modules (from n=5 to n=50) to retrieve more modules and required that reported modules 

would be mutually exclusive. The algorithm typically produced no more than 10 modules with more 

than 3 genes. 

NetBox (Cerami et al, 2010). We modified NetBox codebase so we can choose the networks it uses. 

NetBox gets as an input a list of mutated genes, that is, binary gene activity scores. We used the genes’ 

q-values and set the gene score to 1 if its q-value was < 0.05, and 0 otherwise.  

BioNet (Beisser et al, 2010). BioNet is designed to retrieve only one module. To retrieve multiple 

mutually exclusive modules we executed BioNet iteratively, removing the genes in the identified 

module in each iteration. We stopped these iterations after retrieving modules smaller than four genes 

in five consecutive runs.  

HotNet2 (Leiserson et al, 2015). HotNet2 expects gene activity scores that are calculated by mutation 

rate p-values (e.g., using MutSig). We transformed the q-values calculated from our datasets into 

– 𝑙𝑜𝑔10(𝑞_𝑣𝑎𝑙𝑢𝑒) scale and used them as the input activity scores. As HotNet2 execution time was 

longer than the other algorithms we generated only 1000 permutations for its background distribution. 

KeyPathwayMiner (Baumbach et al, 2012). We used the version of KPM with the greedy strategy. 

It expects binary gene activity scores: 1 marks a gene as active and 0 otherwise. We used the genes’ 

q-values and scored a gene with 1 if its q-value was < 0.05, and 0 otherwise. As the reported modules 

considerably overlap each other, we executed the algorithm iteratively, removing in each iteration the 

genes in the identified module.   

DOMINO. DOMINO gets as an input binary gene activity scores. We used the genes’ q-values and 

set the gene score to 1 if its q-value was < 0.05, and 0 otherwise. 
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Analyzing the network contribution to non-specific GO enrichment bias 

 

Since the structure of the input network can potentially be a source for the bias we detected in AMI 

solutions, we sought to identify GO terms that are enriched on modules detected on the network only, 

without considering any gene scores based on specific omics data. We wished to examine if excluding 

such terms could serve as an effective alternative to EMP in removing non-specific terms reported by 

AMI methods. 

To this goal we identified modules in the DIP network using a network-based module identification 

algorithm (that is, an algorithm that finds modules based on network structure only, without 

considering activity scores). We chose the algorithm denoted as ’M1’ in the module detection 

DREAM challenge (Choobdar et al, 2019). M1 was a leading performer in the challenge and is also 

implemented as a convenient software. 

We extracted GO terms that were enriched (𝑞 − 𝑣𝑎𝑙𝑢𝑒 < 10−3) on these network-based modules 

(here too, using the entire set of network genes as the background set). Overall, 2,450 out of 6,573 

(37%) BP GO terms were detected by this analysis, and we refer to them as net-terms. We found that 

the net-terms were significantly over-represented among GO terms reported by most AMI algorithms 

on the GE and GWAS datasets (Figure 7 A, B). This is expected, since connectivity is a feature sought 

by both community detection and AMI methods. Over-representation increased with the number of 

different datasets on which the GO term was detected (Figure S7 A, B). For example, GO terms that 

were called on all 10 datasets were almost exclusively net-terms. 

 

Next, we examined whether net-terms were over-represented among the terms that failed the 

empirical validation. We first computed, for each algorithm and term τ, the fraction of datasets in 

which the term appeared as significant but was not empirically validated. Let # 𝐸𝑉 (τ) be the number 

of datasets in which τ appeared as empirically validated. Let # 𝑛𝑜𝑛 − 𝐸𝑉 (𝜏) be the number of 

datasets in which τ appeared as significant but was rejected, i.e., not empirically validated. Then we 

compute the following rejection ratio 𝜌(𝜏) : 

 𝜌(τ) =
# 𝑛𝑜𝑛−𝐸𝑉 (𝜏)

# 𝑛𝑜𝑛−𝐸𝑉  (𝜏) +  #𝐸𝑉  (𝜏)
. 

Terms with high rejection ratio are those that frequently appear as significant and fail the empirical 

test, possibly due to the network structure. Of course, this number should be considered alongside the 

value of the denominator, which counts how frequently 𝜏 appeared across datasets. In the following 

we considered only terms that were enriched in at least four datasets.  
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Figure S8 A and B show for each algorithm the distribution of rejection ratios across GO terms. As 

can be seen, DOMINO has substantially lower rejection ratios. The same, albeit to a lesser extent, is 

true for NetBox. 

 

We then examined whether network structure is a key source for rejected terms (Figure 7 C, D). For 

each algorithm, we compared the rejection ratio of net-terms and other terms. Notably, net-terms did 

not show significantly high rejection ratios, except for DOMINO on GE, where it was marginally 

significant (p=0.02).  

Last, we examined the association between net-terms and rejected terms in each solution. We 

summarized the results of each algorithm on each dataset in a contingency table, computed the 

enrichment factor (EF) for rejected terms among net-terms, and calculated p-value using the Fisher’s 

exact test, and corrected the results of each algorithm for multiple testing using FDR (External 

Tables 2-3). Most solutions had EF>1, and about half the results showed significant association 

between net-terms and rejected terms. The overall magnitude of the association was rather mild (mean 

q-value = 0.26 for GE and 0.38 for GWAS), and many false calls involved non net-GO terms. 

In summary, GO terms detected by AMI methods are enriched for net-terms. This enrichment 

increases with the number of datasets on which the GO term was detected. In addition, a fraction of 

the rejected calls were driven by network topology. However, this association was overall mild and 

cannot be used to effectively distinguish between GO terms that reflect true biological signals (EV 

terms) and non-specific ones (rejected terms). Therefore, filtering out net-terms cannot serve as an 

alternative to our EMP procedure.  
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Table S1. AMI algorithms included in our analysis. 

Method name Published 

on 

Designed 

for 

Algorithmic Approach Code 

language 

# citations 

(updated to 

11/2019) 

jActiveModules 

(Ideker et al, 2002) 

2002 GE Seek high scoring 

subnetworks either by 
simulated annealing 

(jAM_SA) or by a 

greedy search 
(jAM_greedy) 

Java 1207 

NetBox (Cerami et 

al, 2010) 

2010 Somatic 

Mutations 

Enrichment of Perturbed 

neighbors, Newman-

Girvan (NG) modularity 
score 

Java, 

Python 

304 

BioNet (Beisser et 

al, 2010) 

2010 GE Prize collecting Steiner 

tree  

R 218 

HotNet2 (Leiserson 
et al, 2015) 

2015 Somatic 
Mutations 

Heat diffusion Python 460 

KeyPathwayMiner 

(Baumbach et al, 

2012) 

2012 GE Choose modules with at 

most K non-perturbed 

genes 

Java 41 
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Table S2. The ten gene expression datasets used in our benchmark analysis. 

Datasets name 

(acronym) access to data Technology General description 

TNFa (Schmidt 

et al, 2015) GSE64233 RNA-seq TNFa, a potent inducer of immune responses 

HC (Elkon et al, 

2015) GSE67478 RNA-seq 

Hair cell from the cochlea and vestibular system, compared to non-hair cell 

from these inner-ear organs.  

SHERA (Miano 

et al, 2018) GSE108693 RNA-seq 

Luminal lncRNAs regulation by ERα-controlled enhancers in a ligand-

independent manner in breast cancer cells. Comparison was made between 

ER siRNA to control siRNA 

SHEZH (Ito et 

al, 2018) GSE109064 RNA-seq 

Downregulation of EZH2 leads to cellular senescence with features of 

SASP. Comparison between control to 4d samples. 

ERS (Kroeger et 

al, 2018) GSE106847 RNA-seq 

ATF6 encodes a transcription factor that is activated during the Unfolded 

Protein Response to protect cells from ER stress. Comparison was made 

between ATF6-activated and control cells. 

IEM (Hertzano 

et al, 2011) --- Microarray 

Comparison between 2 different cell types in the inner-ear: blood cells and 

mesenchymal cells. 

ROR (Bayerlová 

et al, 2017) GSE74383 RNA-seq 

RNA-Seq profiling of estrogen-receptor-positive MCF-7 cell lines with 

different perturbations of non-canonical WNT signaling. Comparison was 

made between ROR2-overexpression and control conditions.   

APO (Pulikkan 

et al, 2018) GSE101788 RNA-seq 

Comparison between ME-1 cells (a human leukemia cell line) treated with 

either the AI-10-49 drug (which induces apoptosis) or DMSO (control).  

CBX (Connelly 

et al, 2019) GSE123689 RNA-seq 

CBX8 is a subunit of the polycomb repressive complex 1 (PRC1). This 

RNA-seq experiment compared CBX8-KO and control cells.   

IFT (Forbes et 

al, 2018) GSE107230 RNA-seq 

IFT140 is involved in the formation and maintenance of cilia. This RNA-
seq experiment compared uncorrected (IFT140 compound heterozygous) 

and gene-corrected (IFT140 heterozygous) epithelial cells isolated from 

patient’s iPSC that were derived from kidney organoids. 
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Table S3. The ten GWAS datasets used in our benchmark analysis. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Table S4. Runtimes on the original GE datasets (in seconds) 

Network algorithm tnfa hc ror shera shezh ers iem apo cbx ift 

DIP 

NetBox 23.4 24.6 24.9 124.2 32.2 2706.2 27.1 1079.1 24.7 29.9 

DOMINO * 0.8 0.9 0.9 1.1 0.7 3.5 1.0 2.1 0.8 0.8 

jAM_Greedy 20.0 25.3 21.9 21.3 24.6 26.9 24.9 22.7 28.4 26.2 

jAM_SA 368.3 452.6 658.5 1361.8 847.8 1010.4 801.8 915.2 1056.9 1189.2 

Bionet 66.3 199.0 85.9 500.6 287.7 193.4 206.0 172.8 369.6 634.1 

HotNet2 ** 60.9 68.8 61.9 66.6 62.1 72.2 69.6 71.1 63.0 68.3 

KPM 22.5 78.1 42.0 66.2 76.5 118.1 70.1 75.7 79.5 75.5 

HuRI 
NetBox  26.0 38.9 26.4 5809 34.6 >5hrs 78.1 >5hrs 30.2 43.5 

DOMINO * 1.2 1.9 2.6 1.4 1.8 4.8 1.3 2.0 1.4 1.6 

STRING 
NetBox 4445.8 >5 hrs 76.6 >5 hrs >5 hrs >5 hrs >5 hrs >5 hrs >5 hrs >5 hrs 

DOMINO * 4.7 5.3 4.4 5.4 8.5 30.5 5.3 9.0 3.4 4.3 

Performance was measured on a 44-core, 2.2 GHz server with 792 GB of RAM 

* DOMINO runtimes are for steps 1-3 of the algorithm only, excluding step 0, which is executed only once 

per network.  
** HotNet2 was the only algorithm running on multiple cores 

 

  

Datasets name (acronym) Trait Cohort size 

BC (Michailidou et al, 2017) Breast Cancer 228,951 

CHD (De Lange et al, 2017) Crohn’s Disease 59,957 

SCZ (Ripke et al, 2014) Schizophrenia 150,064 

TRI (Teslovich et al, 2010) Triglycerides ~100,000 

T2D (Mahajan et al, 2018) Type 2 Diabetes 898,130 

CAD (Nelson et al, 2017) Coronary Artery Disease 155,197 

BMD (Kemp et al, 2017) Bone Mineral Density 142,487 

Height (Allen, 2010) Height 183,727 

AF (Nielsen et al, 2018) Arterial Fibrillation 1,030,836 

 

AMD (Fritsche et al, 2016) 

Age-related Macular 

Degeneration 

33,976 
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Table S5. Runtimes on the original GWAS datasets (in seconds) 

network algorithm brca crh scz tri t2d bmd amd af hgt cad 

DIP 

NetBox 24.7 23.4 24.4 23.4 23.6 179.6 24.0 24.3 26.4 23.4 

DOMINO * 0.7 0.7 0.8 0.9 0.5 1.2 1.0 0.8 0.8 0.8 

jAM_Greedy 23.3 21.4 25.0 24.4 22.8 21.9 29.6 20.2 22.5 22.3 

jAM_SA 680.1 545.4 925.8 1183.6 1193.3 896.1 1030.4 758.1 930.6 508.2 

Bionet 311.0 144.6 496.7 68.6 36.6 338.0 60.6 267.7 312.8 39.7 

HotNet2 ** 73.4 74.1 73.8 70.1 73.7 73.9 70.5 74.5 73.1 73.3 

KPM 75.4 47.9 76.6 26.0 11.1 50.7 25.8 64.9 75.5 9.6 

HuRI 
NetBox 59.5 26.6 37.7 26.6 26.3 > 5 hrs. 26.4 29.2 37.8 25.9 

DOMINO * 1.6 2.0 1.6 2.3 1.7 1.3 0.9 1.4 1.6 0.7 

STRING 
NetBox 940.2 289.5 573.5 76.9 75.1 > 5 hrs. 313.0 171.8 632.0 69.4 

DOMINO * 2.3 4.5 2.9 4.7 1.8 2.0 4.7 2.6 2.9 6.6 

Performance was measured on a 44-core, 2.2 GHz server with 792 GB of RAM 
* DOMINO runtimes are for steps 1-3 of the algorithm only, excluding step 0, which is executed only once 

per network.  

** HotNet2 was the only algorithm running on multiple cores 

 

Table S6. Runtimes on ten permutations of GE and GWAS datasets (in seconds) 

network algorithm omics 

Mean 
runtime, 
excludin
g jobs 
that did 
not 
terminate 
in 30 min  

Number of 
permutation
s on which 
jobs 
exceeded 30 
min 

Average 
runtime on 
the original 
(unpermuted
) datasets, 
excluding 
jobs that did 
not terminate 
in 5 hrs 

Number of 
jobs on the 
original 
datasets not 
terminating in 
5 hrs 

DIP 

NetBox GE 44.31 0 409.63 0 

DOMINO * GE 0.71 0 1.25 0 

jAM_Greedy GE 17.53 0 24.21 0 

jAM_SA GE 17.37 0 866.25 0 

Bionet GE 2.95 0 271.54 0 

HotNet2 ** GE 64.37 0 66.44 0 

KPM GE 55.15 0 70.42 0 

NetBox GWAS 14.71 0 39.71 0 

DOMINO GWAS 0.60 0 0.82 0 

jAM_Greedy GWAS 17.45 0 23.33 0 

jAM_SA GWAS 17.49 0 865.16 0 

Bionet GWAS 3.00 0 207.62 0 
HotNet2 ** GWAS 76.69 0 73.03 0 

KPM GWAS 43.61 0 46.36 0 

HuRI 

NetBox GE 25.63 20 760.86 2 

DOMINO * GE 1.37 0 1.99 0 

NetBox GWAS 13.36 10 32.87 1 

DOMINO * GWAS 1.37 0 1.5 0 

STRING NetBox GE 233.62 36 3443.87 8 

 
DOMINO * GE 2.97 0 8.07 0 

NetBox GWAS 167.03 10 349.03 1 

DOMINO * GWAS 3.13 0 3.5 0 

Performance was measured on a 44-core, 2.2 GHz server with 792 GB of RAM 

* DOMINO runtimes are for steps 1-3 of the algorithm only, excluding step 0, which is executed only once 
per network.  

** HotNet2 was the only algorithm running on multiple cores 
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External Table 1 Summary of the benchmark results on different networks and HG thresholds 

External Table 2. Association analysis between net-terms and rejected terms in GE datasets.  

External Table 3. Association analysis between net-terms and rejected terms in GWAS datasets.  
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Figure S1. Summary statistics of the solutions obtained on the GE datasets. For each dataset, the number of 

modules detected by each AMI algorithm and their sizes are indicated. (Error bars represent 1 SD of the 

number of genes in modules). The numbers in green are the total number of genes in the union of all modules 

in the solution. 
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Figure S2. Summary statistics of the solutions obtained on the GWAS datasets. For each dataset, the number 

of modules detected by each AMI algorithm and their sizes are indicated. (Error bars represent 1 SD of the 

number of genes in modules). We excluded empty solutions. The numbers in green are the total number of 

genes in the union of all modules in the solution. 
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Figure S3. Module-level EHR (mEHR) scores on the GWAS datasets for each algorithm and GWAS dataset  
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Figure S4. Evaluation results for the GWAS datasets. A. Module-level EHR scores. The plots show average 

mEHR score in the k top modules, as a function of k. Modules are ranked by their mEHR scores. B. 

Biological richness. The plots show the median number of non-redundant terms (richness score) as a 

function of the Resnik similarity cutoff. C. Intra-module homogeneity scores as a function of Resnik 
similarity cutoff. D. Robustness measured by the average AUPR over the datasets, shown as a function of the 

subsampling fraction. E. Robustness measured by the average F1 over the datasets shown as a function of 

subsample fraction (results for each dataset and fraction were averaged over 100 subsampling). 

A                   B 

C                   D 

E 
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Figure S5. Module-level evaluation criteria. A. mEHR. Enriched GO terms in each module are examined by 

the EMP procedure (EV terms are colored in red) and mEHR is calculated for each module in the solution. 

B. Intra-module homogeneity. A GO graph is first built for the union of all the EV terms in a solution using 

Resnik similarity scores. Then, a certain cut-off is applied (here, 4.0) for filtering low scoring edges. Last, 

the intra-module homogeneity score is calculated as the density ratio between the EV terms that are enriched 

in the module and the entire GO graph.  
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Figure S6. The fraction of non-empty solutions as a function of the subsampling fraction. For each 

algorithm and subsampling fraction we report the average over the datasets.  
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Figure S7. Comparison of the GO terms identified by each benchmarked algorithm to those identified by 

using the network only (net-terms). A-B. Proportion of net-terms as a function of the number of times the 

term was reported. A: GE; B: GWAS. C-D. Rejection ratio as a function of the number of times the term was 

reported. C: GE; D: GWAS. 
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Figure S8. Comparison of rejection ratios of GO terms across algorithms. A-B. Violin plots of rejection 

ratios of each algorithm in GE(A) and GWAS (B) datasets. Only terms reported in four datasets or more 
were included.  n indicates the number of such terms. Note that no terms were reported in more than four 

GWAS datasets by DOMINO and NetBox, which obtained the best overall results in our benchmark. 
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