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Abstract: During the past decades, genome-wide association studies (GWAS) have been used to 7 

successfully identify tens of thousands of genetic variants associated with complex traits included 8 

in humans, animals, and plants. All common genome-wide association (GWA) methods rely on 9 

population structure correction to avoid false genotype and phenotype associations. However, 10 

population structure correction is a stringent penalization, which also impedes the identification of 11 

real associations. Here, we used recent statistical advances and proposed iterative screen regression 12 

(ISR), which enables simultaneous multiple marker associations and shown to appropriately 13 

correction population stratification and cryptic relatedness in GWAS. Results from analyses of 14 

simulated suggest that the proposed ISR method performed well in terms of power (sensitivity) 15 

versus FDR (False Discovery Rate) and specificity, also less bias (higher accuracy) in effect (PVE) 16 

estimation than the existing multi-loci (mixed) model and the single-locus (mixed) model. We also 17 

show the practicality of our approach by applying it to rice, outbred mice, and A.thaliana datasets. 18 

It identified several new causal loci that other methods did not detect. Our ISR provides an 19 

alternative for multi-loci GWAS, and the implementation was computationally efficient, analyzing 20 

large datasets practicable (n>100,000).  21 
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Introduction  29 

Genome-wide association studies (GWASs) have been increasingly prominent in detecting genetic 30 

variants associated with complex traits and disease, while the identified variants significantly 31 

explain only a fraction of total phenotypic variance, resulting in the so-called ‘missing heritability’, 32 

but adventitiously pinpointing biological mechanisms1,2. Commonly, the individuals used in GWA 33 

studies are not related to each other, some degrees of confounding cryptic relatedness and 34 

population stratification are inevitable. Simultaneously, there is another confounding existing, 35 

which is the genetic background (non-genetic factor), such that the population structure control 36 

does not do well in very complex cases3. If these happen can lead to spurious associations (there is 37 

only correlated with the phenotype and markers, but not substantially associated with causal 38 

variants) between the phenotype and unlinked candidate loci (Mendel’s Second Law) 4,5, which 39 

brought about the challenge problem that how to efficiently conquer test for associations in the 40 

presence of population structure (including cryptic relatedness and population stratification) and 41 

genetic background. 42 

    During the past two decades, there are many solutions to the problem of population structure, 43 

including genomic control(GC)6,7, structured association (SA)8-10, regression control (RC)11,12, 44 

principal components adjustment (PCA)13,14 and mixed regression models(MRM)15-17. In the 45 

regression control and principal components adjustment approaches, population structure both are 46 

taken into account by including covariates in the regression model. In the absence of ascertainment 47 

bias, RC performed similarly to GC and SA, while being computationally fast and allowing the 48 

flexibility of the regression framework which including backward (stepwise) selection and 49 

shrinkage penalty approach12. Howbeit, with ascertainment bias, the RC approach substantially 50 

outperformed GC5. These proposals only perform well in simple cases, however, show poorly when 51 

the population structure is more complex18. 52 

    Incontrovertibly, the current method that linear mixed model (LMM) has extensively used for 53 

GWA studies, having been shown to perform well in humans, plants, and animals19-21. The linear 54 

mixed model that included approximate methods P3D22, EMMAx23, and GRAMMAR-Gamma24, 55 

also exact methods EMMA16, FaST-LMM25, GEMMA26, and so forth. It both models the genotype 56 

effect as a random term in a linear mixed model, by explicitly involving a similarity matrix (called 57 

genomic relationship matrix (GRM)27) or covariance structure between the individuals, which it 58 

can synchronously correct the population structure and the genetic background. As these mixed-59 

model methods that perform pretty well, but GWAS power remains limited28. On the one hand, it 60 

both are based on single-locus tests, while the most complex traits controlled by several substantial 61 

effects loci and numerous polygenes with minor effects, these univariate linear mixed model 62 
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approaches may not be adequate, especially in complicated individual relatedness29. The inflation 63 

of single-locus association test is expected for complex traits, even in the absence of population 64 

structure30. On the other hand, compared with the traditional linkage mapping, by including 65 

multiple cofactors in the genetic model (multiple-loci test) is a prominent alternative and 66 

indisputable, which the main feature is the ability to control genomic background effects. Also, a 67 

multi-loci test of association has shown outperform single-locus analysis of association31-33. 68 

However, the main problem in GWAS that the number of subjects, n, is in the hundreds or 69 

thousands, while p could be a range of millions of genetic features. Moreover, the number of loci 70 

(gene) exhibiting a detectable association with a trait is minimal. It  is a fundamental problem in  71 

high-dimensional variable selection. Several methods have been developed to address these issues, 72 

such as LASSO34,35, stepwise regression36-38, penalized logistic regression39 and penalized multiple 73 

regression 40. 74 

    For the past decades, based on these methods, where several new multi-locus methodologies 75 

have been developed. For example, MLMM33, where stepwise mixed-model regression with 76 

forwarding inclusion and backward elimination, showed the advantage of computationally efficient 77 

and outperform the univariate mixed model for GWAS. LMM-Lasso41, where combines the 78 

benefits of established linear mixed models (LMM) with sparse Lasso regression. Some of the 79 

others, BSLMM42, MRMLM43, and FASTmrEMMA44, both are based on the mixed model. 80 

Recently, FarmCPU28 and QTCAT45 are not based on a mixed model. However, FarmCPU by 81 

iterating usage of fixed and random effect models, which improved the power and computation 82 

time both than the univariate and multivariate mixed model. QTCAT combining those highly 83 

correlated markers, which cannot be distinguished for their contribution to the phenotype and 84 

enabling simultaneous correction of the population structure and also reflects the polygenic nature 85 

of complex traits better than single-marker methods and outperform traditional linkage mapping. 86 

    Whereas hypothesis tested, have been changed by the use of a genomic relationship matrix as 87 

the random effect to correct for population structure and infinitesimal genetic background. Where 88 

we focus on test multiple loci to effects the phenotype that is neither explained by population 89 

structure nor by the genetic background45. It is problematic that the trait model assumptions to 90 

corroborate in reality, which ultimately leads to failures in identifying causal loci29,45-47.  91 

Here we introduce a new unique variable selection procedure of regression statistic method, call 92 

Iterative screen regression. We formulated a new regression information criterion (RIC) and used 93 

this criterion as the objective function of the entire variable screen process. We evaluate various 94 

model selection criteria through simulations, which suggest that the proposed ISR method performs 95 
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well in terms of FDR and power. Finally, we show the usefulness of our approach by applying it to 96 

A. thaliana and mouse data. 97 

Results 98 

Method overview. An overview of our method is provided in the Methods section, with details 99 

provided in the Supplementary Note. Briefly, we offered a new regression statistics method and 100 

combined a unique variable screening procedure (Fig.1). 101 

Simulations. We first compare the performance of ISR with several other commonly used 102 

association mapping methods using simulations. A total of six different methods are included for 103 

comparison: (1) CMLM48; (2) LMM (GEMMA) and LM26; (3) MLMM33; (4) FarmCPU28; (5) 104 

FASTmrEMMA44; (6) FaSTLMM49; (7) PLINK (Fisher’s exact test)50.  105 

    To make our simulations as real as possible, we used genotypes from an existing two model 106 

species (A. thaliana and mouse), the previous dataset had been widely used to as simulating data 107 

including all the above comparison methods. GWAS dataset was simulated by adding phenotypic 108 

effects to real genotypic data from A. thaliana data under two different scenarios (Ⅰ, Ⅱ) ( Methods 109 

section for details): a 10-locus model and a 100-locus model. These scenarios have already been 110 

simulated in previously33,44. In scenarios Ⅰ, the power for each causal SNPs was defined as the 111 

proportion of samples where the causal SNPs were detected (the P-value is smaller than the 112 

designated threshold. See the methods all character, Supplementary Table 1). Where we can see 113 

that with different heritabilities by each casual loci SNPs, such that multi-locus model including 114 

ISR, FASTmrEMMA, FarmCPU outperformed than the mixed model including single-locus(LMM, 115 

CMLM) and multi-locus(MLMM); moreover, ISR detected the small effect by the casual loci own 116 

more power than the others methods, especially the mixed model (GEMMA, MLMM, CMLM) 117 

(Fig.2a), as the following simulation also showed the same phenomena. According to this, all 118 

methods’ precision—here defined as the percentage of true positives of all reported loci, where ISR 119 

at a level of 5% Bonferroni correction outperformed than the others methods was 92.41%, 80.77%, 120 

78.48%, 68.20%, 65.92% and 65.58% (Fig.2b), respectively. Although the FASTmrEMMA 121 

detected the most casual loci, the true positive only almost equal ISR methods detected, while the 122 

FDR bigger than ISR nearly 2.8 times. In a word, ISR performs high power and low FDR in the 123 

sample trait than other methods. For the sophisticated trait included, 100 locus model is shown, at 124 

a different level of heritability 0.25 (low), 0.5 (middle), and 0.75 (high), which can be summarized 125 

as follows. First, methods that use a kinship term to correct population structure  outperform 126 

comparable methods that do not (FASTmrEMMA, FarmCPU, GEMMA, MLMM, CMLM versus 127 

LM, respectively). Second, the mixed model, including the single-locus and multi-locus model 128 

performed almost equivalent. Third, in low-level heritability, ISR comparable the mixed model 129 
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(FASTmrEMMA, GEMMA, MLMM, CMLM) and outperformed than FarmCPU and LM. While 130 

in the middle and high-level heritability, the performance of ISR more than FarmCPU and other 131 

methods (Fig.3 and Supplementary Figs.1-2). 132 

    The first CFW mice dataset simulation (scenarios Ⅲ). Where the phenotype variation controlled 133 

by 50-locus is shown (Supplementary Figs.3-5), in which at different levels of heritability 0.25 134 

(low), 0.5 (middle), and 0.75 (high) settings can be summarized as follows. On the one hand, ISR 135 

performed well regarding power versus FDR and FPR than other methods. On the other hand, the 136 

multi-locus (mixed) model outperformed than single-locus (mixed) model (ISR, FarmCPU, 137 

MLMM, FASTmrEMMA versus GEMMA, CMLM, LM). Moreover, with the increase of 138 

heritability (0.25~0.75), ISR performs well that get lower FDR, while other methods almost 139 

unchanged (Supplementary Fig.6). The second simulation (scenarios Ⅳ), another controlled by the 140 

100-locus model, is shown (Fig.4) but only set a level of heritability was 0.5. The performance of 141 

the used full dataset is the same as random sample data from all genome. On the one hand, ISR also 142 

performed well regarding power versus FDR and FPR than other methods. On the other hand, the 143 

multi-locus (mixed) model outperformed than single-locus (mixed) model (ISR, FarmCPU, 144 

MLMM, FASTmrEMMA versus GEMMA, CMLM, LM). It is indicated that randomly choose the 145 

SNPs from all cover genome (scenarios Ⅰ-Ⅲ) or using all genome datasets for simulation, and both 146 

results were identically 33. 147 

    The last two simulations (scenarios Ⅴ(1-2)) using a human dataset derived from PLINK250 148 

(details seeing the Methods section). Compared to the power, ISR had a significantly larger AUC 149 

than FarmCPU, FaSTLMM, and PLINK-Fisher for both TPR versus FDR and TPR versus FPR in 150 

both simulations (Fig.5b). PLINK-Fisher had a smaller AUC than ISR, FarmCPU, and FaSTLMM 151 

for both comparisons. Especially, FarmCPU only had a significantly larger AUC than FaSTLMM 152 

and PLINK-Fisher for TPR versus FDR, not TPR versus FPR in the first simulation (Fig.5b). In 153 

other words, FarmCPU had a similar AUC with FaSTLMM and PLINK-Fisher for controlling FPR 154 

(Type Ⅰ error). On the other hand, except PLINK-Fisher that other methods detected power higher 155 

along with the samples 10 times increased(1000~10000, Fig.5(a,b)). This situation held true as 156 

above two model species (Arabidopsis and mouse). 157 

 158 

Estimated Effect (PVE). Generally, if there are environmental factors that influence the phenotype 159 

and are correlated with genotype (e.g., due to population structure), then these would undoubtedly 160 

affect estimates of SNPs effect, and consequently also affect estimates of other quantities, including 161 

the PVE (the total proportion of variance in phenotype explained, or SNPs heritability)42,51. So, 162 

except comparing the detected power, the accuracy of estimated effect (or PVE) also is one of the 163 
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keys to whether the model performs well or not. Here, we used the root of mean square error (RMSE) 164 

as the accuracy of the PVE estimates obtained by each methods42. 165 

     In the Arabidopsis simulation dataset (scenarios Ⅰ). The first simulation set (sparse genetic 166 

architecture, which assumes effects are sparse, fixed ten casual SNPs) result showed that ISR, 167 

GEMMA, and CMLM significantly perform more stable and accurate (lower RMSE) than other 168 

methods (Fig.7), which another two methods (FarmCPU, and FASTmrEMMA) presenting 169 

downward bias of PVE estimate. Summarizes the resulting of PVE estimates with six methods. 170 

Apparently, except FarmCPU, multi-loci (mixed) model estimated more accuracy than the single-171 

locus mixed model (ISR, FASTmrEMMA versus GEMMA, CMLM). Where the single-locus 172 

mixed model is presenting upward bias and tends to decrease along with the PVE (heritability) 173 

increased, whereas compared with FarmCPU that tends to downward bias. Furthermore, ISR and 174 

FASTmrEMMA accuracy tend to lower along with the increase of heritability (Figs.7 and 175 

Supplementary Fig.7). Where the multiple-loci (mixed) model (ISR and FASTmrEMMA) with 176 

lower RMSE estimates of PVE presenting stable and only in the small PVE (low heritability), 177 

which tend to less downward bias, on the other hand, detected large effect loci by all methods 178 

equally well, while ISR and FarmCPU could expand its findings to loci with smaller effect sizes. 179 

Moreover, ISR is more efficient in finding small effect loci along with the increase of heritability 180 

(Figs.6, 7, 8, 9). Human dataset simulation showed the same results, in which ISR had the lowest 181 

RMSE than others did three methods (Fig.9). 182 

 183 

Applying ISR to real datasets. To validate and gain further insight ISR, it's along with FarmCPU, 184 

GEMMA, CMLM, MLMM and FASTmrEMMA was used to reanalyze the A. thaliana dataset52 185 

for all phenotypes related to flowering time and others (Defense-related, Ionomics and 186 

Developmental phenotypes, only chosen one). We excluded phenotypes measured for less than 160 187 

accessions to avoid possible ‘small sample size effects, resulting in 13 flowering times phenotypes 188 

that were considered. The relatedness between individuals ranges in a wide spectrum leading to a 189 

complex population structure53. The SNPs identified that using six methods is listed in 190 

(Supplementary Table 3). The dataset is characterized by high heritabilities (0.89~1.00), except for 191 

the At1CFU2 trait with relatively low heritability (0.54). Moreover, both were small sample sizes 192 

(147~194).  193 

    Having shown the accuracy of ISR more than other methods in recovering causal SNPs in 194 

simulation, we now demonstrate that the ISR better models the genotype-to-phenotype map in 195 

Arabidopsis thaliana. ISR methods detected the most SNPs significantly associated close to or in 196 

known candidate genes with the above sixteen traits and significantly more than other methods (see 197 
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Supplementary Fig.6 and Table 1). Such as, based on the SNPs detected by ISR, 13/13 genes were 198 

previously reported to be associated with the LN10 (leaf number at flowering time,10℃) trait, 199 

while 5/5, 0/0, 0/0, 3/3, and 5/9 genes detected by FarmCPU, GEMMA, CMLM, MLMM, and 200 

FASTmrEMMA, respectively 54,55. The same as the other traits in Table 1. As corresponding 201 

simulation result showed that ISR has higher detected power and lower false discovery rate than 202 

other methods in different heritabilities, especially, in high heritability. MLMM result indicated 203 

that at the EBIC and mBonf two different model selection criteria, which shown both detected the 204 

same genes.  205 

    ISR outperformed other methods concerning controlling inflation of P values, identifying new 206 

associated markers, and covering with known loci. We take three phenotypes association test results 207 

in A.thaliana dataset as an example. The first is bacterial disease resistance (At1 CFU2) with low 208 

heritability 52, the second is leaf Na+  accumulation56, and the third is a cellular trait of meristem 209 

zone length57 both from worldwide A. thaliana accessions. The two latter phenotypes have already 210 

been reanalyzed by MLMM and QTCAT two methods, respectively.45,58. For the At1 CFU2 trait, 211 

FarmCPU, CMLM, and FASTmrEMMA both slightly under expected (Supplementary Fig.9), and 212 

except FASTmrEMMA identified no associated SNPs above the threshold of 5% after Bonferroni 213 

multiple test correction. MLMM and GEMMA controlled inflation well, while only MLMM 214 

identified one associated SNP above a threshold of 5% after Bonferroni multiple test correction. 215 

Furthermore, ISR not only controlled inflation well but also identified seventeen associated SNPs 216 

above the significance threshold, and only three loci out of the known candidate gene (Table 1, 217 

Supplementary Fig.8). 218 

    Sodium accumulation in the leaves of A.thaliana that had detected strongly associated with 219 

genotype and expression levels of the Na+ transporter AtHKT1;1 56. Extraordinarily, an SNP located 220 

in the first exon of the gene (chromosome4: 6,392,280) shows a highly significant association using 221 

an approximate mixed model. We reanalyzed the dataset used six different linear models (as above 222 

described). Both methods result indicated that identified the same most significant locus 223 

(chromosome4: 6,392,280), while in our study that detected more than the original research , except 224 

CMLM. The approximate mixed model CMLM showed the same result with56. Three methods 225 

CMLM, GEMMA, and FASTmrEMMA show slight inflation, while ISR, MLMM, and FarmCPU 226 

controlled inflation well. The two methods ISR and FarmCPU detected one same locus 227 

(chromosome2: 5,169,035), while ISR detected four loci in chromosome three which as same as 228 

MLMM identified three loci (total three loci) and two loci by FarmCPU (total two loci). Moreover, 229 

both one identified by CMLM (total one loci) and GEMMA (total four loci). ISR detected five loci 230 

in chromosome four which as same as MLMM identified four loci (total five loci) and also 231 
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FarmCPU four loci (total five loci); ISR detected two loci in chromosome  five only as same as 232 

MLMM detected one (total one loci), while between the others methods didn’t identify the same 233 

locus (Supplementary Fig.10 and Supplementary Table 4). In others words, except for as same as 234 

others methods detected genes, where it indicated that our model always detected more genes 235 

(Table 1). 236 

 In a recent GWA study57, authors using a worldwide collection of 201 natural Arabidopsis 237 

accessions to study the genetic architecture of root development. They also use the approximate 238 

mixed model and detected only one most significant association (at position 22244990 on 239 

chromosome one, an F-box gene). Natural genetic variation influences the meristem zone lengths 240 

in roots. Here, as above, our reanalyzed result showed that four methods included CMLM, 241 

FarmCPU, GEMMA, and MLMM control inflation well, while no identified association SNPs after 242 

0.05 Bonferroni correction. The FASTmrEMMA showed under deflation , but the final result 243 

detected nine SNPs (Supplementary Fig.11 and Supplementary Table 4). While ISR not only 244 

controls inflation well but also identified fifteen SNPs also included the position 22244990 on 245 

chromosome one and all loci except one both in the candidate gene (Supplementary Fig.11 and 246 

Supplementary Table 4). Otherwise, Two methods ISR and FASTmrEMMA detected the same 247 

most significant association locus in chromosome three (Supplementary Fig.12). 248 

Carworth Farms White (CFW) mice are a commercially available outbred mouse population. 249 

The dataset was previously reanalyzed to show the usefulness of the mixed model59. Here, we also 250 

reanalyzed the dataset used six different linear models that included a single locus linear model 251 

(CMLM and GEMMA) and multiple loci linear models (ISR, MLMM, FarmCPU, and 252 

FASTmrEMMA). Compared with the results that SNPs identified by six methods all were listed in  253 

(Supplementary Table.5). We also calculated a significance threshold via permutation, which is a 254 

standard approach for QTL mapping in mice that controls the type I error rate well (Supplementary 255 

Fig.13). We mapped QTLs for ten behavioral and physiological phenotypes, and mapping 256 

association results indicated that SNPs detected on different chromosomes by the single locus 257 

mixed model (GEMMA and CMLM) and associated by multiple loci linear model (ISR), while 258 

except the MLMM, FarmCPU, and FASTmrEMMA methods. Moreover, where the ISR always 259 

detected additional significate association locus. The results are mostly consistent with the 260 

simulations investigated. For example, QTL mapping for abnormal BMD phenotype that single-261 

locus mixed model (GEMMA and CMLM) identifies two sharp peaks of significantly associated 262 

SNPs on chromosome five and eleven, and the most significant associated two loci were 263 

rs27024162 and rs32012436 (Supplementary Fig.14). Except for FarmCPU and FASTmrEMMA, 264 

those loci are both detected by multiple loci linear (mixed) model (ISR and MLMM) methods. 265 
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Moreover, in contrast to that ISR, the visualization of  Manhattan and QQ (Q stand for Quantile) 266 

plot showed that the ISR model fits more stable and control the population structure well than 267 

others (Supplementary Fig.14). Considering the lower error rates of ISR, those result promises to 268 

reveal genes that so far could not have been identified and more generally again shows the vast 269 

potential of ISR including its applicability to others species. 270 

    We further applied ISR to reanalyzed the rice dataset of grain length trait that owns a strong 271 

population structure, which the germplasm collections from all around the word60. After processing 272 

the data, including filtering for missing data, minor allele frequencies(MAF <0.05), the data were 273 

composed of m = 464,831 SNPs and n = 1,132 individuals. The data was previously reanalyzed to 274 

show the usefulness of the mixed model(EMMAX method61). Moreover, we used the same settings 275 

for mixed-model estimation here. We use the significance threshold level of 0.05 Bonferroni 276 

correction (P<1.08E-07) for comparative purposes and the significant SNPs for grain length trait 277 

identified by ISR and the others seven methods(except all above mentioned, also including the 278 

EMMAX61 and FASTLMM49 methods) are listed in (Supplementary Table.6). Here, all samples 279 

were evaluated together, and we can see two major GWAS peaks associated with grain length, one 280 

on chromosome 3 and one on chromosome 5 detected by the single-locus mixed model including 281 

GEMMA, EMMAX, FASTLMM, and CMLM methods. However, only the FASTLMM identified 282 

more than four SNPs in chromosome 10 (one) and 12 (three). The most significant SNPs were  283 

SNP-3.16732086 and SNP-5.5371749 from each of the major peaks on chromosomes 3 and 5, 284 

except for FASTmrEMMA, both identified by other methods (Supplementary Fig.15). Compared 285 

with the top ten SNPs detected by ISR, both different detected the same by GEMMA (two), 286 

EMMAX (two), FASTLMM (three), CMLM (two), FarmCPU (six), MLMM (four), and 287 

FASTmrEMMA (two). 288 

 289 

Discussion  290 

    Over the recent years, the prestigious GWAS methods development has been through several 291 

milestones from the single-locus model (mainly was a mixed model, such as EMMA16) to the multi-292 

loci model (recently, BLINK62). Improvement of the LMM-based association approach has been 293 

proposed (included single-locus and multiple-loci linear model)48,49,58,61,63. All improvements are 294 

based on the assumption that population structure correction along with its negative effects cannot 295 

be entirely avoided (Supplementary Table 5, 6, and Supplementary Figs. 14, 15 ), part of the reasons 296 

that the trait is not approximately following an infinitesimal genetic architecture63.  Otherwise, 297 

population structure leads to linkage disequilibrium (LD) between physically unlinked regions and 298 
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thereby to correlations between markers of these regions. However, the multiple-loci linear model 299 

can conquer  LD (Supplementary Fig.12b). The problem of population structure in GWAS is best 300 

viewed as one of model misspecification. Single-locus tests of the association are the wrong model 301 

to use when the trait is not attributable to a single locus.  302 

     Here, we have presented a novel statistical regression model. Based on that, derive a new set of 303 

methodologies, called a ‘multiple-locus linear model’ (ISR), and using it to the genetic association 304 

of complex traits. The method includes a significant locus in the model via a new iterative screen 305 

regression approach, which was continually changing the variable select criterion of the model at 306 

each step. ISR is a combined method with two stages, each of which needs a critical p-value. In the 307 

first step, a critical p-value 0.01 (methods default) (or 0.005 and 0.001, Supplementary Note Fig.2) 308 

were compared to obtain the best one. We divided variants into three types (Supplementary Note 309 

Fig.5 and Fig.1) and combined the expansion and contract screen procedure (Fig.1). Populat ion 310 

structure is not species-specific but can be found in populations of any type. Moreover, we want to 311 

point out that the formulation of ISR can also be easily extended to accommodate other fixed effects 312 

(e.g., age, sex, or genotype principal components) that can be used to account for sample non-313 

independence due to other genetic or shared environmental factors and similar to the LMM or LM 314 

approach. Otherwise, add fixed effects had no influenced the detected power (Supplementary 315 

Fig.17). ISR without fitting PCs as covariates still outperformed MLM that incorporated PCs as 316 

covariates (Supplement Fig.15). Fitting appropriate PCs as covariates in ISR further improved 317 

statistical power (Supplement Fig.17).  318 

    Our simulations showed that ISR is still very conservative, which indicates that such further 319 

development could lead to even more powerful methods. However, already in the current form, 320 

ISR correctly accounted for polygenic inheritance and facilitated to overcome the requirement for 321 

population structure correction. In any way, independent of the actual method, associating 322 

correlated markers will always be superior to the single-marker association. They are more 323 

consistent with the nature of quantitative traits (Supplementary Fig.15). ISR demonstrated that not 324 

only promising performance regarding power versus FDR and FPR in comparison with a single-325 

locus mixed model scan(CMLM22, GEMMA26, FaSTLMM, and PLINK-Fisher) and multiple loci 326 

mixed model scan (FarmCPU28, MLMM58, and FASTmrEMMA44) but also had a higher accuracy 327 

effect estimated (PVE estimated). Particularly applying a relative conservative threshold, which 328 

can be effectuated with one of the proposed model quality criteria. ISR is not without its limitations. 329 

Perhaps the most significant burden is its computational cost. However, it still comparable with 330 

MLMM, CMLM, and faster than FASTmrEMMA (Supplementary Fig.19), when the individuals 331 

are a significant increase. On the other hand, it was built by MATLAB language, as we were known, 332 
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which the M language with lower computer speed than other languages, such as,  C and C++ and 333 

so forth, consider ISR itself, though both R and C++ program under development.  Also, we will 334 

consider it combined with other technology like QTCAT45 to improve the power and achieve a 335 

lower false discovery rate. 336 

    We have focused on one application of ISR— genetic association of phenotypes. We were 337 

applying ISR to real data from A. thaliana, rice, and mice. Compared with other methods, our 338 

methods detected more known and unknown candidate genes (Supplementary Table 3), moreover, 339 

in contrast to the single-locus model that the visualization of the multiple-loci model (ISR, 340 

FarmCPU, and MLMM) results which the Manhattan plot and QQ plot showed reasonably and 341 

better illustrates the nature of quantitative traits (Supplementary Fig.15). Being with the marker 342 

density is multiply increasing, and no longer exist spikes and surprising28. 343 

 344 

Methods 345 

Overview of ISR.  346 

We provide a brief overview of ISR here. Detailed methods and algorithms are provided in the 347 

Supplementary Note. To model the relationship between phenotypes and genotypes, we consider 348 

the following multiple regression model: 349 

                                           
2, ~ MVN(0, I )e ny W X    = + +  350 

where y is an n-vector of phenotypes measured on n individuals; W=(w1,w2…wc) is an n 351 

by c matrix of covariates(fixed effects) including a column of ones for the intercept term; 352 

α is a c-vector of coefficients; X is an n by p matrix of genotypes; β is the corresponding 353 

p-vector of effect sizes; ε is an n-vector of residual errors where each element is assumed 354 

to be independently and identically distributed from a normal distribution with variance 2

e ; 355 

In is an n by n identity matrix and MVN denotes multivariate normal distribution. 356 

We used the proposed repeatedly screening stepwise linear regression model—effect size estimates 357 

obtained by the least-square method (LSM) and F-test P values for each SNP. The SNP with the 358 

most significant association is then added to the model as a cofactor for the next step. Combined 359 

the proposed repeatedly screening stepwise regression process, which makes it useful when p>>n 360 

(when the number of SNPs is much greater than the number of individuals). 361 

We also proposed a new model selection criteria (RIC Fig.1) to select the most appropriate 362 

model (Supplementary Note). Without using the classic Bayesian information criterion 363 
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(BIC)64 or Akaike information criterion (AIC)65, because they are too tolerant in the context 364 

of GWAS58, allowing for too many loci in the model.  365 

Simulations.  366 

GWA data from a set of 214,051 single-nucleotide polymorphism markers which surveys 248,584 367 

SNPs after quality control, where were genotyped for 1,307 diverse Arabidopsis accessions 368 

showing strong population structure66 were used to perform two simulation experiments. Also, 369 

another outbred CFW (Carworth Farms White) mice population that including a set of 92,734 370 

single-nucleotide polymorphism markers which were genotyped 1,161 individuals were also used 371 

to perform two simulation experiments. The human dataset derived from PLINK250 included two 372 

real human genotype datasets. The first dataset included  1000 samples and 100000 makers (SNPs); 373 

The second included 10000 samples(6000 cases and 4000 control) and 88058 markers(SNPs), and 374 

only included in 19, 20, 21, and 22 chromosomes. The purpose was to compare ISR with the single-375 

locus model methods (CMLM, GEMMA, LM) and the multi-locus model method (FarmCPU, 376 

FASTmrEMMA, MLMM). While for the human dataset, we only compare with FarmCPU, 377 

FaSTLMM49, and PLINK(version 1.9, and using Fisher’s exact test for association)50,67. 378 

For the Arabidopsis dataset, the first two simulation experiments, a set of 20,000 SNPs and 1307 379 

individuals were randomly sampled from the full dataset, seeing the density plot of SNPs 380 

(Supplementary Fig.20).  381 

Scenario Ⅰ: For the simple traits, following 44,46,68, we fixed two randomly chosen causal SNPs from 382 

each chromosome that were used to generate 100 phenotypes, where the phenotypes are simulated 383 

by the simple additive genetic model as following: 384 

10
2 2 2

1

, ~ M (0, (1 / ), j 1,2,...,1307j i i n g

i

y X b VN h h   
=

= + + − =  385 

Where the average µ and heritability (total proportion of phenotypic variation explained) 2h were 386 

set at 10 and 0.25, respectively. The 
2

g  is the empirical variance of (i 1,2,...,10)i iX  =  and effects 387 

(i 1,2,...,10)i =  were generated from a normal distribution with means is 0 and variance is 4, where 388 

effects were 2.2386, -1.6089, 1.4445,-1.3338, -1.8779, 1.6808, -1.0891, 2.4238, 2.1443 and 1.8481, 389 

respectively (supplementary table1). 390 

Scenario Ⅱ: For the complex traits, following 33, we used an additive model with 100 randomly 391 

sampled causal SNPs having effect sizes (i 1,2,...,100)i =  drawn from an exponential distribution 392 

with a rate of 1. An additional random deviation   was added, drawn from a normal distribution 393 

with a mean of zero and scaled identity matrix as a covariance matrix to fix the trait heritability 2h  394 
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to 0.25, 0.5, and 0.75. For each phenotypic heritability, 100 phenotypes were simulated, the model 395 

as follows: 396 

100
2 2 2

1

, ~ M (0, (1 / ), j 1,2,...,1307j i i n g

i

y X b VN h h  
=

= + − =  397 

 398 

For the outbred CFW mice dataset, the first two simulation experiments, a set of 20,000 SNPs and 399 

1161 individuals, were randomly sampled from the full dataset, seeing the density of SNPs 400 

(Supplementary Fig.21). 401 

Scenario Ⅲ: The first 100 phenotypes including 50 markers were randomly selected as causal loci. 402 

We assigned an additive effect randomly drawn from a standard normal distribution and added a 403 

random environmental term, such that h2 of the simulated traits was 0.25, 0.5, 0.75. Where the 404 

additive genetic model simulates the phenotypes as following: 405 

50
2 2 2

1

, ~ M (0, (1 / ), j 1,2,...,1161j i i n g

i

y X b VN h h  
=

= + − =  406 

Scenario Ⅳ: The second 100 phenotypes used all CFW mice dataset that including 100 markers 407 

were randomly selected as causal loci, respectively. We also assigned an additive effect randomly 408 

drawn from a standard normal distribution and added a random environmental term, where the 2h  409 

of the simulated traits only was 0.5, here. 410 

100
2 2 2

1

, ~ M (0, (1 / ), j 1,2,...,1161j i i n g

i

y X b VN h h  
=

= + − = . 411 

Scenario Ⅴ: two 100 phenotypes used human dataset50 that including 100 markers were randomly 412 

selected as causal loci, respectively. We also assigned an additive effect randomly drawn from a 413 

standard normal distribution and added a random environmental term, where the 2h  of the 414 

simulated traits only was 0.5, here. 415 

100
2 2 2

1

100
2 2 2

1

, ~ M (0, (1 / ), j 1,2,...,1000

, ~ M (0, (1 / ), j 1,2,...,10000

j i i n g

i

j i i n g

i

y X b VN h h

y X b VN h h

  

  

=

=

= + − =

= + − =




 416 

Receiver operating characteristics.  417 

For each scenario, we examined statistical power (TPR, Ture Positive Rate) under different levels 418 

of FDR and FPR (Type I error). We defined FDR as the proportion of false positives among the 419 

total number of positives identified. Defined FPR as the proportion of false positives among the 420 

total number of negatives identified. Described the relationship between TPR and FDR or FPR uses 421 

the receiver operating characteristic (ROC) curves69. The method with a larger area under the curve 422 

(AUC) is preferred over the method with a smaller AUC. 423 
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Other methods.  424 

We compared the performance of ISR mainly with six existing methods: (1) CLMM22 as 425 

implemented in the GAPIT70 R package; (2) LMM66 and LM as implemented in the GEMMA 426 

software (version 0.95alpha); (3) FarmCPU28 as implemented in the FarmCPU R package; (4) 427 

FASTmrEMMA as implemented in the mrMLM R package; (5) MLMM33 as implemented in the 428 

MLMM R package. We used default settings to fit all these methods and the details, as above stated.  429 

 430 

Code availability.  431 

ISR is available as an open-source MATLAB package at  https://github.com/czheluo/ISR.  432 

 433 

Data availability 434 

No data were generated in the present study. The 1,307 diverse Arabidopsis accessions data 435 

included genotype and phenotype is publicly available at https://1001genomes.org/data-center.html 436 

or http://bergelson.uchicago.edu/. The outbred CFW mice of genotype and phenotype data are 437 

publicly available at https://github.com/pcarbo/cfw. The human dataset derived from PLINK250 438 

included two real human genotype datasets only for the simulations. 439 

 440 

Author contributions 441 

Shiliang Gu conceived the study and supervised statistical aspects of this work. Shiliang Gu and 442 

Meng Luo developed the software. Meng Luo designed the experiment and performed the 443 

simulations and data analyses. Meng Luo wrote the manuscript, and Shiliang Gu approved the final 444 

manuscript. 445 

 446 

Competing interests 447 

 The authors declare no competing interests. 448 

 449 

Additional information 450 

Supplementary Information accompanies this paper. 451 

 452 

 453 

 454 

 455 

 456 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.336180doi: bioRxiv preprint 

https://github.com/czheluo/ISR
https://1001genomes.org/data-center.html
http://bergelson.uchicago.edu/
https://github.com/pcarbo/cfw
https://doi.org/10.1101/2020.10.16.336180
http://creativecommons.org/licenses/by-nd/4.0/


 

 

References 457 

1. Visscher, P.M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. The 458 
American Journal of Human Genetics 101, 5-22 (2017). 459 

2. Visscher, Peter M., Brown, Matthew A., McCarthy, Mark I. & Yang, J. Five Years of GWAS 460 
Discovery. The American Journal of Human Genetics 90, 7-24 (2012). 461 

3. Vilhjalmsson, B.J. & Nordborg, M. The nature of confounding in genome-wide association 462 
studies. Nat Rev Genet 14, 1-2 (2013). 463 

4. Pritchard, J.K. & Rosenberg, N.A. Use of Unlinked Genetic Markers to Detect Population 464 

Stratification in Association Studies. The American Journal of Human Genetics 65, 220-228 465 
(1999). 466 

5. Astle, W. & Balding, D.J. Population Structure and Cryptic Relatedness in Genetic 467 
Association Studies. Statistical Science 24, 451-471 (2009). 468 

6. Devlin, B. & Roeder, K. Genomic Control for Association Studies. Biometrics 55, 997-1004 469 

(1999). 470 
7. Zheng, G., Freidlin, B. & Gastwirth, J.L. Robust Genomic Control for Association Studies. 471 

The American Journal of Human Genetics 78, 350-356 (2006). 472 

8. Patterson, N., Price, A.L. & Reich, D. Population Structure and Eigenanalysis. PLOS 473 
Genetics 2, e190 (2006). 474 

9. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of Population Structure Using 475 
Multilocus Genotype Data. Genetics 155, 945 (2000). 476 

10. Raj, A., Stephens, M. & Pritchard, J.K. fastSTRUCTURE: Variational Inference of Population 477 

Structure in Large SNP Data Sets. Genetics 197, 573 (2014). 478 
11. Wang, Y., Localio, R. & Rebbeck, T.R. Bias Correction with a Single Null Marker for 479 

Population Stratification in Candidate Gene Association Studies. Human Heredity 59, 165-480 

175 (2005). 481 
12. Setakis, E., Stirnadel, H. & Balding, D.J. Logistic regression protects against population 482 

structure in genetic association studies. Genome Research 16, 290-296 (2006). 483 
13. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide 484 

association studies. Nat Genet 38(2006). 485 

14. Zhang, S., Zhu, X. & Zhao, H. On a semiparametric test to detect associations between 486 
quantitative traits and candidate genes using unrelated individuals. Genetic Epidemiology  487 
24, 44-56 (2003). 488 

15. Yu, J. et al. A unified mixed-model method for association mapping that accounts for 489 
multiple levels of relatedness. Nat Genet 38, 203-208 (2006). 490 

16. Kang, H.M. et al. Efficient Control of Population Structure in Model Organism Association 491 
Mapping. Genetics 178, 1709 (2008). 492 

17. Price, A.L., Zaitlen, N.A., Reich, D. & Patterson, N. New approaches to population 493 

stratification in genome-wide association studies. Nat Rev Genet 11, 459-463 (2010). 494 
18. Zhao, K. et al. An Arabidopsis example of association mapping in structured samples. PLoS 495 

Genet 3(2007). 496 
19. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal eighteen new 497 

lociassociated with body mass index. Nature Genetics 42, 937-48 (2010). 498 

20. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41 (2016). 499 
21. Ramu, P. et al. Cassava haplotype map highlights fixation of deleterious mutations during 500 

clonal propagation. Nature Genetics 49, 959-963 (2017). 501 

22. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association 502 
studies. Nat Genet 42, 355-360 (2010). 503 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.336180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.336180
http://creativecommons.org/licenses/by-nd/4.0/


 

 

23. Kang, H.M. et al. Variance component model to account for sample structure in genome-504 
wide association studies. Nat Genet 42, 348-354 (2010). 505 

24. Svishcheva, G.R., Axenovich, T.I., Belonogova, N.M., van Duijn, C.M. & Aulchenko, Y.S. 506 
Rapid variance components-based method for whole-genome association analysis. Nat 507 

Genet 44, 1166-1170 (2012). 508 
25. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat Meth 509 

8, 833-835 (2011). 510 

26. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association 511 
studies. Nat Genet 44, 821-824 (2012). 512 

27. VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. Journal of Dairy 513 

Science 91, 4414-4423 (2008). 514 
28. Liu, X., Huang, M., Fan, B., Buckler, E.S. & Zhang, Z. Iterative Usage of Fixed and Random 515 

Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS 516 
Genetics 12, e1005767 (2016). 517 

29. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana 518 

inbred lines. Nature 465, 627-631 (2010). 519 
30. Yang, J. et al. Genomic inflation factors under polygenic inheritance. European Journal of 520 

Human Genetics Ejhg 19, 807-12 (2011). 521 

31. Kao, C.-H., Zeng, Z.-B. & Teasdale, R.D. Multiple Interval Mapping for Quantitative Trait 522 
Loci. Genetics 152, 1203 (1999). 523 

32. Wang, S.-B. et al. Mapping small-effect and linked quantitative trait loci for complex traits 524 
in backcross or DH populations via a multi-locus GWAS methodology. 6, 29951 (2016). 525 

33. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide 526 

association studies in structured populations. Nat Genet 44, 825-830 (2012). 527 
34. Tibshirani, R.J. Regression shrinkage and selection via the LASSO. J R Stat Soc B. Journal of 528 

the Royal Statistical Society 58, 267-288 (1996). 529 

35. Li, J., Das, K., Fu, G., Li, R. & Wu, R. The Bayesian lasso for genome-wide association studies. 530 
Bioinformatics 27, 516-523 (2011). 531 

36. Knüppel, S. et al. Multi-locus stepwise regression: a haplotype-based algorithm for finding 532 
genetic associations applied to atopic dermatitis. BMC Medical Genetics 13, 8 (2012). 533 

37. Hwang, J.-S. & Hu, T.-H. A stepwise regression algorithm for high-dimensional variable 534 

selection. Journal of Statistical Computation and Simulation 85, 1793-1806 (2015). 535 
38. Cordell, H.J. & Clayton, D.G. A Unified Stepwise Regression Procedure for Evaluating the 536 

Relative Effects of Polymorphisms within a Gene Using Case/Control or Family Data: 537 
Application to HLA in Type 1 Diabetes. The American Journal of Human Genetics 70, 124-538 
141 (2002). 539 

39. Ayers, K.L. & Cordell, H.J. SNP Selection in genome-wide and candidate gene studies via 540 
penalized logistic regression. Genetic Epidemiology 34, 879-891 (2010). 541 

40. Hoffman, G.E., Logsdon, B.A. & Mezey, J.G. PUMA: A Unified Framework for Penalized 542 

Multiple Regression Analysis of GWAS Data. PLOS Computational Biology 9, e1003101 543 
(2013). 544 

41. Rakitsch, B., Lippert, C., Stegle, O. & Borgwardt, K. A Lasso multi-marker mixed model for 545 
association mapping with population structure correction. Bioinformatics 29, 206-214 546 
(2013). 547 

42. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic Modeling with Bayesian Sparse Linear 548 
Mixed Models. PLOS Genetics 9, e1003264 (2013). 549 

43. Wang, S.B. et al. Improving power and accuracy of genome-wide association studies via a 550 

multi-locus mixed linear model methodology. Sci Rep 6, 19444 (2016). 551 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.336180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.336180
http://creativecommons.org/licenses/by-nd/4.0/


 

 

44. Wen, Y.J. et al. Methodological implementation of mixed linear models in multi-locus 552 
genome-wide association studies. Brief Bioinform (2017). 553 

45. Klasen, J.R. et al. A multi-marker association method for genome-wide association studies 554 
without the need for population structure correction. 7, 13299 (2016). 555 

46. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. & Price, A.L. Advantages and pitfalls 556 
in the application of mixed-model association methods. Nat Genet 46, 100-106 (2014). 557 

47. Song, M., Hao, W. & Storey, J.D. Testing for genetic associations in arbitrarily structured 558 

populations. Nat Genet 47, 550-554 (2015). 559 
48. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association 560 

studies. Nat Genet 42(2010). 561 

49. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nature 562 
Methods 8, 833 (2011). 563 

50. Chang, C.C. et al. Second-generation PLINK: rising to the challenge of larger and richer 564 
datasets. GigaScience 4, 7 (2015). 565 

51. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. 566 

Nat Genet 42(2010). 567 
52. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana 568 

inbred lines. Nature 465(2010). 569 

53. Platt, A. et al. The Scale of Population Structure in Arabidopsis thaliana. PLOS Genetics 6, 570 
e1000843 (2010). 571 

54. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nat Genet 572 
37, 501-506 (2005). 573 

55. Wang, Y. et al. Transcriptome Analyses Show Changes in Gene Expression to Accompany 574 

Pollen Germination and Tube Growth in Arabidopsis. Plant Physiology 148, 1201 (2008). 575 
56. Baxter, I. et al. A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven 576 

by Natural Variation of the Sodium Transporter AtHKT1;1. PLOS Genetics 6, e1001193 577 

(2010). 578 
57. Meijon, M., Satbhai, S.B., Tsuchimatsu, T. & Busch, W. Genome-wide association study 579 

using cellular traits identifies a new regulator of root development in Arabidopsis. Nat 580 
Genet 46, 77-81 (2014). 581 

58. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide 582 

association studies in structured populations. Nat Genet 44(2012). 583 
59. Parker, C.C. et al. Genome-wide association study of behavioral, physiological and gene 584 

expression traits in outbred CFW mice. Nat Genet 48, 919-926 (2016). 585 
60. McCouch, S.R. et al. Open access resources for genome-wide association mapping in rice. 586 

Nature Communications 7, 10532 (2016). 587 

61. Kang, H.M. et al. Variance component model to account for sample structure in genome-588 
wide association studies. Nature Genetics 42, 348 (2010). 589 

62. Huang, M., Liu, X., Zhou, Y., Summers, R.M. & Zhang, Z. BLINK: A Package for Next Level 590 

of Genome Wide Association Studies with Both Individuals and Markers in Millions. 591 
bioRxiv (2017). 592 

63. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in 593 
large cohorts. Nature Genetics 47, 284 (2015). 594 

64. Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 6, 461-464 (1978). 595 

65. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in 596 
Selected Papers of Hirotugu Akaike (eds. Parzen, E., Tanabe, K. & Kitagawa, G.) 199-213 597 
(Springer New York, New York, NY, 1998). 598 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.336180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.336180
http://creativecommons.org/licenses/by-nd/4.0/


 

 

66. Horton, M.W. et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis 599 
thaliana accessions from the RegMap panel. Nat Genet 44, 212-216 (2012). 600 

67. Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based 601 
Linkage Analyses. The American Journal of Human Genetics 81, 559-575. 602 

68. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: A Tool for Genome-wide 603 
Complex Trait Analysis. The American Journal of Human Genetics 88, 76-82 (2011). 604 

69. Fawcett, T. An introduction to ROC analysis. Pattern Recognition Letters 27, 861-874 605 

(2006). 606 
70. Lipka, A.E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 607 

28, 2397-2399 (2012). 608 

71. Cumming, G., Fidler, F. & Vaux, D.L. Error bars in experimental biology. The Journal of Cell 609 

Biology 177, 7 (2007). 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.336180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.336180
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

Fig. 1 Schematic overview of model-based is repeatedly screening stepwise regression for GWAS. The first input dataset with markers (SNPs) matrix representing individual 648 

genotypes (rows) of a population with alleles (0, 2, and 1, missing genotypes will be replaced by the mean genotype or imputed by others complicate algorithm) per marker 649 

(columns). Secondly, we formulated a regression information criterion (RIC, objective function) as the screening criterion of  the regression model. Combined, the repeatedly 650 

proposed screen optimizes the procedure, which mainly included expansion screen and contraction select two -steps (Supplementary Note). The third, apply it to multiple 651 

regression analysis and genome-wide association study scan. 652 
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 653 

 654 

Fig. 2 Comparison of ISR with the single-locus and multi-locus approaches. (a) The detected power in a 655 

different proportion of phenotypic variation explained (PVE) by genotyped SNPs (10 casual loci) and without 656 

considered the window size (means, the 0kb window size) and 100 replicates. (b) Compared the number of 657 

detected, true positive and false positive, also the FDR in the different genetic models.  658 
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 662 

Fig.3 Performances of TPR (Power) versus FDR and FPR in Arabidopsis dataset. A receiver operating 663 

characteristic curve for seven methods were performed to test Power/FDR (a) and Power/FPR (b) in the 664 

second simulation additive genetic effects controlled by 100 causal loci with three phenotypic heritabilities 665 

0.25(left), 0.5(middle) and 0.75(right), including ISR, FarmCPU, GEMMA, MLMM, CMLM, 666 

FASTmrEMMA, and LM methods. The casual loci were randomly sampled from all the SNPs in each dataset. 667 

Power was examined under different levels of FDR and FPR. A causal SNP was considered to be detected if 668 

an SNP within 50 kb on either side was determined to have a significant association (results for other window 669 

sizes are given in Supplementary Figs.1-2), otherwise, is considered a false positive. The performance of 670 

detecting associations is measured by the area under the curve (AUC), where a higher value indicates better 671 

performance.   672 
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 678 

Fig.4 Performances of TPR (Power) versus FDR and FPR in full CFW mice genome dataset. The fourth 679 

simulation additive genetic effects are controlled by 100 causal loci with a phenotypic heritability 0.5. Here, 680 

a causal SNP was considered to be detected if an SNP within 50 kb on either side was determined to have a 681 

significant association, otherwise, is considered a false positive. The Area Under the Curves (AUC) is also 682 

displayed separately for TPR (power) versus FDR. The performance of detecting associations is measured 683 

by the area under the curve (AUC), where a higher value indicates better performance.   684 
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 704 

 705 

 706 

Fig.5 Statistical power and area under the curve to detect causal loci in the fifth simulation scenarios.  Statistical power was defined as the proportion of 707 

simulated markers detected at cost defined by either False Discovery Rate (FDR) or False Positive Rate (FPR, Type I error). ( a) The two types of Receiver Operating 708 

Characteristic (ROC) curves are displayed separately for TPR (true positive rate, power) versus FDR and FPR (the two simulations of Scenarios Ⅴ (1 -2)). (b) The 709 

Area Under the Curves (AUC) are also displayed separately for TPR (true positive rate, power) versus FDR and FPR for 100 simu lations. Four GWAS methods 710 

(ISR, FarmCPU, FaSTLMM, and PLINK-Fisher) were compared with phenotypes simulated from real genotypes in humans. The simulated phenotypes had a 711 

heritability of 50%, controlled by 100 SNPs. These markers were randomly sampled from the availab le 100000 (88025) Single Nucleotide Polymorphism (SNPs). 712 

(b) .To specify the multiple comparison procedures using Least Significant Difference (LSD) after ANOVA. Here, ‘*’ represents a significant level of 0.05; ‘**’ 713 

represents a significant level of 0.01; ‘***’ represents a significant level of 0.001. 714 
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 717 

Fig.6 Comparison of accuracy for estimated SNPs effect (and PVE) ISR with other six methods. To 718 

measure the bias of fixed ten casual SNPs effect estimate, where MSE (a) and MAD (b) were used to compare 719 

that in ten different PVE (%). A method with a small MSE (or MAD) is preferable to a method with a large 720 

MSE (or MAD)44. (c) as described71, which boxplot showed the small middle patch with a 95% confidence 721 

interval (a range of values you can be 95% confident contains the true mean) for the mean (solid middle line), 722 

and the large patch was the SD (standard deviation, where the average difference between the data points and 723 

their mean). The data points with 100 replicates. Performance of estimating PVE  is measured by the root of 724 

mean square error (RMSE), where a lower value indicates better performance. The true PVEs are shown as 725 

the horizontal dash lines.  726 
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 731 

Fig.7 Comparison of detected effect and PVE estimates from five methods in the second simulation scenarios.  The distribution of all 732 

simulated effects (all true effect) and the distribution of effects of loci identified (100 casual loci within 100 simulations, and only true positive) 733 

by six methods. The solid line shows the effect size by different methods. (a) The phenotype with 25%, 50%, and 75% of  PVE from left to right,  734 

respectively; (b)The bottom boxplot has explained the variance of the loci effect estimated by ISR, FASTmrEMMA, FarmCPU, GEMMA, and 735 

CMLM within the 100 simulations. Performance of estimating PVE is measured by the root of mean square error (RMSE), where a lower value 736 

indicates better performance. The true PVEs are shown as the horizontal dash lines. 737 
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Fig.8 Comparison of detected effect and PVE estimates from five methods in the fourth simulation 740 

scenarios. (a) The distribution of all simulated effects (all true effect) and the distribution of effects of loci 741 

identified (100 casual loci within 100 simulations, and only true positive) by six methods. (b) The solid line 742 

shows the effect size by different methods and the phenotype with 50% of PVE. The bottom boxplot has 743 

explained the variance of the loci effect estimated by ISR, FASTmrEMMA, FarmCPU, GEMMA, and 744 

CMLM within the 100 simulations. Performance of estimating PVE is measured by the root of mean square 745 

error (RMSE), where a lower value indicates better performance. The true PVEs are shown as the horizontal 746 

dash lines. 747 
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 750 

 751 

Fig.9 Analysis of the results of GWAS simulations using human dataset. a The explained variance of the casual loci effects estimated by ISR, FarmCPU, 752 

FaSTLMM, and PLINK-Fisher within the 100 simulations (The two simulations of Scenarios V (1-2)). b The distribution of all simulated effects (True Effect, 753 

black line) and the distribution of effects of loci identified (after 0.05 Bonferroni correction) by ISR (906 loci and 3461 loci), FarmCPU (760 loci and 3037 754 

loci), FaSTLMM (433 loci and 2297 loci) and PLINK-Fisher (446 loci and 4041), respectively (The two simulations of Scenarios V (1-2). 755 

 756 

ISR ISR 

ISR 

ISR

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.336180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.336180
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 757 

Table 1 Comparison of six different methods the associations close to known candidate genes in Arabidopsis 758 
thaliana data 759 

Phenotype ISR FarmCPU GEMMA CMLM MLMM(EBIC&mBonf) FASTmrEMMA 

LD 13/20 6/9 9/11 1/1 0/0 5/6 

LDV 9/18 5/5 3/5 0/1 0/0 6/10 

SDV 15/22 4/7 3/6 0/1 0/0 2/6 

SD 15/21 6/7 1/1 0/0 0/0 1/3 

FLC 16/23 0/2 1/3 0/0 0/0 3/5 

FRI 9/15 1/3 2/9 1/4 0/1 5/8 

FT10 15/21 4/9 4/5 0/0 0/2 1/4 

FT16 7/14 1/2 1/2 1/1 1/1 4/8 

FT22 13/22 6/8 3/3 0/0 0/0 2/6 

FTGH 12/21 2/6 13/17 0/0 0/0 2/3 

LN10 13/13 5/5 0/0 0/0 3/3 5/9 

LN16 14/22 5/7 2/2 0/0 2/2 6/10 

LN22 16/22 6/8 0/0 1/1 0/0 8/12 

8WGHLN 7/14 3/3 0/0 0/0 2/2 4/9 

At1CFU2 14/17 0/0 0/0 0/0 1/1 8/12 

RPGH 12/19 0/0 0/0 0/0 0/0 7/12 

The table lists the number of true positives/positives (TP/P) detected (passing the genome-wide significance 760 

threshold via Bonferroni correction) by six different methods for all phenotypes related to flowering time in 761 

Arabidopsis thaliana and others (Defense-related, Ionomics, and Developmental phenotypes). P are all causal 762 

SNPs, and TP is all causal SNPs that are known candidate genes. All reported candidate genes and the 763 

reference literature could be sought on the website (https://www.arabidopsis.org/index.jsp). For each trait, 764 

we colored the best method with red and the second-best method with blue. 765 
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