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METHODS 
Materials. All chemical reagents were of molecular biology grade and were obtained from 
Sigma. ATP and CTP were purchased from Roche Molecular Biochemicals. 
 
Protein overexpression and purification. The T7 primase domain (residues 1–271) was 
overexpressed and purified as previously described22.   
 
Design of the DNA library. The analysis was based on previously collected data14,15, 
specifically, on 25,220 DNA sequences that include the T7 DNA-primase recognition 
sequence (5'-GTC-3')23. The general pattern of each sequence was 5'-(N)17-GTC-(N)16-
GTCTTGATTCGCTTGACGCTGCTG-3', where (N)17 and (N)16 represent the variable regions 
flanking the GTC recognition site. The above data Ωset contained accurate binding scores for 
T7 primase to each DNA sequence, obtained by PBMs as described previously14. Data 
acquisition was performed using a GenePix 4400A scanner (Molecular Devices), and data 
was analyzed using custom scripts to obtain fluorescence intensities for all sequences 
represented on the array. 
 
Data preprocessing. Each PBM consisted of 5,076 unique sequences and 25,220 samples, 
6 repetitions per sequence, and overall 151,320 samples (instances). All scripts were written 
in Python (Python Software Foundation, version 3.7, http://www.python.org), Scikit learn23, 
and the software PyCharm (community edition, https://www.jetbrains.com/pycharm/). The 
source code for the machine learning algorithms is available in the Github repository 
(https://github.com/csbarak?tab=repositories). This git repository also contains the data used 
for the analysis. 
By extracting the coefficient of variation24 for scores associated with each sequence (6 
repetitions), we observed that the stronger the score, the more stable the coefficient of 
variation (Supplementary Figure S1). Finally, each sequence's score was determined as its 
median score. 
It was necessary for the stability evaluation to account for the different binding score ranges; 
thus, in order to eliminate the different scales of the standard deviation, we evaluated the 
binding score stability of each sequence by using the coefficient of determination (COD, Eq. 
1):  
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where 𝑥 – is a set of binding score repeats for a specific sequence; σ – is the standard 
deviation of that sequence; and μ – is the mean value of 𝑥. 
 
Principal component analysis. PCA is commonly used to reduce dimensions of datasets by 
de-correlating the features and extracting the linear combinations that hold the greatest 
variance. Thus, non-informative features are dropped, and the remaining features consist of 



highly variant linear combinations (principal components) of the original features. We used 
PCA on overlapping K-mer count instances so as to visualize the projected distribution of 
binding scores upon the three most significant principal components. Features were obtained 
by counting every combination of dimers, trimers, and tetramers in the DNA sequence (K-mer, 
Supplementary Figure S2). Different K values were used for the K-mer feature extraction, and 
all experiments resulted in a clear 5-cluster construct for the entire dataset. To compare data 
between clusters, we applied MinMax normalization (Eq. 2) and colored each instance 
according to its relative strength.  
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where y = binding scores of the entire dataset, 𝑦, = the ith binding score.  
 
Conversion of the categorical DNA variables. The DNA data was converted to an array of 
integers by OHE, a process in which each nucleotide is represented by the following scheme: 
(A=[1000], C=[0100], G=[0010], T=[0001]). The N ́  4 matrix represents every DNA oligo, and 
is used as input for both the Kmeans model and the WD-based hierarchical clustering model17. 
 
Kmeans. In the initial step of Kmeans, the distances of the sequence vectors in the training 
set from randomly located centroids are measured, with the number of centers (K) being 
considered as a hyper parameter. Then, the distance of every sequence from the centroid is 
computed using the Euclidean distance (𝑑(𝑥) = min
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step, each centroid's position (µ;) is moved to its own cluster's geometric mean. This process 
is repeated until a stop condition is met, which is usually determined by an improvement in the 
loss function. The loss function of the 𝑖th iteration is the sum of the distances between all 
instances and their matching centroids (Eq. 3): 
𝐿,(𝑋, 𝜇,) = ∑ 𝑑(𝑥))∈L  (3) 
where 𝑖 is the iteration number, 𝑋 denotes the entire data matrix, 𝑥 represents an OHE vector, 
and 𝜇, represents the set of centroids at the beginning of the 𝑖th iteration.  
An optimized model is obtained when the difference in the value of the loss function between 
consecutive iterations is small enough (typically 100O) or the maximal amount of iterations has 
been reached.  
 
Hierarchical clustering. Ward's criterion is used to determine which clusters should be 
merged by creating new data partitions in such a way that the sum of cluster variances of the 
newly offered partitions is kept low; in our case, it amounts to the smallest number of 
nucleotide changes between same-cluster sequences. Since the sum of the squared errors is 
minimized when each "word" acts as its own cluster, the common way to choose the number 
of clusters 𝐾 is to choose the 𝐾 that maximizes the WD gap. Using this method, we can extract 
both 𝐾 and the evolutionary stages of each cluster. WD calculates the similarity of two clusters 
(𝐶Q, 𝐶R) as the normalized distance of their corresponding cluster means (𝜇Q, 𝜇R, Eq. 4): 
𝑊𝐷(𝐶Q, 𝐶R) =
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The first step of the method initiates a cluster for each instance, and the second seeks the two 
most similar clusters in terms of WD. When found, these two clusters are united, and the 
second step is repeated until only one cluster remains. 
Supervised learning – linear regression with L1 regularization (Lasso). The Lasso 
algorithm performs liner regression under L1 regularization. Its output is a closed form 
equation that is generated under the constraint of having the smallest number of variables as 
possible. The algorithm complies with this constraint by applying a penalty for each variable 
taken into account in the closed form equation. Simple linear regression uses a weighted 
combination of features to generate a prediction based on (Eq. 5): 
𝑌 = ∑ 𝑤,𝑥,,<?,F,…,\ + 𝑏 (5) 



where 𝑥, is the ith feature chosen from 𝑝 features, while 𝑤, and 𝑏 are the learned weights 
(usually found by minimizing the mean square error over the training set) and the learned bias, 
respectively.  
While a simple linear model uses the entire set of features, Lasso applies a loss function on 
the number of features. Moreover, compared to L2 regularization, L1 regularization facilitates 
the zeroing out of features rather than minimizing their weights, leading to the selection of a 
smart subset of features. Using Lasso on our data required two preprocessing stages; the first 
was extracting K-mer counts for obtaining a simple and general solution, and the second was 
applying a square root on the binding scores to better match their values for linear regression. 
The MinMax-wise normalized scores yielded a cross-validated result with a mean absolute 
error (MAE) value of 0.10, calculated using (Eq. 6):  
MAE 𝐸(𝑋) = ∑𝑝)/ ∗ 𝑥, (6) 
where 𝑥,  is the MAE of bin 𝑖 of the bins obtained by Kmeans, and 𝑝)/	 is the percentage of 
samples in that bin out of the entire data set.  
We evaluated the results with MAE, and obtained the expected error in terms of a weighted 
MAE, where the weights refer to the percentage of clustered sequences (Eq. 7).  
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where 𝐶, is the ith cluster, |𝐶,| is the number of sequences belonging to the ith cluster, 
|𝑑𝑎𝑡𝑎𝑠𝑒𝑡|	is the size of the entire dataset and 𝑀𝐴𝐸Y/ is the mean absolute error of the ith  
cluster. 
Our main goal was to develop a predictive model with as small an error as possible, while 
maintaining model explainability and simplicity. Examining the results of different regression 
models (Table 3), we see that the smallest error was achieved using XGBoost, yet the 
difference between the errors of XGBoost and those of Lasso is about 0.5% MAE. In contrast 
to the decision-tree-based XGBoost, Lasso generates a closed predictive equation (i.e., 
𝑠𝑐𝑜𝑟𝑒 = 𝛼= + 𝛼?𝑀𝐸𝑅? + 𝛼F𝑀𝐸𝑅F …), and combined with Lasso's L1 regularization, it 
constrains the number of features and the coefficients needed for the prediction. In addition, 
in contrast to support-vector-machine (SVM)-based models, Lasso enables limiting the 
coefficients to positive values, which could lead to a meaningful K-mer addition approach. 
Lastly, with Lasso the bias can be neutralized, meaning that the prediction is dependent solely 
on the K-mer count. Increasing the bias further enables a decrease in the variance and 
therefore a precise prediction. 
Table 3. Comparative analysis of different regressors, where K = 3, with clustering 

Model KNN RBF-
SVM 

Linear-
SVM RF XGBOOST LASSO 

MAE 0.096 0.093 0.091 0.094 0.088 0.093 
 
In summary, in this study, we chose to use Lasso, since it provides good performance and a 
closed predictive expression that is short and (intentionally) consists of non-negative 
coefficients. Other regression models also generated an expected error that was less than 
10% MAE (Table 3), meaning that the data collection and preprocessing techniques were 
highly informative regarding the researched binding score.  
Oligoribonucleotide synthesis assay. Synthesis of oligoribonucleotides by DNA primase 
was performed as described previously14. The reaction mixture contained 5 µM DNA 
sequences generated by our machine-learning prediction algorithms described above, 1 mM 
ATP, 1 mM [α-32P]ATP, and T7 primase in a buffer containing 40 mM Tris-HCl, pH 7.5, 10 mM 
MgCl2, 10 mM DTT, and 50 mM potassium glutamate. After incubation at room temperature 
for 10 min, the reaction was terminated by adding an equal volume of sequencing buffer 
containing 98% formamide, 0.1% bromophenol blue, and 20 mM EDTA. The samples were 
loaded onto 25% polyacrylamide sequencing gel containing 3 M urea and visualized using 
autoradiography. 
 
 



 
 

 

 
Figure S1. Diagonal correlation matrix of features representing oligonucleotide composition. 
This correlation presents the insignificant effect of hand-crafted features on the binding score 
of T7 primase. These features were calculated from the sequence of oligonucleotides in the 
DNA-protein microarray (PBM). Binding score of T7 primase was determined by PBM.  
 

 
 
Figure S2. Illustration of k-mer features. Left: The term k-mer refers to all of a sequence's 
subsequences of length k, such that the sequence AGAT would have four monomer (A, G, A, 
and T), three 2-mers (AG, GA, AT), two 3-mers (AGA and GAT). Right: Higher k number is 
characterized with low frequency of occurrences on the genome. 
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Figure S3. Template-directed RNA primer synthesis catalyzed by the T7 DNA primase. 
Oligonucleotide synthesis by the T7 DNA primase. The reactions contained oligonucleotides 
with the primase recognition sequence as indicated, and 32P-g-ATP, ATP, CTP, UTP, and GTP 
in the standard reaction mixture. After incubation, the radioactive products were analyzed by 
electrophoresis through a 25% polyacrylamide gel containing 7 M urea, and visualized using 
autoradiography. Longer RNA primers were formed on DNA templates that were predicted to 
have higher binding affinity to the T7 primase.  
 

 
 
Figure S4. RNA primer synthesis by T7 DNA primase on selected DNA templates from 
different clusters obtained by unsupervised learning. Oligonucleotide synthesis by the T7 
DNA primase was performed as described in Supplementary Figure S4. The reactions 
contained selected oligonucleotides sequences from different clusters obtained by 
unsupervised analysis (Figure 3).  
 
 
 
 
 

 

 
SI Table 1. Test data 
 
Sequence Empirical 

results 
Predicted 
results 

AAAAAGGGAGGGAAGGGGTCAGGGAAAAGAGAGAAG 2016 0.358457 
AAGAAAGGAAGGGAGGAGTCAAGGAAGAGGAGAGGA 1956.5 0.232119 
AAGGAAGGGGAAGGAGAGTCAGAAAAAGGAGGAGGA 2570 0.294887 
GAAGGGAAGGGGAGGAAGTCAGAAAAGAAAGAGGAG 2365 0.292978 
GGAGAAGAAGGAGGAGAGTCAAGGAGAAAAGGAGGA 1650 0.244383 
GGAGGGAAAGAGAAGAGGTCAAAAGAGGAGAGGGAA 1904.5 0.316637 
GGGAAGAGGGAGAAGAGGTCAAAGAAGGAGAGAAGA 1859 0.292191 
GGGGAGGAAAAGAAGGAGTCAGAAGAAGAAGAGGAG 1895 0.282706 
GGGGTGGGTTGTTGGTGGTCTGTTTGTGTTTGTTTG 48919.5 0.784515 
GGGGTGGTTTTGTTGGTGTCTGTTGTTGTTGTGGTG 49672 0.804615 
GGGGTGTGGTGGGTGGTGTCTTTTTTTTTGGTTGTG 48331.5 0.815105 



GGTGGGTTTGTGTTGTGGTCTTTTGTGGTGTGGGTT 45403 0.796791 
GGTGTTGTTGGTGGTGTGTCTTGGTGTTTTGGTGGT 41314.5 0.822484 
TTGGTTGGGGTTGGTGTGTCTGTTTTTGGTGGTGGT 43744 0.745619 
TTGTTTGGTTGGGTGGTGTCTTGGTTGTGGTGTGGT 41522 0.79126 
TTTTTGGGTGGGTTGGGGTCTGGGTTTTGTGTGTTG 51845.5 0.658822 

 
Supplementary Table 2. DNA sequences from generative algorithm 
Cluster Sequence Predicted 

results 
max CCACCCCAAAAAACCCCGTCAAAACCCCAAAAACCA 1 
min GACGAAGACGACGAAGAGTCCGAGGAAGCAGACGAA 0 
0 CCCAAAAAACCCCAAAAGTCTCCACCAACCCCAAAA 0.471915441 
0 CCAAAACAAACCCAACAGTCACCACCCCACCCTAAA 0.629928763 
1 AAGGAAGGAGAAGAGAAGTCGAGGGAGAGCGAGGAA 0.136521961 
1 GGAGAAGAGGAGGAGGTGTCAGAAGAAAAAGAAAGG 0.241974161 
2 CCTCCCTTTTTTTTTTTGTCCTCTCCTCCTTTCCCC 0.316487367 
2 TTCCACCACTCCATTCTGTCAACGTATTCTTCACCC 0.50895981 
3 CTTCGAAGCAACCAAAGGTCGCAAGTTGAATAAGAC 0.468099743 
3 CGATGCTGTTCCGTTTGGTCAACTAAAGACCATGAT 0.502488194 
4 TTTTTTTTTTTGGGGGGGTCGGGTTTGGGGTGGGGT 0.669837793 
4 TTGTGTGGGGTCTTGTGGTCTTTGTGTGTTGGGTGT 0.805995072 

 
 
 


