bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341636; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 2 3	Title: Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers
4 5	Edurne Rujas ^{1,2,3} , Iga Kucharska ¹ , Yong Zi Tan ¹ , Samir Benlekbir ¹ , Hong Cui ¹ , Tiantian Zhao ⁴ ,
6	Gregory A. Wasney ^{1,5} , Patrick Budylowski ^{6,7} , Furkan Guvenc ^{6,8} , Jocelyn C. Newton ¹ , Taylor
7	Sicard ^{1,2} , Anthony Semesi ¹ , Krithika Muthuraman ¹ , Amy Nouanesengsy ^{1,2} , Katherine Prieto ¹ ,
8	Stephanie A. Bueler ¹ , Sawsan Youssef ⁹ , Sindy Liao-Chan ⁹ , Jacob Glanville ⁹ , Natasha Christie-
9	Holmes ⁶ , Samira Mubareka ^{10,11} , Scott D. Gray-Owen ⁸ , John L. Rubinstein ^{1,2,12} , Bebhinn
10	Treanor ^{4,13,14} , Jean-Philippe Julien ^{1,2,4}
11 12	Affiliations:
13	¹ Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON,
14	Canada.
15	² Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
16	³ Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology,
17	University of the Basque Country (UPV/EHU), Bilbao, Spain.
18	⁴ Department of Immunology, University of Toronto, Toronto, ON, Canada.
19	⁵ The Structural & Biophysical Core Facility, The Hospital for Sick Children Research Institute,

- 20 Toronto, ON, Canada
- 21 ⁶ Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada.
- ⁷ Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- ⁸ Department of Molecular Genetics, University of Toronto, ON, Canada.
- ⁹ Distributed Bio, South San Francisco, CA, United States.

25	¹⁰ Department	of Laboratory	Medicine and	Pathobiology,	University of	of Toronto,	Toronto,	ON,
----	--------------------------	---------------	--------------	---------------	---------------	-------------	----------	-----

- 26 Canada.
- 27 ¹¹ Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- 28 ¹² Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- ¹³ Department of Cell and Systems Biology, University of Toronto, ON, Canada.
- 30 ¹⁴ Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- 31 *Correspondence should be addressed to: jean-philippe.julien@sickkids.ca
- 32
- 33
- ~ .
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 40
- 42

43 Abstract

44 The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes 45 Coronavirus Disease 2019 (COVID-19), has caused a global pandemic. Antibodies are powerful 46 biotherapeutics to fight viral infections; however, discovery of the most potent and broadly acting 47 clones can be lengthy. Here, we used the human apoferritin protomer as a modular subunit to drive 48 oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into 49 exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC₅₀) values as low as 9×10^{-14} M were achieved as a result of up to 10,000-fold potency 50 51 enhancements. Combination of three different antibody specificities and the fragment 52 crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral 53 sequence variability together with outstanding potency and Ig-like in vivo bioavailability. This 54 MULTi-specific, multi-Affinity antiBODY (Multabody; or MB) platform contributes a new class 55 of medical countermeasures against COVID-19 and an efficient approach to rapidly deploy potent 56 and broadly-acting therapeutics against infectious diseases of global health importance.

57

One Sentence Summary: multimerization platform transforms antibodies emerging from
 discovery screens into potent neutralizers that can overcome SARS-CoV-2 sequence diversity.

60

61

62

63

64 Introduction

65 The continuous threat to public health from respiratory viruses such as the novel SARS-CoV-2 66 underscores the urgent need to rapidly develop and deploy prophylactic and therapeutic 67 interventions to combat pandemics. Monoclonal antibodies (mAbs) have been used effectively for 68 the treatment of infectious diseases as exemplified by palivizumab for the prevention of respiratory 69 syncytial virus in high-risk infants¹ or Zmapp, mAb114 and REGN-EB3 for the treatment of 70 Ebola². Consequently, mAbs targeting the Spike (S) protein of SARS-CoV-2 have been a focus 71 for the development of medical countermeasures against COVID-19. To date, several antibodies targeting the S protein have been identified³⁻¹⁹ and several are under clinical evaluation^{20,21}. 72 73 Receptor binding domain (RBD)-directed mAbs that interfere with binding to angiotensin converting enzyme 2 (ACE2), the receptor for cell entry²², are usually associated with high 74 75 neutralization potencies^{11,12,14}.

76 mAbs can be isolated by B-cell sorting from infected donors, immunized animals or by identifying 77 binders in pre-assembled libraries. Despite these methodologies being robust and reliable for the 78 discovery of virus-specific mAbs, identification of the best antibody clone can be a lengthy 79 process. For example, RNA viruses have a high mutation rate. Indeed, 198 naturally occurring mutations in the S protein of SARS-CoV-2 have been already registered in the GISAID database²³. 80 81 Identification of broadly neutralizing mAbs (bnAbs) that target the most conserved epitopes to 82 overcome viral escape mutations is therefore critical. This approach has been employed to discover bnAbs against human immune deficiency virus 1 (HIV-1)²⁴, Influenza²⁵, and Ebola²⁶. However, 83 84 their identification required extensive sampling and high-throughput sequencing and consequently 85 several years of research. Hence, there is an unmet need for the development of a platform that bridges antibody discovery and the rapid identification and deployment of highly potent and
broadly neutralizing mAbs.

88 The potency of an antibody is greatly affected by its ability to simultaneously interact multiple times with its epitope^{27–29}. This enhanced apparent affinity, known as avidity, has been previously 89 90 reported to increase the neutralization potency of nanobodies^{30,31} and IgGs over Fabs^{9,16,18} against 91 SARS-CoV-2. In order to rapidly propel mAbs that emerge during initial screening efforts into 92 potent neutralizers against SARS-CoV-2, we have developed an antibody-scaffold technology, 93 using the human apoferritin protomer as a modular subunit, to multimerize antibody fragments. 94 We demonstrate the ability of this technology to combine one to three different Fab specificities 95 together with Fc on the same molecule. The resulting MB molecules can increase mAb potency 96 by up to four orders of magnitude and resist sequence variability in the spike protein. Therefore, 97 the MB offers a versatile "plug-and-play" platform to enhance anti-viral characteristics of 98 prophylactic/therapeutic molecules in the fight against the SARS-CoV-2 pandemic, and to be 99 quickly deployed in the setting of emerging pandemics.

100

102 Avidity enhances neutralization potency

We used the self-assembly of the light chain of human apoferritin to multimerize antigen binding moieties targeting the SARS-CoV-2 S glycoprotein. Apoferritin protomers self-assemble into an octahedrally symmetric structure with an ~6 nm hydrodynamic radius (R_h) composed of 24 identical polypeptides³². The N terminus of each apoferritin subunit points outwards of the spherical nanocage and is therefore accessible for the genetic fusion of proteins of interest. Upon

¹⁰¹ Results

folding, apoferritin protomers act as building blocks that drive the multimerization of the 24
proteins fused to their N termini (Fig. 1a).

110 First, we investigated the impact of multivalency on the ability of the single chain variable domain 111 VHH-72 to block viral infection. VHH-72 has been previously described to neutralize SARS-CoV-112 2 when fused to a Fc domain, but not in its monovalent format³⁰. The light chain of human 113 apoferritin displaying 24 copies of VHH-72 assembled into monodisperse, well-formed spherical 114 particles (Fig. 1b-c) and showed an enhanced binding avidity to the S protein (Fig. 1d) in 115 comparison to bivalent VHH-72-Fc. Strikingly, display of VHH-72 on the light chain of human 116 apoferritin achieved a 1000-fold increase in neutralization potency against SARS-CoV-2 117 pseudovirus (PsV) compared to the conventional Fc fusion (Fig. 1e).

118

119 Multabodies have IgG-like properties

120 The Fc confers *in vivo* half-life and effector functions to IgGs through interaction with neonatal 121 Fc receptor (FcRn) and Fc gamma receptors (FcyR), respectively. To confer these IgG-like 122 properties to the MB, we next sought to incorporate both Fabs and Fc domains. Because a Fab is 123 a hetero-dimer consisting of a light and a heavy chain, and the Fc is a homodimer, we created 124 single-chain Fab (scFab) and Fc (scFc) polypeptide constructs to allow for their direct fusion to 125 the N terminus of the apoferritin protomer. As a first step, we generated a species-matched 126 surrogate molecule that consists of mouse light chain apoferritin fusions to a mouse scFab and a 127 mouse scFc (IgG2a subtype), or a modified mouse scFc (LALAP mutation) to assess their, 128 biodistribution, immunogenicity and pharmacokinetics in vivo (Fig. S1). As expected, binding 129 affinity of the WT MB to mouse Fc receptors was enhanced in comparison to the parental IgG and the LALAP mutation reduced binding affinity to FcγR1 (Fig. S1a) Subcutaneous administration of these MBs in C57BL/6 or BALB/c mice was well tolerated with no decrease in body weight or visible adverse events. *In vivo* bioavailability and biodistribution of the MB were similar to the parental IgG (Fig. S1b and c). Confirming the role of the Fc in mediating *in vivo* bioavailability, serum half-life could be extended by mutations in the Fc (Fig. S1b). Presumably because all sequences derived from the host, the MB did not induce an anti-drug antibody response in mice (Fig. S1d).

137 In view of these results, we aimed to generate MBs derived from the previously reported IgG BD23⁵ and 4A8⁶ that target the SARS-CoV-2 spike RBD and N-terminal domain (NTD), 138 139 respectively. Addition of scFcs into the MB reduces the number of scFabs that can be 140 multimerized. In order to endow the MB platform with Fc without compromising Fab avidity and 141 hence neutralization potency, we engineered the apoferritin protomer to accommodate more than 142 24 components per particle. Based on its four-helical bundle fold, the human apoferritin protomer 143 was split into two halves: the two N-terminal α helices (N-Ferritin) and the two C-terminal α 144 helices (C-Ferritin). In this configuration, the scFc fragment of human IgG1 and the scFab of anti-145 SARS-CoV-2 IgGs were genetically fused at the N terminus of each apoferritin half, respectively. 146 Split apoferritin complementation led to hetero-dimerization of the two halves and in turn, full 147 apoferritin self-assembly displaying more than 24 copies of scFc and scFab on the nanocage 148 periphery (Fig. 2a). Conveniently, this design allows for the straightforward purification of the 149 MB using Protein A akin to IgG purification.

This split MB design forms 16 nm hydrodynamic radius (R_h) spherical particles with an uninterrupted ring of density and regularly spaced protruding scFabs and scFc (**Fig. 2b and 2c**). Hence, the MB is on the lower size range of natural IgMs³³ but packs more weight on a similar

153 size to achieve multi-valency and multi-specificity. Binding kinetics experiments demonstrated 154 that avidity of the MB for the Spike was preserved upon addition of Fc fragments (Fig. 2d). 155 Binding to human FcyRI and FcRn at endosomal pH confirmed that scFc was properly folded in 156 the split MB design and that LALAP and I253A mutations lowered binding affinities to FcyRI and 157 FcRn, respectively (Fig. 2e). SARS-CoV-2 PsV neutralization assays with the split design MBs 158 showed that enhanced binding affinity for the S protein translates into an improved neutralization 159 potency in comparison to their IgG counterparts, with a ~1600-fold and ~2500-fold increase for 160 BD23 and A48, respectively (Fig. 2f). Combined, this data supported the further exploration of 161 the MB as an IgG-like platform that confers extraordinary multivalency.

162

163 From antibody discovery to ultrapotent neutralizers

164 We next assessed the ability of the MB platform to transform mAb binders identified from initial 165 phage display screens into potent neutralizers against SARS-CoV-2 (Fig. 3a). Following standard biopanning protocols, 20 human mAb binders with moderate affinities that range from 10⁻⁶ to 10⁻ 166 167 ⁸ M against the RBD of SARS-CoV-2 were selected (Table S1). These mAbs were produced as 168 full-length IgGs and MBs and their capacity to block viral infection was compared in a 169 neutralization assay against SARS-CoV-2 PsV (Fig. 3b and Fig. S2a). Notably, MBs preserved 170 the thermostability of their parental IgGs (Fig. S2b-c) and significantly enhanced the potency of 171 18 out of 20 (90%) IgGs by up to four orders of magnitude. The largest increment was observed 172 for mAb 298 which went from an IC₅₀ of \sim 30 µg/mL as an IgG to 0.0001 µg/mL as a MB. 173 Strikingly, 11 mAbs were converted from non-neutralizing IgGs to neutralizing MBs in the tested 174 concentration ranges. Seven MBs displayed exceptional potency with IC_{50} values between 0.2-2 175 ng/mL against SARS-CoV-2 PsV using two different target cells (293T-ACE2 and HeLa-ACE2

176 cells) (Fig. 3b and Fig. S3a). The enhanced neutralization potency of the MB was further 177 confirmed with authentic SARS-CoV-2 virus for the mAbs with the highest potency (Fig. 3c and 178 Fig. S3b). Retrospectively, all IgGs and MBs were tested for their ability to bind to the S protein 179 and the RBD of SARS-CoV-2 (Fig. S4). Increased avidity resulted in higher apparent binding 180 affinities with no detectable off-rates against the S protein, most likely due to inter-spike 181 crosslinking that translates into high neutralization potency (Fig. 3b-d and Fig. S4). Overall, the 182 data shows that the MB platform is compatible with rapid delivery of ultrapotent IgG-like 183 molecules.

184

185 Epitope mapping

186 Based on their neutralization potency, seven mAbs were selected for further characterization: 298 187 (IGHV1-46/IGKV4-1), 82 (IGHV1-46/IGKV1-39), 46 (IGHV3-23/IGKV1-39), 324 (IGHV1-188 69/IGKV1-39), 236 (IGHV1-69/IGKV2-28), 52 (IGHV1-69/IGKV1-39) and 80 (IGHV1-189 69/IGKV4-1) (Fig. 3b and Table S1). Epitope binning experiments showed that these mAbs target 190 two main sites on the RBD, with one of these bins overlapping with the ACE2 binding site (Fig. 191 4a and Fig. S5). Cryo-EM structures of Fab-SARS-CoV-2 S complexes at a global resolution of 192 ~6-7 Å confirmed that mAbs 324, 298, 80 bind overlapping epitopes (Fig. 4b, Fig. S6a-c and 193 Table S2). To gain insight into the binding of mAbs targeting the second bin, we obtained the 194 cryo-EM structure of Fab 46 in complex with the RBD at a global resolution of 4.0 Å (Fig. 4c, 195 Fig. S6d and Table S2), and the crystal structure of Fabs 298 and 52 as a ternary complex with 196 the RBD at 2.95 Å resolution (Fig. 4d, Fig. S7 and Table S3).

197 The crystal structure shows that mAb 298 binds almost exclusively to the ACE2 receptor binding 198 motif (RBM) of the RBD (residues 438-506). In fact, out of 16 RBD residues involved in binding mAb 298, 12 are also involved in ACE2-RBD binding (Fig. S7a-c and Table S4 and S5). The
RBM is stabilized by 11 hydrogen bonds from heavy and light chain residues of mAb 298. In
addition, RBM Phe486 is contacted by 11 mAb 298 residues burying approximately 170 Å² (24%
of the total buried surface area on RBD) and hence is central to the antibody-antigen interaction
(Fig. S7a and Table S5).
Detailed analysis of the RBD-52 Fab interface reveals that the epitope of mAb 52 is shifted towards
the core of the RBD encompassing 20 residues of the RBM and 7 residues in the core domain (Fig.

206 4c, Fig. S7b and Table S6 and S7). In agreement with the competition data, antibody 52 and 207 antibody 46 share a similar binding site, although they approach the RBD with slightly different 208 angles (Fig. 4c-d and Fig. S7d). Inspection of previously reported structures of RBD-antibody 209 complexes reveal that antibodies 46 and 52 target a site of vulnerability on the SARS-CoV-2 spike 210 that has not been described previously (Fig. 4e). The epitope targeted by these antibodies is 211 partially occluded by the NTD in the S "closed" conformation, suggesting that the mechanism of 212 action for this new class of antibodies could involve Spike destabilization. Together, these data 213 demonstrate that the enhanced potency observed for the MB platform is associated with mAbs that 214 target both overlapping and distinct epitope bins.

215

216 Multabodies overcome Spike sequence variability

To explore whether MBs could resist viral escape, we tested the effect of four naturally occurring RBD mutations (L452R, A475V, N439K and V483A)³⁴ (Fig. 5a) on the binding and neutralization of the seven human mAbs of highest potency (Fig. 5b-c). In addition, the impact of mutating Asn234, a glycosylation site, to Gln was also assessed because the absence of glycosylation at this

221 site has been previously reported to decrease sensitivity to neutralizing antibodies targeting the RBD³⁴. The more infectious PsV variant D614G³⁵ was also included in the panel. Mutation L452R 222 223 significantly decreased binding and potency of antibodies 52 and 46, while antibody 298 was 224 sensitive to mutation A475V (Fig. 5b-c). Deletion of the N-linked glycan at position Asn234 225 increased viral resistance to the majority of the antibodies, especially mAbs 46, 80 and 324, 226 emphasizing the important role of glycans in viral antigenicity (Fig. 5c). Strikingly, the following 227 mAbs were minimally impacted in their exceptional neutralization potency by any S mutation 228 when present in the MB format: 298, 80, 324, and 236 (Fig. 5d). Mutation L452R decreased the 229 sensitivity of the 46-MB and 52-MB but in contrast to their parental IgGs, they remained 230 neutralizing against this PsV variant (Fig. 5d). The more infectious SARS-CoV-2 PsV variant 231 D614G was neutralized with similar potency as the WT PsV for both IgGs and MBs (Fig. 5c and 232 **Fig. S8a).**

233 MB cocktails consisting of three monospecific MB resulted in pan-neutralization across all PsV 234 variants without a significant loss in potency and hence achieved a 100-1000-fold higher potency 235 compared to the corresponding IgG cocktails (Fig. 5e and Fig. S8c-d). In order to achieve breadth 236 within a single molecule, we next generated tri-specific MBs by combining multimerization 237 subunits displaying three different Fabs in the same MB assembly (Fig. S8b). Notably, the 238 resulting tri-specific MBs exhibited pan-neutralization while preserving the exceptional 239 neutralization potency of the monospecific versions (Fig. 5e and Fig. S8c-d). The most notable 240 increase in potency was for the 298-324-46 combination, where the IgG cocktail neutralized WT SARS-CoV-2 PsV with an ~0.5 μ g/mL (3.3 × 10⁻⁹ M) IC₅₀, while the tri-specific MB achieved 241 broad neutralization with an exceptional IC₅₀ of ~0.0005 µg/mL (2.2×10^{-13} M). The potency 242

243 enhancement of MB cocktails and tri-specific MBs in comparison to their corresponding IgG tri-

- specific cocktails was also observed with live replicating SARS-CoV-2 virus (Fig. S8e).
- 245

246 **Discussion**

We have developed an antibody-multimerization platform to increase avidity of mAbs targeting SARS-CoV-2. The seven most potent MBs have IC_{50} values of 0.2 to 2 ng/mL (9 × 10⁻¹⁴ to 9 × 10⁻¹⁴ ¹³ M) against SARS-CoV-2 PsVs and therefore are, to our knowledge, within the most potent antibody-like molecules reported to date against SARS-CoV-2.

251 The MB platform was designed to include key favorable attributes from a developability 252 perspective. First, the ability to augment antibody potency is independent of antibody sequence, 253 format or epitope targeted. The modularity and flexibility of the platform was exemplified by 254 enhancing the potency of a VHH and multiple Fabs that target non-overlapping regions on two 255 SARS-CoV-2 S sub-domains (RBD and NTD). Second, in contrast to other approaches to enhance 256 avidity such as tandem fusions of single chain variable fragments^{36,37}, which suffer from low 257 stability, MBs self-assemble into highly stable particles with aggregation temperatures values 258 similar to those of their parental IgGs. Third, alternative multimerization strategies like streptavidin³⁸, verotoxin B subunit scaffolds³⁹ or viral-like nanoparticles⁴⁰ face immunogenicity 259 260 challenges and/or poor bioavailability because of the absence of an Fc fragment and therefore the 261 inability to undergo FcRn-mediated recycling. The light chain of apoferritin is fully human, 262 biologically inactive, has been engineered to include Fc domains, and despite multimerization of 263 >24 Fab/Fc fragments, has a hydrodynamic radius similar to an IgM. As such, a surrogate mouse 264 MB did not elicit anti-drug antibodies in mice, was detectable in the sera for over a week, and has 265 similar biodistribution as its parental IgG.

266 Different increases in neutralization potency were observed for different mAb sequences tested on 267 the MB against SARS-CoV-2. This suggests that the ability of the MB to enhance potency may 268 depend on epitope location on the Spike or the geometry of how the Fabs engage the antigen to 269 achieve neutralization. The fact that 2 out of 20 SARS-CoV-2 RBD binders were not rescued by 270 the MB platform also suggests limitations based on mAb sequences and binding properties. 271 Nevertheless, the capacity of the MB to transform avidity into neutralization potency across a 272 range of epitope specificities on the SARS-CoV-2 Spike highlights the potential for using this 273 technology broadly. It will be interesting to explore the potency-enhancement capacity of the MB 274 platform against viruses with low surface spike density like HIV⁴¹, or against other targets like the 275 tumor necrosis factor receptor superfamily, where bivalency of conventional antibodies limits their 276 efficient activation⁴².

277 Virus escape can arise in response to selective pressure from treatments or during natural selection. 278 A conventional approach to combat escape mutants is the use of antibody cocktails targeting 279 different epitopes. MBs showed a lower susceptibility to S mutations in comparison to their 280 parental IgGs, presumably because the loss in affinity was compensated by enhanced binding 281 avidity. Hence, when used in cocktails, the MB overcame viral sequence variability with 282 exceptional potency. In addition, the split MB design allows combination of multiple antibody 283 specificities within a single multimerized molecule resulting in similar potency and breadth as the 284 MB cocktails. To our knowledge, these MBs represent the first tri-specifics described against 285 SARS-CoV-2. Multi-specificity within the same particle could offer additional advantages such as 286 intra-S avidity and synergy for the right combination of mAbs, setting the stage for further 287 investigation of different combinations of mAb specificities on the MB.

288	Overa	all, the MB platform provides a tool to surpass antibody affinity limits and generate broad
289	and p	potent neutralizing molecules without the need for extensive antibody discovery or
290	engin	eering efforts. This platform will accelerate the timeline from discovery to development of
291	antibo	odies as medical countermeasures against COVID-19 and in future pandemics.
292		
293	Refer	ences
294	1.	Connor, E. M. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody,
295		reduces hospitalization from respiratory syncytial virus infection in high-risk infants.
296		Pediatrics 102, 531–537 (1998).
297	2.	Mulangu, S. et al. A randomized, controlled trial of Ebola virus disease therapeutics. N.
298		Engl. J. Med. 381, 2293–2303 (2019).
299	3.	Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature
300		584 , 115–119 (2020).
301	4.	Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2
302		spike. Nature 584, 450–456 (2020).
303	5.	Cao, Y. et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-
304		Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell 182, 73-84
305		(2020).
306	6.	Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike
307		protein of SARS-CoV-2. Science 369, 650-655 (2020).
308	7.	Seydoux, E. et al. Analysis of a SARS-CoV-2-Infected Individual Reveals Development
309		of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 53, 98–105
310		(2020).

- 8. Pinto, D. *et al.* Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
 antibody. *Nature* (2020).
- 313 9. Barnes, C. O. *et al.* Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal
- 314 Common Epitopes and Recurrent Features of Antibodies. *Cell* (2020).
- 315 10. Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-
- 316 CoV-2. *Nature* (2020).
- Rogers, T. F. *et al.* Isolation of potent SARS-CoV-2 neutralizing antibodies and protection
 from disease in a small animal model. *Science*. 369, 956–963 (2020).
- 319 12. Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define
- 320 multiple targets of vulnerability. *Science* **369**, 643–650 (2020).
- 321 13. Wang, C. *et al.* A human monoclonal antibody blocking SARS-CoV-2 infection. *Nat.*322 *Commun.* 11, (2020).
- 323 14. Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-
- 324 CoV-2. *Nature* **584**, 443–449 (2020).
- 325 15. Baum, A. *et al.* Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational
- 326 escape seen with individual antibodies. *Science*. **369**, 1014–1018 (2020).
- 327 16. Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-
- 328 2 antibody cocktail. *Science*. **369**, 1010–1014 (2020).
- 329 17. Lv, Z. et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a
- 330 potent therapeutic antibody. *Science*. **369**, 1505–1509 (2020).
- 331 18. Tortorici, M. A. et al. Ultrapotent human antibodies protect against SARS-CoV-2
- 332 challenge via multiple mechanisms. *Science*. (2020).
- 333 19. Zhou, D. et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from

334	a convalescent patient.	Nat. Struct.	Mol. Biol.	(2020).
-----	-------------------------	--------------	------------	---------

- 335 20. Study Assessing the Efficacy and Safety of Anti-Spike SARS CoV-2 Monoclonal
- 336 Antibodies for Prevention of SARS CoV-2 Infection Asymptomatic in Healthy Adults
- 337 Who Are Household Contacts to an Individual With a Positive SARS-CoV-2 RT-PCR
- 338 Assay Full Text Vi.
- 339 21. A Study of LY3819253 (LY-CoV555) and LY3832479 (LY-CoV016) in Participants
- 340 With Mild to Moderate COVID-19 Illness Full Text View ClinicalTrials.gov.
- 341 22. Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
- Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271–280 (2020).
- 343 23. van Dorp, L. *et al.* Emergence of genomic diversity and recurrent mutations in SARS344 CoV-2. *Infect. Genet. Evol.* 83, (2020).
- 345 24. Sok, D. & Burton, D. R. Recent progress in broadly neutralizing antibodies to HIV. *Nat.*346 *Immunol.* 11, 1179–1188 (2018).
- Laursen, N. S. & Wilson, I. A. Broadly neutralizing antibodies against influenza viruses. *Antiviral Res.* 98, 476–483 (2013).
- Bornholdt, Z. A. *et al.* Isolation of potent neutralizing antibodies from a survivor of the
 2014 Ebola virus outbreak. *Science*. 351, 1078–1083 (2016).
- 351 27. Wu, H. *et al.* Ultra-potent antibodies against respiratory syncytial virus: Effects of binding
- kinetics and binding valence on viral neutralization. J. Mol. Biol. **350**, 126–144 (2005).
- 353 28. Icenogle, J. *et al.* Neutralization of poliovirus by a monoclonal antibody: Kinetics and
 354 stoichiometry. *Virology* 127, 412–425 (1983).
- 355 29. Cavacini, L. A., Emes, C. L., Power, J., Duval, M. & Posner, M. R. Effect of antibody
- 356 valency on interaction with cell-surface expressed HIV- 1 and viral neutralization. J.

357 *Immunol.* **152**, 2538–2545 (1994).

- 358 30. Wrapp, D. *et al.* Structural Basis for Potent Neutralization of Betacoronaviruses by
- 359 Single-Domain Camelid Antibodies. *Cell* (2020).
- 360 31. Li, W. et al. High potency of a bivalent human VH domain in SARS-CoV-2 animal
- 361 models. *Cell* **183**, 1–13 (2020).
- 362 32. Lawson, D. M. *et al.* Solving the structure of human H ferritin by genetically engineering
 363 intermolecular crystal contacts. *Nature* 349, 541–544 (1991).
- 364 33. Radomsky, M. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Macromolecules
- 365 released from polymers: diffusion into unstirred fluids. *Biomaterials* **11**, 619–624 (1990).
- 366 34. Li, Q. *et al.* The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and
 367 Antigenicity. *Cell* 182, 1284–1294 (2020).
- 368 35. Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G

369 Increases Infectivity of the COVID-19 Virus. *Cell* **182**, 812–827 (2020).

- 370 36. Miller, K. *et al.* Design, Construction, and In Vitro Analyses of Multivalent Antibodies. *J.*371 *Immunol.* **170**, 4854–4861 (2003).
- 372 37. Kipriyanov, S. M. et al. Bispecific tandem diabody for tumor therapy with improved

antigen binding and pharmacokinetics. J. Mol. Biol. **293**, 41–56 (1999).

- 374 38. Kipriyanov, S. M. et al. Affinity enhancement of a recombinant antibody: Formation of
- 375 complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion.
- 376 *Protein Eng.* **9**, 203–211 (1996).
- 377 39. Zhang, J. et al. Pentamerization of single-domain antibodies from phage libraries: A novel
- 378 strategy for the rapid generation of high-avidity antibody reagents. J. Mol. Biol. 335, 49–
- 379 56 (2004).

380	40.	Hoffmann, M. A. G. et al. Nanoparticles presenting clusters of CD4 expose a universal
381		vulnerability of HIV-1 by mimicking target cells. Proc. Natl. Acad. Sci. U. S. A. 117,
382		18719–18728 (2020).
383	41.	Zhu, P. et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and
384		simian immunodeficiency virus virions. Proc. Natl. Acad. Sci. U. S. A. 100, 15812–15817
385		(2003).
386	42.	Wajant, H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ.
387		22 , 1727–1741 (2015).
388	43.	Schlothauer, T. et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with
389		completely abolished immune effector functions. Protein Eng. Des. Sel. 29, 457-466
390		(2016).
391	44.	Crawford, K. H. D. et al. Protocol and reagents for pseudotyping lentiviral particles with
392		SARS-CoV-2 spike protein for neutralization assays. Viruses 12, 513 (2020).
393	45.	Banerjee, A. et al. Isolation, Sequence, Infectivity, and Replication Kinetics of Severe
394		Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 26, (2020).
395	46.	Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
396		ACE2 receptor. Nature 581, 215–220 (2020).
397	47.	Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of
398		SARS-CoV-2 and SARS-CoV. Science. 368, 630–633 (2020).
399	48.	Hurlburt, N. K. et al. Structural basis for potent neutralization of SARS-CoV-2 and role of
400		antibody affinity maturation. <i>bioRxiv</i> (2020).
401		
402		

403 Acknowledgements

404 We thank F Krammer for providing the WT SARS-CoV-2 Spike plasmid. We thank JD Bloom 405 and AC Gingras for access to 293T-ACE2 cells and reagents to make the SARS-CoV-2 PsV. We 406 thank DR Burton for providing HeLa-ACE2 cells and the SARS-CoV-2 Spike mutant D614G. We 407 are thankful to C Pettus, J Wang, D Pineda and K Patel for their work panning the SuperHuman 408 2.0 library against the SARS-CoV-2 RBD and characterizing binders. We thank JM Jorgensen and 409 S Popa for assistance with the Octet RED96 and Unit Instruments. The following reagents were 410 produced under HHSN272201400008C and obtained through BEI Resources, NIAID, NIH: 411 Vector pCAGGS Containing the SARS-Related Coronavirus 2, Wuhan-Hu-1 Spike Glycoprotein 412 Receptor Binding Domain (RBD), NR-52309, Vector pCAGGS Containing the SARS-Related 413 Coronavirus 2, Wuhan-Hu-1 Spike Glycoprotein Gene (soluble, stabilized), NR-52394. Funding: 414 This work was supported by Natural Sciences and Engineering Research Council of Canada 415 discovery grant 6280100058 (JPJ), by operating grant PJ4-169662 from the Canadian Institutes of 416 Health Research (CIHR; BT, JPJ), by COVID-19 Research Fund C-094-2424972-JULIEN (JPJ) 417 from the Province of Ontario Ministry of Colleges and Universities, and by the Hospital for Sick 418 Children Foundation. This research was also supported by the European Union's Horizon 2020 419 research and innovation program under Marie Sklodowska-Curie grant 790012 (ER), by a Hospital 420 for Sick Children Restracomp Postdoctoral Fellowship (IK), by a CIHR Postdoctoral Fellowship 421 (YZT), by a NSERC postgraduate doctoral scholarship (TZ), by a Vanier Canada Graduate 422 Scholarship (TS), by a CIHR Canada Graduate Scholarship - Master's Award (AN), by the CIFAR 423 Azrieli Global Scholar program (JPJ), by the Ontario Early Researcher Awards program (JPJ), and 424 by the Canada Research Chairs program (JLR, BT, JPJ). Cryo-EM data was collected at the 425 Toronto High Resolution High Throughput cryo-EM facility, biophysical data at the Structural &

426 Biophysical Core facility, and biodistribution data at the CFI 3D Facility at University of Toronto, 427 all supported by the Canada Foundation for Innovation and Ontario Research Fund. X-ray 428 diffraction experiments were performed at GM/CA@APS, which has been funded in whole or in 429 part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute 430 of General Medical Sciences (AGM-12006). The Eiger 16M detector at GM/CA-XSD was funded 431 by NIH grant S10 OD012289. This research used resources of the Advanced Photon Source, a 432 U.S. Department of Energy (DOE) Office of Science user facility operated for the DOE Office of 433 Science by Argonne National Laboratory under contract DE-AC02-06CH11357. Author 434 contributions: ER, BT and JPJ conceived the research and designed the experiments; ER, IK, 435 YZT, SB, HC, TZ, GW, PB, FG, JN, TS, AS, KM, AN, KP, SB, SY and SLC performed 436 experimental work. JG, NCH, SM and SDGO provided critical reagents and expertise. ER, IK, 437 YCT, BT, JLR and JPJ analyzed the data. ER and JPJ wrote the manuscript with input from all 438 authors. Competing interests: The Hospital for Sick Children has applied for patents concerning 439 SARS-CoV-2 antibodies and the Multabody platform technology that are related to this work. BT 440 and JPJ are founders of Radiant Biotherapeutics and are members of its Scientific Advisory Board. 441 SY, SLC and JG are employees of DistributedBio and may hold shares in DistributedBio. All other 442 authors declare no competing interests. Data and materials availability: The electron microscopy 443 maps have been deposited at the Electron Microscopy Data Band (EMDB) with accession codes 444 EMD-22738, EMD-22739, EMD-22740, EMD-22741 (Table S2). The crystal structure of 298-52-445 RBD complex (Table S3) is available from the Protein Data Bank under accession code PDB: 446 7K9Z. Sequences of the monoclonal antibodies are available in Table S1. Other data are available 447 from the corresponding author upon reasonable request.

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341636; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

449 SUPPLEMENTARY MATERIALS

- 450 Materials and Methods
- 451 Figs S1 to S8
- 452 Tables S1 to S7
- 453 References (46-49)
- 454
- 455

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341636; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

456 Figures

458 Fig. 1. Avidity enhances binding and neutralization of VHH against SARS-CoV-2. (A) 459 Schematic representation of a monomeric VHH domain and its multimerization using a 460 conventional Fc scaffold or human apoferritin. (B) Size exclusion chromatography and SDS-461 PAGE of apoferritin alone (gray) and VHH-72 apoferritin particles (gold). (C) Negative stain 462 electron microscopy of VHH-72 apoferritin particles. (Scale bar 50 nm). (D) Comparison of the 463 binding avidity (apparent K_D) of VHH-72 to SARS-CoV-2 S protein when displayed in a bivalent (red) or 24-mer (gold) format. Apparent K_D higher than 10⁻¹² M (dash line) is beyond the 464 465 instrument detection limit. (E) Neutralization potency against SARS-CoV-2 PsV (color coding is 466 as in d). One representative out of two experiments with similar results is shown.

468 Fig. 2. Protein engineering to multimerize IgG-like particles against SARS-CoV-2. (A) 469 Schematic representation of the human apoferritin split design. (B) Negative stain electron 470 micrograph of the MB. (Scale bar 50 nm). (C) Hydrodynamic radius (R_h) of the MB. (D) Avidity 471 effect on the binding (apparent K_D) of A48 (*purple*) and BD23 (*gray*) to the SARS-CoV-2 Spike. 472 (E) Kinetic curves of BD23 IgG and MB with different Fc sequence variants binding to FcyRI (top 473 row), FcRn at endosomal pH (middle row) and FcRn at physiological pH (bottom row). Black 474 lines represent raw data whereas red lines represent global fits. (F) Neutralization of SARS-CoV-475 2 PsV by A48 and BD23 IgGs and MBs. The mean values \pm SD for two technical replicates for a 476 representative experiment is shown.

478

Fig. 3. The Multabody enhances the potency of human mAbs from phage display. (A) Work flow for the identification of potent anti-SARS-CoV-2 neutralizers using the MB technology. (B) Comparison of neutralization potency between IgGs and MBs that display the same human Fab sequences derived from phage display. (C) IC₅₀ values fold increase upon multimerization. (D) Apparent affinity (K_D), association (k_{on}) and dissociation (k_{off}) rates of the most potent neutralizing MBs compared to their IgG counterparts for binding the SARS-CoV-2 S protein. Three biological replicates and their mean are shown for IC₅₀ values in (b) and (c).

488 Fig. 4. Epitope delineation of the most potent mAb specificities. (A) Surface and cartoon 489 representation of RBD (light green for the core and dark green for RBM) and ACE2⁴⁶ (light 490 *brown*) binding. Heat map showing binding competition experiments. Epitope bins are highlighted 491 by dashed-line boxes. (B) 15.0 Å filtered cryo-EM reconstruction of the Spike (grey) in complex 492 with Fab 80 (vellow), 298 (orange) and 324 (red). The RBD and NTD are shown in green and 493 blue, respectively. (C) Cryo-EM reconstruction of Fab 46 (pink) and RBD (green) complex. A 494 RBD cartoon⁴⁶ is fitted into the partial density observed for the RBD. (**D**) Crystal structure of the 495 ternary complex formed by Fab 52 (purple), Fab 298 (orange) and RBD (green). (E) Composite 496 image depicting antibodies targeting SARS-CoV-2 S with available PDB or EMD entries^{3,4,6,8,10,16,17,47,48}. Inset: close up view of antibodies targeting different antigenic sites on the 497 498 RBD. The mAb with the lowest reported IC₅₀ value against SARS-CoV-2 PsV was selected as a 499 representative antibody of the bin (color coding as in b).

Fig. 5. Multabodies overcome SARS-CoV-2 sequence diversity. (A) Cartoon representation of the RBD showing four naturally occurring mutations as spheres. The epitopes of mAbs 52 (*light pink*) and 298 (*yellow*) are shown as representative epitopes of each bin. (B) Affinity and (C) IC₅₀ fold-change comparison between WT and mutated RBD and PsV, respectively. (D) Neutralization potency of IgG (*grey bars*) vs MB (*dark red bars*) against SARS-CoV-2 PsV variants in comparison to WT PsV. (E) Neutralization potency comparison of two IgG cocktails (three IgGs), monospecific MB cocktails (three MBs) and tri-specific MBs against WT SARS-CoV-2 PsV and

- 508 variants. mAbs sensitive to one or more PsV variants were selected to generate the cocktails and
- 509 the tri-specific MBs. The mean of three biological replicates are shown in (b), (c), (d) and (e).

Supplementary Materials for

Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers

Edurne Rujas^{1,2,3}, Iga Kucharska¹, Yong Zi Tan¹, Samir Benlekbir¹, Hong Cui¹, Tiantian Zhao⁴, Gregory A. Wasney^{1,5}, Patrick Budylowski^{6,7}, Furkan Guvenc^{6,8}, Jocelyn C. Newton¹, Taylor Sicard^{1,2}, Anthony Semesi¹, Krithika Muthuraman¹, Amy Nouanesengsy^{1,2}, Katherine Prieto¹, Stephanie A. Bueler¹, Sawsan Youssef⁹, Sindy Liao-Chan⁹, Jacob Glanville⁹, Natasha Christie-Holmes⁶, Samira Mubareka^{10,11}, Scott D. Gray-Owen⁸, John L. Rubinstein^{1,2,12}, Bebhinn Treanor^{4,13,14}, Jean-Philippe Julien^{1,2,4}

Correspondence to: jean-philippe.julien@sickkids.ca

This PDF file includes:

Materials and Methods Figs. S1 to S8 Tables S1 to S7

Materials and Methods

Protein expression and purification

Genes encoding VHH-human apoferritin fusion, Fc fusions, Fabs, IgG, and RBD mutants were synthesized and cloned by GeneArt (Life Technologies) into the pcDNA3.4 expression vector. All constructs were expressed transiently in HEK293F cells (Thermo Fisher Scientific) at a density of $0.8 \, \times \, 10^{6}$ cells/mL with 50 μg of DNA per 200 mL of cells using FectoPRO (Polyplus Transfections) in a 1:1 ratio unless specified otherwise. After 6-7 days of incubation at 125 rpm oscillation at 37° C, 8% CO₂, and 70% humidity in a Multitron Pro shaker (Infors HT), cell suspensions were harvested by centrifugation at 5000 ×g for 15 min and supernatants were filtered through a 0.22 µm Steritop filter (EMD Millipore). Fabs and IgGs were transiently expressed by co-transfecting 90 µg of the LC and the HC in a 1:2 ratio and purified using KappaSelect affinity column (GE Healthcare) and HiTrap Protein A HP column (GE Healthcare), respectively with 100 mM glycine pH 2.2 as the elution buffer. Eluted fractions were immediately neutralized with 1 M Tris-HCl, pH 9.0 and further purified using a Superdex 200 Increase size exclusion column (GE Healthcare). Fc fusions of ACE2 and VHH-72 were purified the same way as IgGs. The VHH-72 apoferritin fusion was purified by hydrophobic interaction chromatography using a HiTrap Phenyl HP column and the eluted fraction was loaded onto a Superose 6 10/300 GL size exclusion column (GE Heathcare) in 20 mM sodium phosphate pH 8.0, 150 mM NaCl. The prefusion S ectodomain (BEI NR52394), wild type RBD (BEI NR52309) and mutant RBDs were purified using a HisTrap Ni-NTA column (GE Healthcare) followed by Superose 6 and Superdex 200 Increase size exclusion columns (GE Heathcare), respectively in 20 mM phosphate pH 8.0, 150 mM NaCl buffer.

Design, expression and purification of split Multabodies

Genes encoding scFab and scFc fragments linked to half apoferritin were generated by deletion of residues 1 to 95 (C-Ferritin) and 95 to 175 (N-Ferritin) of the light chain of human apoferritin using the KOD-Plus mutagenesis kit (Toyobo, Osaka, Japan). Transient transfection of the split Multabodies in HEK 293F cells were obtained by mixing 66 µg of the plasmids scFab-human apoferritin: scFc-human N-Ferritin: scFab-C-Ferritin in a 2:1:1 ratio. In the case of multispecific Multabodies, a 4:2:1:1 ratio of scFab1-human apoferritin: scFc-human N-Ferritin: scFab1-human apoferritin: scFab3-C-Ferritin was used. The DNA mixture was filtered and incubated at RT with 66 µl of FectoPRO before adding to the cell culture. Split Multabodies were purified by affinity chromatography using a HiTrap Protein A HP column (GE Healthcare) with 20 mM Tris pH 8.0, 3 M MgCl₂ and 10% glycerol elution buffer. Fractions containing the protein were concentrated and further purified by gel filtration on a Superose 6 10/300 GL column (GE Healthcare).

Negative-stain electron microscopy

3 μ L of Multabody at a concentration approximately of 0.02 mg/mL was placed on the surface of a carbon-coated copper grid that had previously been glow-discharged in air for 15 sec, allowed to adsorb for 30 s, and stained with 3 μ L of 2% uranyl formate. Excess stain was removed immediately from the grid using Whatman No. 1 filter paper and an additional 3 μ L of 2% uranyl formate was added for 20 s. Grids were imaged with a FEI Tecnai T20 electron microscope operating at 200 kV and equipped with an Orius charge-coupled device (CCD) camera (Gatan Inc).

Biolayer interferometry

Direct binding kinetics measurements were conducted using an Octet RED96 BLI system (Sartorius ForteBio) in PBS pH 7.4, 0.01% BSA and 0.002% Tween at 25° C. His-tagged RBD or SARS-CoV-2 Spike protein was loaded onto Ni-NTA (NTA) biosensors (Sartorius ForteBio) to

reach a BLI signal response of 0.8 nm. Association rates were measured by transferring the loaded biosensors to wells containing a 2-fold dilution series from 250 to 16 nM (Fabs), 125 to 4 nM (IgG), and 16 to 0.5 nM (MB). Dissociation rates were measured by dipping the biosensors into buffer-containing wells. The duration of each of these two steps was 180 s. Fc characterization in the split Multabody design was assessed by measuring binding to hFcγRI and hFcRn. To probe the theoretical capacity of the Multabodies to undergo endosomal recycling, binding to the hFcRn β 2-microglobulin complex was measured at physiological (7.5) and endosomal (5.6) pH. Competition assays were performed in a two-step binding process. Ni-NTA biosensors preloaded with His-tagged RBD were first dipped into wells containing the primary antibody at 50 µg/mL for 180 s. After a 30 s baseline period, the sensors were dipped into wells containing the second antibody at 50 µg/ml for an additional 300 s.

Dynamic light scattering

The hydrodynamic radius (Rh) of the Multabody was determined by dynamic light scattering (DLS) using a DynaPro Plate Reader III (Wyatt Technology). 20 μ L of the Multabody at a concentration of 1 mg/mL was added to a 384-well black, clear bottom plate (Corning) and measured at a fixed temperature of 25° C with a duration of 5 s per read. Particle size determination and polydispersity were obtained from the accumulation of 5 reads using the Dynamics software (Wyatt Technology).

Aggregation temperature measurements

Aggregation temperature (T_{agg}) of the Multabodies and parental IgGs were determined using a UNit instrument (Unchained Labs). Samples were concentrated to 1.0 mg/mL and subjected to a thermal ramp from 25 to 95° C with 1° C increments. T_{agg} was determined as the temperature at which 50% increase in the static light scattering at a 266 nm wavelength relative to baseline was

observed (i.e. the maximum value of the differential curve). The average and the standard error of two independent measurements were calculated using the UNit analysis software.

Pharmacokinetics and immunogenicity studies

A surrogate Multabody composed of the scFab and scFc fragments of mouse HD37 (anti-hCD19) IgG2a fused to the N-terminus of the light chain of mouse apoferritin (mFerritin) was used for the study. HD37 scFab-mFerritin: Fc-mFerritin: mFerritin in a 2:1:1 ratio was transfected and purified following the procedure described above. L234A, L235A and P329G mutations were introduced in the mouse IgG2a Fc-construct to silence effector functions of the Multabody⁴³. In vivo studies were performed using 12-week-old male C57BL/6 mice purchased from Charles River (Strain code: 027), housed in individually-vented cages. All procedures were approved by the Local Animal Care Committee at the University of Toronto Scarborough. A single injection of approximately 5 mg/kg of Multabodies or control samples (HD37 IgG -IgG1 and IgG2a subtypes) and *Helicobacter pylori* ferritin (hpFerritin)-PfCSP malaria peptide in 200 µL of PBS (pH 7.5) were subcutaneously injected. Blood samples were collected at multiple time points and serum samples were assessed for levels of circulating antibodies and anti-drug antibodies (ADA) by ELISA. Briefly, 96-well Pierce Nickel Coated Plates (Thermo Fisher) were coated with 50 µL at 0.5 µg/ml of the His_{6x}-tagged antigen hCD19 to determine circulating HD37-specific concentrations using reagent-specific standard curves for IgGs and Multabodies. For ADA determination, Nunc MaxiSorp plates (Biolegend) were coated with a 12-mer HD37 scFabmFerritin or with the hpFerritin-PfCSP malaria peptide. HRP-ProteinA (Invitrogen) was used as a secondary molecule and the chemiluminescence signal was quantified using a Synergy Neo2 Multi-Mode Assay Microplate Reader (Biotek Instruments).

Biodistribution studies

8-week-old BALB/c mice were purchased from The Jackson Laboratory and housed in individually-vented caging. All procedures were approved by the Local Animal Care Committee at the University of Toronto. The HD37 IgG2a Multabody or HD37 IgG2a control were fluorescently conjugated with Alexa-647 using an Alexa FluorTM 647 Antibody Labeling kit (Invitrogen) as per manufacturer instructions. PerkinElmer IVIS Spectrum (PerkinElmer) was used to conduct non-invasive biodistribution experiments. BALB/c mice were injected subcutaneously into the loose skin over the shoulders with approximately 5 mg/kg of the MB or control samples in 200 µL of PBS (pH 7.5) and imaged at time 0, 1h, 6h, 24h, 2d, 3d, 4d, 8d, 11d following injection. Prior to imaging, mice were placed in an anesthesia induction chamber containing a mixture of isoflurane and oxygen for 1 min. Anesthetized mice were then placed in the prone position at the center of a built-in heated docking system within the IVIS imaging system (maintained at 37°C and supplied with a mixture of isoflurane and oxygen). For whole body 2D imaging, mice were imaged for 1-2 s (excitation 640 nm, emission 680 nm) inside the imaging system. Data were analyzed and reconstructed with the IVIS software (Living Image Software for IVIS) using 640 nm/680 nm laser.

Panning of Phage libraries against the RBD of SARS-CoV-2

143 healthy human subjects were used for the assembly of a SuperHuman 2.0 library. CDR-H3 diversity was sourced by PCR from naive CD27-IgM+ B-cells while other CDR diversity was sourced from CD27+IgG+ B cells from the therapeutic frameworks IGHV1-46, IGHV1-69, IGHV3-15, IGHV3-23, IGKV1-39, IGKV2-28, IGKV3-15 and IGKV4-1 by using PCR overlap extension. The light and heavy chains were transformed to exceed 1e⁸ and 7.6e¹⁰ transformants for each chain framework, respectively. Illumina MiSeq replicate rarefaction analysis was used to assure a recovery of over 98% unique clones. In addition, Protein L and Protein A were used (10

min incubation at 70° C) to select thermostable and well-expressing light chain diversity. The EXPi-293 mammalian expression system was used for expression of the receptor Binding domain (RBD)-Fc-Avi tag construct of the SARS-CoV-2. This protein was subsequently purified by protein G Dynabeads, biotinylated and quality-controlled for biotinylation and binding to ACE2 recombinant protein (Sino Biologics Inc). The SuperHuman 2.0 Phage library $(5x10^{12})$ was heated for 10 min at 72° C and de-selected against Protein G DynabeadsTM (Invitrogen), M-280 Streptavidin DynabeadsTM (Invitrogen), Histone from Calf Thymus (Sigma), Human IgG (Sigma) and ssDNA-Biotin NNK from Integrated DNA Technologies and DNA-Biotin NNK from Integrated DNA Technologies. Next, the library was panned against the RBD-captured by M-280 Streptavidin DynabeadsTM using an automated protocol on Kingfisher FLEX (Thermofisher). Selected phages were acid eluted from the beads and neutralized using Tris-HCl pH 7.9 (Teknova). ER2738 cells were infected with the neutralized phage pools at $OD_{600}=0.5$ at a 1:10 ratio and after 40 min incubation at 37° C and 100 rpm, the phage pools were centrifuged and incubated on agar with antibiotic selection overnight at 30° C. The rescued phages were precipitated by PEG and subjected to three additional rounds of soluble-phase automated panning. PBST/1% BSA buffer and/or PBS/1% BSA was used in the de-selection, washes and selection rounds.

Screening of anti-SARS-CoV-2 scFvs in bacterial periplasmic extracts with SARS-CoV-2 RBD

Anti-SARS-CoV-2 RBD scFvs selected from phage display were expressed and screened using high-throughput surface plasmon resonance (SPR) on Carterra LSA Array SPR instrument (Carterra) equipped with HC200M sensor chip (Carterra) at 25° C. A V5 epitope tag was added to the scFv to enable capture via immobilized anti-V5 antibody (Abcam, Cambridge, MA) that was pre-immobilized on the chip surface by standard amine-coupling. Briefly: the chip surface was

first activated by 10 min injection of a 1:1:1 (v/v/v) mixture of 0.4 M 1-Ethyl-3-(3-Dimethylaminopropyl) carbodiimide hydrochloride (EDC), 0.1 M N-hydroxysulfosuccinimide (sNHS) and 0.1 M 2-(N-morpholino) ethanesulfonic acid (MES) pH 5.5. Then, 50 µg/ml of anti-V5 tag antibody prepared in 10 mM sodium acetate pH 4.3 was coupled for 14 min and the excess reactive esters were blocked with 1 M ethanolamine HCl pH 8.5 during a 10 min injection. For screening, a 384-ligand array comprising of crude bacterial periplasmic extracts (PPE) containing the scFvs (1 spot per scFv) was prepared. Each extract was prepared at a 2-fold dilution in running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.01% (v/v) Tween-20 (HBSTE)) and printed on the anti-V5 surface for 15 min. SARS-CoV-2 RBD Avi Tev His tagged was then prepared at 0, 3.7, 11.1, 33.3, 100, 37, and 300 nM in 10 mM HEPES pH 7.4, 150 mM NaCl, 0.01% (v/v) Tween-20 (HBST) supplemented with 0.5 mg/ml BSA and injected as analyte for 5 min with a 15 min dissociation time. Samples were injected in ascending concentration without any regeneration step. Binding data from the local reference spots was used to subtracted signal from the active spots and the nearest buffer blank analyte responses were subtracted to doublereference the data. The double-referenced data were fitted to a simple 1:1 Langmuir binding model in Carterra's Kinetic Inspection Tool (version Oct. 2019). 20 medium-affinity binders from phage display screening were selected for the present study.

Virus production and pseudovirus neutralization assays

SARS-CoV-2 pseudotyped viruses (PsV) were generated using an HIV-based lentiviral system as previously described⁴⁴ with few modifications. Briefly, 293T cells were co-transfected with a lentiviral backbone encoding the luciferase reporter gene (BEI NR52516), a plasmid expressing the Spike (BEI NR52310) and plasmids encoding the HIV structural and regulatory proteins Tat (BEI NR52518), Gag-pol (BEI NR52517) and Rev (BEI NR52519). 24 h post transfection at 37°

C, 5 mM sodium butyrate was added to the media and the cells were incubated for an additional 24-30 h at 30° C. SARS-CoV-2 Spike mutant D614G was kindly provided by D.R. Burton (The Scripps Research Institute) and the rest of the PsV mutants were generated using the KOD-Plus mutagenesis kit (Toyobo, Osaka, Japan). Neutralization was determined in a single-cycle neutralization assay using 293T-ACE2 cells (BEI NR52511) and HeLa-ACE2 cells (kindly provided by D.R. Burton; The Scripps Research Institute). PsV neutralization was monitored by adding Britelite plus reagent (PerkinElmer) to the cells and measuring luminescence in relative light units (RLUs) using a Synergy Neo2 Multi-Mode Assay Microplate Reader (Biotek Instruments). IC₅₀ fold increase was calculated as: $IgG_{IC50}(\mu g/mL)/MB_{IC50}(\mu g/mL)$. Two to three biological replicates with two technical replicates each were performed.

Authentic virus neutralization assays

VeroE6 cells were seeded in a 96F plate at a concentration of 30,000/well in DMEM supplemented with 100U Penicillin, 100U Streptomycin and 10% FBS. Cells were allowed to adhere to the plate and rest overnight. After 24 h, 5-fold serial dilutions of the IgG and MB samples were prepared in DMEM supplemented with 100U Penicillin and 100U Streptomycin in a 96R plate in quadruplicates (25 uL/well). 25 uL of SARS-CoV-2/SB2-P4-PB⁴⁵ Clone 1 was added to each well at 100TCID/well and incubated for 1 h at 37 °C with shaking every 15 min. After co-culturing, the media from the VeroE6 plate was removed, and 50 uL antibody-virus sample was used to inoculate VeroE6 cells in quadruplicates for 1 h at 37 °C, 5% CO₂, shaking every 15 min. After 1 h inoculation, the inoculum was removed and 200 uL of fresh DMEM supplemented with 100U Penicillin, 100U Streptomycin and 2% FBS was added to each well. The plates were further incubated for 5 days. The cytopathic effect (CPE) was monitored and PRISM was used to calculate IC₅₀ values. Three biological replicates with four technical replicates each were performed.

Cross-linking of Spike protein with Fabs 80, 298 and 324

100 µg of Spike trimer was mixed with 2x molar excess of Fab 80, 298 or 324 in 20 mM HEPES pH 7.0, 150 mM NaCl. Proteins were crosslinked by addition of 0.075% (v/v) glutaraldehyde (Sigma Aldrich) and incubated at room temperature for 120 min. Complexes were purified via size exclusion chromatography (Superose6 Increase 10/300 GL, GE Healthcare), concentrated to 0.5 mg/mL and directly used for cryo-EM grid preparation.

Cross-linking of Fab 46-RBD complex

100 µg of Fab 46 was mixed with 2x molar excess of RBD in 20 mM HEPES pH 7.0, 150 mM NaCl. The complex was crosslinked by addition of 0.05% (v/v) glutaraldehyde (Sigma Aldrich) and incubated at room temperature for 45 min. The cross-linked complex was purified via size exclusion chromatography (Superdex 200 Increase 10/300 GL, GE Healthcare), concentrated to 2.0 mg/ml and directly used for cryo-EM grid preparation.

Cryo-EM data collection and image processing

3 µl of sample was deposited on holey gold grids prepared in-house⁵¹, which were glow-discharged in air for 15 s with a PELCO easiGlow (Ted Pella) before use. Sample was blotted for 6 s with a modified FEI Mark III Vitrobot (maintained at 4° C and 100% humidity) using an offset of -5, and subsequently plunge-frozen in a mixture of liquid ethane and propane. Data was acquired at 300 kV with a Thermo Fisher Scientific Titan Krios G3 electron microscope and prototype Falcon 4 camera operating in electron counting mode at 250 frames/s. Movies were collected for 9.6 s with 29 exposure fractions, a camera exposure rate of ~5 e⁻/pix/s, and total specimen exposure of ~44 e⁻/Å². No objective aperture was used. The pixel size was calibrated at 1.03 Å/pixel from a gold diffraction standard. The microscope was automated with the *EPU* software package and data collection was monitored with *cryoSPARC Live*⁵².

To overcome preferred orientation encountered with some of the samples, tilted data collection was employed⁵³. For the Spike-Fab 80 complex, 820 0° tilted movies and 2790 40° tilted movies were collected. For the Spike-Fab 298 complex, 4259 0° tilted movies and 3513 40° tilted movies were collected. For the Spike-Fab 324 complex, 1098 0° tilted movies and 3380 40° tilted movies were collected. For the RBD-Fab 46 complex, 4722 0° tilted movies were collected. For 0° tilted movies, cryoSPARC patch motion correction was performed. For 40° tilted movies, Relion MotionCorr^{54,55} was used. Micrographs were then imported into *cryoSPARC* and patch CTF estimation was performed. Templates generated from 2D classification during the cryoSPARC Live session were used for template selection of particles. 2D classification was used to remove junk particle images, resulting in a dataset of 80,951 particle images for the Spike-Fab 80 complex, 203,138 particle images for the Spike-Fab 298 complex, 64,365 particle images for the Spike-Fab 324 complex, and 2,143,629 particle images for the RBD-Fab 46 complex. Multiple rounds of multi-class *ab initio* refinement were used to clean-up the particle image stacks, and homogeneous refinement was used to obtain consensus structures. For tilted particles, particle polishing was done within Relion at this stage and re-imported back into cryoSPARC. For the Spike-Fab complexes, extensive flexibility was observed. 3D variability analysis was performed⁵⁶ and together with heterogeneous refinement used to classify out the different states present. Non-uniform refinement was then performed on the final set of particle images⁵⁷. For the RBD-Fab 46 complex, *cryoSPARC* ab initio refinement with three classes was used iteratively to clean up the particle image stack. Thereafter, the particle image stack with refined Euler angles was brought into cisTEM for reconstruction⁵⁸ to produce a 4.0 Å resolution map. Transfer of data between *Relion* and cryoSPARC was done with pyem⁵⁹.

Crystallization and structure determination

A ternary complex of 52 Fab-298 Fab-RBD was obtained by mixing 200 µg of RBD with 2X molar excess of each Fab in 20 mM TRIS pH 8.0, 150 mM NaCl and subsequently purified via size exclusion chromatography (Superdex 200 Increase 10/300 GL, GE Healthcare). Fractions containing the complex were concentrated to 7.3 mg/ml and mixed in a 1:1 ratio with 20% (w/v) 2-propanol, 20% (w/v) PEG 4000, 0.1 M sodium citrate pH 5.6. Crystals appeared after ~1 day and were cryoprotected in 10% (v/v) ethylene glycol before being flash-frozen in liquid nitrogen. Data were collected on the 23-ID-D beamline at the Argonne National Laboratory Advanced Photon Source. The dataset was processed using XDS and XPREP⁴⁶. Phases were determined by molecular replacement using Phaser⁴⁷ with CNTO88 Fab as a model for 52 Fab (PDB ID: 4DN3), 20358 Fab as a model for 298 Fab (PDB ID: 5CZX), and PDB ID: 6XDG as a search model for the RBD. Refinement of the structure was performed using phenix.refine⁴⁸ and iterations of manual building and refinement in Coot⁴⁹. Access to all software was supported through SBGrid⁵⁰.

- 46. Kabsch, W. et al. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010).
- 47. McCoy, A. J. *et al.* Phaser crystallographic software. *J. Appl. Crystallogr.* 40, 658–674 (2007).
- 48. Adams, P. D. *et al.* PHENIX: A comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **66**, 213–221 (2010).
- Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.
 Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010).
- 50. Morin, A. et al. Collaboration gets the most out of software. Elife 2, (2013).
- Marr, C. R., Benlekbir, S. & Rubinstein, J. L. Fabrication of carbon films with ~500nm holes for cryo-EM with a direct detector device. *J. Struct. Biol.* 185, 42–47 (2014).

- 52. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290–296 (2017).
- 53. Zi Tan, Y. *et al.* Addressing preferred specimen orientation in single-particle cryo-EMthrough tilting. *Nat. Methods* **14**, (2017).
- 54. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife* **9**, e42166 (2018).
- 55. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. *J. Struct. Biol.* **180**, 519–530 (2012).
- 56. Punjani, A. & Fleet, D. 3D Variability Analysis: Directly resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM images. *bioRxiv* (2020).
- 57. Punjani, A., Zhang, H. & Fleet, D. Non-uniform refinement: Adaptive regularization improves single particle cryo-EM reconstruction. *bioRxiv* (2019).
- 58. Grant, T., Rohou, A. & Grigorieff, N. CisTEM, user-friendly software for single-particle image processing. *Elife* 7, e35383 (2018).
- 59. Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF pyem v0. 5. (2019).

Bioavailability, biodistribution and immunogenicity of a surrogate Multabody in mice. (A) Binding kinetics of WT and Fc-modified (LALAP mutation) MB to mouse FcγRI (left) and mouse FcRn at endosomal (middle) and physiological (right) pH in comparison to the parental IgG. 2-fold dilution series from 100 to 3 nM (IgG), and 10 to 0.3 nM (MB) were used. Black lines represent raw data whereas red lines represent global fits. (B) Five male C57BL/6 mice per group were used to assess the serum concentration of a surrogate mouse MB, a Fc-modified MB (LALAP mutation) and parental mouse IgGs (IgG1 and IgG2a subtype) after subcutaneous administration of 5 mg/kg. (C) MB and IgG2a samples were labeled with Alexa-647 for visualization of their biodistribution post subcutaneous injection into three BALB/c mice/group via live non-invasive 2D whole body imaging. (D) Five male C57BL/6 mice per group were used to assess any anti-drug antibody response induced by the mouse surrogate Multabody in comparison to parental IgG and a species-mismatched malaria PfCSP peptide fused to *Helicobacter pylori* ferritin (HpFerr).

Fig. S2.

Neutralization and thermostability of SARS-CoV-2 RBD-targeting Multabodies and their parental IgGs. (A) Representative neutralization titration curves of 20 antibodies against SARS-CoV-2 PsV when displayed as IgGs (black) and MBs (dark red). The mean IC₅₀ value of three biological replicates, each with two technical replicates are displayed for comparison. (B) Comparison of the aggregation temperature (T_{agg}) of the seven most potent IgGs (white) and their respective MBs (dark red). (C) Static light scattering (SLS) at 266 nm *versus* temperature plots (dark red) from (b). T_{agg} values are calculated from the maximum of the differential curves (light red) and indicated with yellow lines.

Neutralization profiles of selected IgGs and MBs in different assays. (A) Similar neutralization profiles of IgGs (left) vs MBs (right) against pseudotyped SARS-CoV-2 PsV targeting 293T-ACE2 (black) and HeLa-ACE2 (gray) target cells. The mean IC₅₀ value and individual IC₅₀ values of three and two biological replicates are shown for 293T-ACE2 and HeLa-ACE2 cells, respectively. (B) Neutralization titration curves of three biological replicates (different shades of gray) against the authentic SARS-CoV-2/SB2-P4-PB strain⁴⁵. The mean IC₅₀ is indicated. The less sensitive neutralization phenotype observed against authentic virus in comparison to PsV is in agreement with previous reports^{5,13,14,17}. However, other studies have observed similar values^{3,11,12,16} between the two assays. This discrepancy makes cross-comparison of antibody potencies against live replicating virus difficult and is likely due to differences in the length of time of the neutralization experiment. Short incubation times will minimize the number of replications that the virus can undergo, resembling the one replication cycle of the PsV assays.

Fig. S4.

Binding profiles of IgGs and MBs. BLI response curves of IgG and MBs binding to RBD (left) and S protein (right) of SARS-CoV-2 immobilized onto Ni-NTA biosensors. 2-fold dilution series from 125 to 4 nM (IgG), and 16 to 0.5 nM (MB) were used. Black lines represent raw data whereas red lines represent global fits.

Fig. S5.

Epitope binning. mAb binding competition experiments to His-tagged RBD as measured by biolayer interferometry (BLI). 50 μ g/ml of mAb 1 was incubated for 3 min followed by incubation with 50 μ g/ml of mAb 2 for 5 min.

Fig.	S6 .

Cryo-EM analysis of the Fab-Spike and Fab-RBD complexes. Representative cryo-EM micrograph (Scale bar 50 nm, top left), selected 2D class averages (top right), Fourier shell correlation curve from the final 3D non-uniform refinement (bottom left) and local resolution (Å) plotted on the surface of the cryo-EM map (bottom right) are shown for the Fab 80-Spike complex (A), the Fab 298-Spike complex (B), the Fab 324-Spike complex (C), and the Fab 46-RBD complex (D).

Binding interfaces of mAbs 52 and 298 and the RBD. Interaction of mAbs 298 (A) and 52 (B) with RBD (light and dark green for the core and RBM regions, respectively) is mediated by complementarity determining regions (CDR) heavy (H) 1 (yellow), H2 (orange), H3 (red), kappa light (K) 1 (light blue) and K3 (purple) (left panels). Critical binding residues are shown in sticks (right panels). H-bonds and salt bridges are depicted as black dashed lines. L and H chains of Fabs are shown in tan and white, respectively. (C) Bottom and side views of ACE2 (left) and Fab 298 (right) bound to RBD. RBD side-chains that are part of the binding interface of the ACE2-RBD and Fab 298-RBD complexes are depicted in pink, while RBD side-chains unique to a given interface are shown in yellow. Surfaces of ACE2, variable regions of Fab 298 HC and Fab 298 KC are shown in white, grey and tan, respectively. The RBD is colored as in (a). (D) Superposition of Fabs 46 (light pink) and 52 (dark pink) when bound to the RBD (green) reveals a distinct angle of approach for the two mAbs.

The MB platform potently overcomes SARS-CoV-2 sequence variability. (A) Comparison of the neutralization potency of selected IgGs and MBs against WT PsV (dark red) and the more infectious D614G PsV (grey). (B) Schematic representation of a tri-specific MB generated by combination of three Fab specificities and the Fc fragment using the MB split design. (C) Cocktails and tri-specific MBs that combine the specificities of mAbs 298, 80 and 52, or 298, 324 and 46 were generated and tested against WT PsV. (D) Neutralization potency change of cocktails and tri-specific MBs against pseudotyped SARS-CoV-2 variants in comparison to WT PsV. PsV variants that were sensitive to individual antibodies within the cocktails were selected. The area within the dotted lines represent a 3-fold change in IC₅₀ value. This threshold was established as the cutoff to establish increased sensitivity (up bars) and increased resistance (down bars). (E) Neutralization titration curves showing three biological replicates of cocktails and tri-specific MBs against the authentic SARS-CoV-2/SB2-P4-PB strain⁴⁵. Mean IC₅₀ values of three biological replicates are shown.

	Fab 80-Spike	Fab 298-Spike	Fab 324-Spike	Fab 46-RBD
EMDB ID	EMD-22739	EMD-22740	EMD-22741	EMD-22738
Data Collection				
Electron microscope	Titan Krios G3	Titan Krios G3	Titan Krios G3	Titan Krios G3
Camera Voltage (kV)	Falcon 4EC 300	Falcon 4EC 300	Falcon 4EC 300	Falcon 4EC 300
Nominal magnification	75,000	75,000	75,000	75,000
Calibrated physical pixel size (Å)	1.03	1.03	1.03	1.03
Total exposure (e- /Ų)	44	44	44	44
Number of frames	29	29	29	29
Image Processing				
Motion correction software	cryoSPARC v2, Relion MotionCorr	cryoSPARC v2, Relion MotionCorr	cryoSPARC v2, Relion MotionCorr	cryoSPARCv2
CTF estimation software	cryoSPARCv2	cryoSPARCv2	cryoSPARCv2	cryoSPARCv2
Particle selection software	cryoSPARCv2	cryoSPARCv2	cryoSPARCv2	cryoSPARCv2
3D map classification and refinement software	cryoSPARCv2	cryoSPARCv2	cryoSPARCv2	cisTEM
Micrographs used (total)	3610	7772	4478	4722
0° tilt 40° tilt	820 2790	4259 3513	1098 3380	4722 0
Global resolution (Å)	6.2	6.2	6	4
Particles in final maps	7,525	26,972	18,595	32,283

Table S2. Cryo-EM data collection and image processing

	Fab 52- Fab 298-
	SARS-CoV-2 RBD
PDB ID	7K9Z
Data Collection	
Wavelength (Å)	1.03317
Space group	P 3 ₂ 2 1
Cell dimensions	
a,b,c (Å)	87.6, 87.6, 325.1
$lpha,eta,\gamma(^\circ)$	90.0, 90.0, 120.0
Resolution (Å)	39.66-2.95 (3.05-2.95)
No. Molecules in ASU	1
No. Total observations	496,550 (43,958)
No unique observations	31,545 (3,060)
Multiplicity	15.7 (14.3)
R _{merge} (%)	16.8 (74.2)
R _{pim} (%)	4.3 (20.1)
<i <b="">σI></i>	12.3 (1.4)
CC _{1/2}	99.8 (86.3)
Completeness (%)	99.9 (99.9)
Refinement	
Non-hydrogen atoms	8061
Macromolecule	8047
Glycan	14
R_{work}/R_{free}	0.259/0.286
Rms deviations	
Bond lengths (Å)	0.002
Bond angles ($^{\circ}$)	0.53
Ramachandran plot	
Favored regions (%)	95.6
Allowed regions (%)	4.1
Outliers (%)	0.3
Rotamer Outliers (%)	2.6
B-factors (Å ²)	
Wilson B-factor	78.6
Average B-factors	103.9
Average macromolecule	103.9
Average glycan	114.3

 Table S3. X-ray crystallography data collection and refinement statistics

RBD	Residue	BSA (Å ²)	Interaction	Fab 298 (H-HC, K-KC)		
453	Tyr	2	vdW	H-Thr31, H-Ile100		
455	Leu	20	vdW	H-Thr31, H-Ile100		
456	Phe	30	vdW	H-Thr31, H-Tyr32		
458	Lys	1	vdW	K-Ser27F		
474	Gln	12	vdW	K-Tyr27D		
	Gln ^{NE2}		HB	K-Tyr27D ^{OH}		
475	Ala	45	vdW	K-Tyr27D, H-Tyr32, K-Tyr32, H-Arg97		
	Ala ^O		HB	K-Tyr32 ^{OH}		
476	Gly	23	vdW	K-Tyr27D, K-Tyr32, K-Tyr91, K-Tyr92, K-		
				Ser93, H-Arg97		
477	Ser	75	vdW	K-Tyr27D, K-Tyr92, K-Ser93, K-Thr94		
	Ser ^N		HB	K-Tyr92 ^o		
	Ser ^{OG}		HB	K-Tyr92 ⁰		
478	Thr	41	vdW	K-Tyr27D, K-Tyr92, K-Ser93, K-Thr94		
	Thr ^{OGI}		HB	K-Thr94 ^{0G1}		
484	Glu	74	vdW	H-Trp50, H-Ser52, H-Ser54, H-Gly55, H-Gly56,		
	C1_0E2		UD	H-Thr57, H-Asp58		
	Glu	•	HB	H-Ser5400		
485	Gly	28	vdW	H-Trp50, H-Thr57, H-Asp58		
486	Phe	169	vdW	K-Gln89, K-Tyr91, K-Ser93, K-Thr94, K-Pro96,		
				H-Ser35, H-Irp4/, H-Irp50, H-Asp58, H-Asp95,		
	Phe ^N		HR	H-Asn58 ^{OD2}		
	Phe ⁰		HB	K-Thr94 ^{OG1}		
487	Asn	41	vdW	K-Tyr32, K-Tyr91, K-Ser93, K-Thr94, H-Asp95,		
	1 1011			H-Arg97		
	Asn ^{OD1}		HB	H-Arg97 ^{NH2}		
	Asn ^{ND2}		HB	K-Tyr91 ^o , K-Tyr92 ^o		
488	Cys	1	vdW	H-Trp50		
489	Tyr	84	vdW	H-Ser30, H-Thr31, H-Tyr32, H-Trp50, H-Asp95,		
				H-Arg97,		
	Tyr ^{OH}		HB	H-Arg97 ^{NH2} , H-Asp95 ^{OD2}		
493	Gln	45	vdW	H-Ser30, H-Thr31, H-Ile100		
TID	a	604				

Table S4. RBD residues contacting Fab 298 identified by PISA (Krissinel and Henrick, 2007).

Total BSA (Å²): 691

vdW: van der Waals interaction (5.0 Å cut-off) HB: hydrogen bond (3.8 Å cut-off) SB: salt bridge (4.0 Å cut-off)

Fab 298	Residue	Chain	BSA (Ų)	Interaction	RBD
30	Ser	Н	9	vdW	Tyr489, Gln493
31	Thr	Н	68	vdW	Tyr453, Leu455, Phe456, Tyr489,
					Gln493
32	Tyr	Н	57	vdW	Phe456, Ala475, Tyr489
35	Ser	Н	8	vdW	Phe486
47	Trp	Н	23	vdW	Phe486
50	Trp	Н	79	vdW	Glu484, Gly485, Phe486, Cys488,
52	C	TT	0	133.7	<u>Tyr489</u>
52	Ser	H	8	VdW	Glu484
54	Ser	Н	1 /	vdW	Glu484
	Seroo		-	HB	Glu484 ⁶¹²
<u> </u>	Gly	H	/	vdW	Glu484
50	Gly	H	10	vdW	
57	Thr	H	10	vdW	Glu484, Gly485
58	Asp	Н	28	vdW	Glu484, Gly485, Phe486
	Asponz			HB	Phe486 ^N
95	Asp	Н	15	vdW	Phe486, Asn487, Tyr489
	Asp ^{OD2}			HB	Tyr489 ^{0H}
97	Arg	Н	61	vdW	Asn487, Tyr489
	Arg ^{NH2}			HB	Asn487 ^{0D1} , Tyr489 ^{0H}
100	Ile	Н	7	vdW	Tyr453, Leu455, Gln493
27D	Tyr	K	59	vdW	Gln474, Ala475, Gly476, Ser477,
	T OH			UD	Thr478
0 55	Tyron	17	1	HB	
<u>27F</u>	Ser	K	1	vdW	Lys438
32	$\frac{1 \text{ yr}}{7}$	K	28	vdW	Ala4/5, Gly4/6, Asn48/
	Tyron		4	HB	Ala4/5°
89	Gln	K	1	vdW	Phe486
91	Tyr	K	30	vdW	Gly4/6, Phe486, Asn48/
	Tyr		10	HB	Asn48/102
92	Tyr	K	40	vdW	Gly476, Ser477, Thr478
	Tyr ⁰			HB	Asn48/IND2
	Tyr ⁰			HB	Ser477 ^N , Ser477 ⁰ G
93	Ser	K	26	vdW	Gly476, Ser477, Thr478, Phe486,
0.4	T1	V	57	1887	Ser487
94	$\frac{1 \text{ hr}}{\text{T1} - \Omega G^1}$	K	5/	vaw	Ser4//, 1nr4/8, Pne486, Asn48/
0(I hr	17	- 22	HB	1 nr4/8001, Phe4860
96	Pro	K	23	vdW	Phe486

Table S5. Fab 298 residues contacting RBD identified by PISA (Krissinel and Henrick,2007).

Total BSA (Å²):

vdW: van der Waals interaction (5.0 Å cut-off) HB: hydrogen bond (3.8 Å cut-off) SB: salt bridge (4.0 Å cut-off)

RBD	Residue	BSA (Å ²)	Interaction	Fab 52 (H-HC, K-KC)		
346	Arg	45	vdW	H-Gln64		
351	Tyr	29	vdW	K-Phe94, H-Ile52, H-Thr56, H-Asn58		
352	Ala	19	vdW	K-Gly93, K-Phe94		
354	Asn	6	vdW	K-Phe94		
355	Arg	36	vdW	K-Ser0, K-Gln27		
	Arg ^O		HB	K-Ser0 ^{OG}		
356	Lys	13	vdW	K-Ser0		
357	Arg	66	vdW	K-Ser0, K-Gln27		
	Arg ^N		HB	K-Ser0 ^{OG}		
	Arg ^{NH2}		HB	K-Gln27 ^{OE1}		
449	Tyr	13	vdW	H-Phe554, H-Thr56		
450	Asn	38	vdW	H-Phe554, H-Thr56		
452	Leu	47	vdW	H-Ile52, H-Phe554, H-Gly55, H-Thr56		
462	Lys	1	vdW	K-Ser30		
465	Glu	28	vdW	K-Ser30, K-Asn31, K-Asn32, K-Asn92		
	Glu ^{OE2}		HB	K-Ser30 ^{OG}		
466	Arg	70	vdW	K-Asn32, K-Asn92, K-93Gly, K-Phe94		
	Arg ^O		HB	K-Asn32 ^{ND2}		
	Arg ^{NH1}		HB	K-Asn92 ⁰		
467	Asp	12	vdW	K-Asn32, K-Asn92, H-Asp98		
468	Ile	102	vdW	K-Asn32, K-Gly91, K-Asn92, K-93Gly, K-		
	~			Phe94, K-Leu96, H-Arg96, H-Gly97, H-Asp98		
469	Ser	37	vdW	K-Asn32, H-Arg96, H-Gly97, H-Asp98		
	Ser		HB	H-Asp98 ^{0D1}		
470	Thr	67	vdW	H-Ser31, H-Tyr32, H-Gly33, H-Ile52, H-Asp95,		
	T1 0G1		LID	H-Arg96, H-Gly97, H-Asp98		
451	Throom	20	HB			
4/1	Glu Cl=OE1	39		H-1yr32, H-Arg96, H-Gly97, H-Asp98		
	Glu ^{oE1}		SB SD	H-Arg96 ^{NH2}		
472	Glu	7	SB wdW	H-Arg90 ¹¹¹²		
4/2		/		H-Ser51, H-1yr52, H-Arg90		
481	Asn	1	vaw	H-1yf32		
482	Gly	42	vdW	H-Ser31, H-Tyr32		
	Gly ^o		HB	H-Tyr32 ^{OH}		
483	Val	12	vdW	H-Thr28, H-Ser31, H-Tyr32		
484	Glu	53	vdW	H-Thr28, H-Phe29, H-Thr30, H-Ser31, H-Met54		
490	Phe	87	vdW	H-Thr30, H-Ser31, H-Tyr32, H-Gly33, H-Ile52,		
				H-Met54, H-Phe554		
492	Leu	13	vdW	H-Ile52, H-Met54, H-Phe554		
493	Gln	8	vdW	H-Phe554		

Table S6. RBD residues contacting Fab 52 identified by PISA (Krissinel and Henrick,2007).

494	Ser	17	vdW	H-Phe554
Total	BSA (Å ²):	904		

vdW: van der Waals interaction (5.0 Å cut-off) HB: hydrogen bond (3.8 Å cut-off) SB: salt bridge (4.0 Å cut-off)

Fab 52	Residue	Chain	BSA (Ų)	Interaction	RBD	
28	Thr	Н	24	vdW	Val483, Glu484	
30	Thr	Н	3	vdW	Glu484, Phe490	
31	Ser	Н	66	vdW	Glu471,Gly482,Val483, Glu484,	
					Phe490	
32	Tyr	Н	51	vdW	Thr470, Glu471, Ile472, Asn481,	
	011				Gly482, Val483, Phe490	
	Tyr ^{OH}	Н		HB	Gly482 ⁰	
33	Gly	Н	7	vdW	Thr470, Phe490	
52	Ile	Н	62	vdW	Tyr351, Leu452, Thr470, Phe490,	
					Leu492	
53	Met	H	38	vdW	Glu484, Phe490, Leu492	
54	Phe	Н	110	vdW	Tyr449, Asn450, Leu452, Phe490,	
	<u>C1</u>	11	4	133.7	Leu492, Gln493, Ser494	
<u> </u>	Gly	H	4	vdW	Leu452	
56	Thr	H	57	vdW	Tyr351, Tyr449, Asn450, Leu452	
58	Asn	H	10	vdW	Tyr351	
64	Gln	Н	43	vdW	Arg346	
95	Asp	Н	2	vdW	Thr470	
96	Arg	Н	64	vdW	Ile468, Ser469, Thr470, Glu471,	
	· NILIO				Ile472	
	Arg ^{NH2}	H		SB	Glu471 ^{OE1} , Glu471 ^{OE2}	
97	Gly	Н	64	vdW	Ile468, Ser469, Thr470, Glu471	
	Gly ^N			HB	Thr470 ^{og1}	
98	Asp	Н	28	vdW	Asp467, Ile468, Ser469, Thr470,	
	• OD1				<u>Glu471</u>	
	Aspon	17	77	HB	Ser469 ⁰⁰	
0	Ser	K	//	vdW	Arg355, Lys356, Arg357	
	Seroo	**		HB	Arg355 ⁰ , Arg35 ^{/N}	
27	Gln	K	60	vdW	Arg355, Arg357	
	Gln ^{OEI}			HB	Arg357 ^{NH2}	
30	Ser	K	28	vdW	Lys462, Glu465	
	Ser ^{OG}			HB	Glu465 ^{0E2}	
32	Asn	K	19	vdW	Glu465, Arg466, Asp467, Ile468,	
	A ND2			IID	Ser469	
	Asn ^{ND2}	**	1.0	HB	Arg466°	
91	Gly	K	18	vdW	lle468	
92	Asn	K	56	vdW	Glu465, Arg466, Asp467, Ile468	
	Asn ^O			HB	Arg466 ^{NH1}	
93	Gly	Κ	22	vdW	Ala352, Arg466, Ile468	
94	Phe	Κ	56	vdW	Tyr351, Ala352, Asn354, Arg466,	
					Ile468	

Table S7. Fab 52 residues contacting RBD identified by PISA (Krissinel and Henrick, 2007).

96	Leu	Κ	5	vdW	Ile468	
Total E	BSA (Ų):		974			

vdW: van der Waals interaction (5.0 Å cut-off) HB: hydrogen bond (3.8 Å cut-off) SB: salt bridge (4.0 Å cut-off)