Supplementary Figures

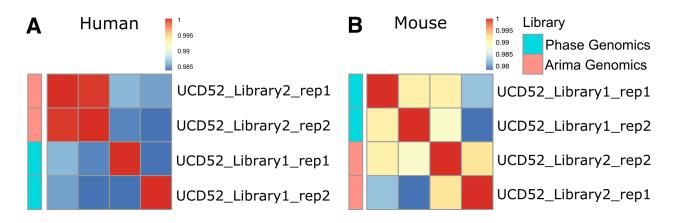


Figure 1: Supplementary Figure S1. Correlation between Hi-C matrices obtained from each replicate of experimental PDX samples. Experimental PDX Hi-C data were processed through Xenome to separate human and mouse reads. Human Hi-C matrices showed very high correlation, most pronounced for Library 2 preparation strategy (A). As expected, mouse Hi-C matrices were similar irrespectively of library preparation strategy. Pearson correlation coefficients were calculated for 1Mb matrices (non-zero elements only) and averaged across all chromosomes.

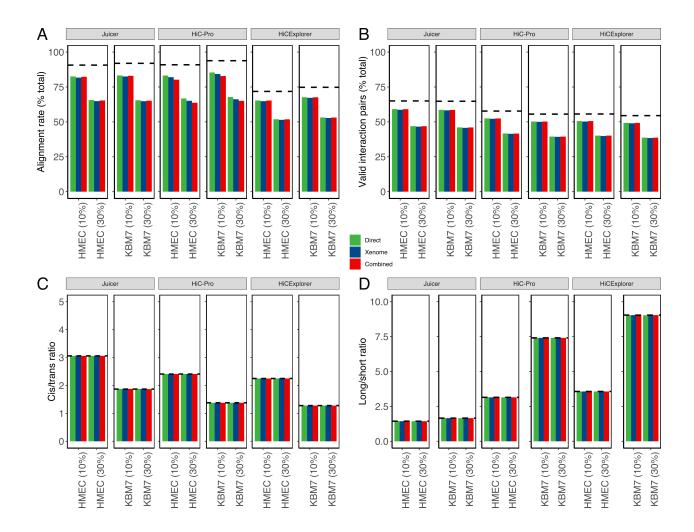


Figure 2: Supplementary Figure S2. Quality metrics assessed to select the optimal PDX Hi-C data processing pipeline strategy. Observations using HMEC and KBM7 cell lines confirm the results shown in Figure 3. All metrics are stratified by the processing pipeline (Juicer, HiC-Pro and HiCExplorer) and color coded by the alignment strategy (Green: Direct alignment. Blue: Xenome selected alignment of human reads. Red: Combined human-mouse genome alignment strategy). (A) Alignment rate representing the proportion of all aligned reads. (B) Proportion of valid interaction pairs as determined by each pipeline. (C) Ratio of Cis interacting pairs (i.e., occurring on the same chromosome) vs. trans interacting pairs (i.e., between chromosome interactions). (D) Ratio of long- vs. short-interacting Hi-C contacts. Dashed lines correspond to the baseline alignment quality metrics for Hi-C data without mouse reads.

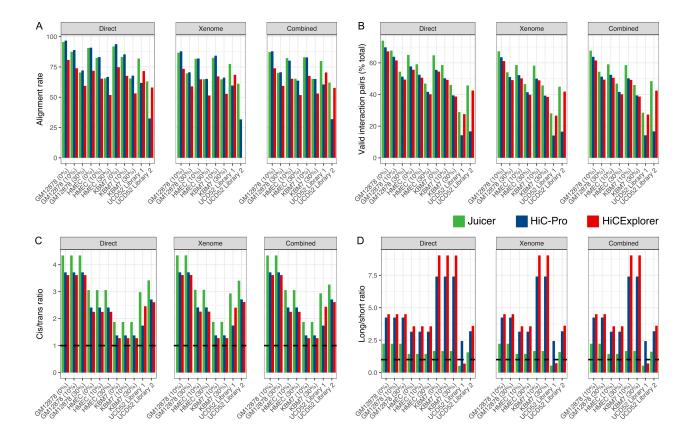


Figure 3: Supplementary Figure S3. Juicer pipeline extracts more useful information from in silico and experimental PDX Hi-C data, irrespectively of the alignment strategy. The same data as shown in Figure 3 and Supplementary Figure S2 grouped by the mouse read removal strategy emphasizes the better performance of the Juicer pipeline to extract high-quality Hi-C data irrespectively of mouse removal strategy. Green: Juicer. Blue: HiC-Pro. Red: HiCExplorer. Dashed line: threshold marking the ratios equal to one.

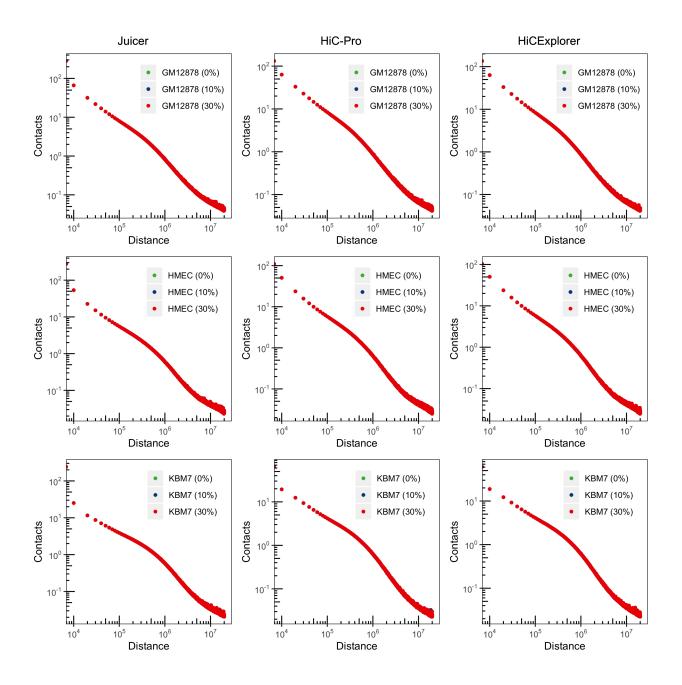


Figure 4: Supplementary Figure S4. The presence of mouse reads does not affect distancedependent decay of chromatin interaction frequencies in in silico PDX Hi-C data. The data for the three levels of mouse read contamination are shown on each panel. Due to the high similarity of the distance-dependent decay, plots show a high degree of overlap. Green: no mouse reads. Blue: 10% mouse reads. Red: 30% mouse reads.

Supplementary Tables

Table S1. Datasets used in the current study. Selected quality metrics were obtained using FastQC v.0.11.8.

Cell.type	Description	Replicate
GM12878	Human B-lymphoblastoids	
HMEC	Human Mammary Epithelial	
KBM7	Near Haploid Human Myelogenous Leukemia	Replicate 1
KBM7	Near Haploid Human Myelogenous Leukemia	Replicate 2
CH12-LX	Murine B-lymphoblasts	Replicate 1
CH12-LX	Murine B-lymphoblasts	Replicate 2
UCD52_Library_1_rep1	Basal-like BRCA cell line	Replicate 1
UCD52_Library_1_rep2	Basal-like BRCA cell line	Replicate 2
UCD52_Library_2_rep1	Basal-like BRCA cell line	Replicate 1
UCD52_Library_2_rep2	Basal-like BRCA cell line	Replicate 2

Table 1: Table continues below

Table 2: Table continues below

Raw.reads	Read.length	Percent.duplicates	Percent.GC	Enzyme
486,848,169	101 PE	15.39	43	MboI
$456,\!577,\!383$	96 PE	14.77	43	MboI
$136,\!881,\!938$	101 PE	15.51	43	MboI
$294,\!486,\!683$	96 PE	13.65	43	MboI
$45,\!594,\!869$	101 PE	14.85	45	MboI
$175,\!930,\!719$	101 PE	23.93	44	MboI
464,239,734	$150 \ \mathrm{PE}$	30.59	43	Sau3AI
$409,\!652,\!457$	$150 \ \mathrm{PE}$	37.38	42	Sau3AI
348,767,975	$150 \ \mathrm{PE}$	12.82	41	Arima cocktail
359,301,647	$150 \ \mathrm{PE}$	12.48	41	Arima cocktail

Restriction.site	Source		
GATC	GSE63525 (HIC003; SRR1658572)		
GATC	GSE63525 (HIC058; SRR1658680)		
GATC	GSE63525 (HIC075; SRR1658703)		
GATC	GSE63525 (HIC078; SRR1658707)		
GATC	GSE63525 (HIC090; SRR1658718)		
GATC	GSE63525 (HIC095; SRR1658723)		
GATC	SUB8309563		
GATC	SUB8309563		
^GATC, G^ANTC	SUB8309563		
^GATC, G^ANTC	SUB8309563		

SAMPLE	hg38	mm10	ambigous	both	neither
GM12878 (10%)	0.9056	0.0845	0.008618	0.0001393	0.00112
HMEC (10%)	0.8944	0.08991	0.00978	0.0005219	0.005423
KBM7 (10%)	0.895	0.09441	0.008472	0.0002753	0.001829
GM12878 (30%)	0.7274	0.2623	0.008657	0.0002975	0.001271
HMEC (30%)	0.71	0.2751	0.009581	0.0006089	0.004695
KBM7 (30%)	0.7028	0.2864	0.008546	0.0004189	0.001842
UCD52 Library 1	0.8296	0.1216	0.04661	0.0002319	0.001949
UCD52 Library 2	0.7179	0.2578	0.02357	0.00012	0.0006209

Table S2. Xenome alignment statistics.

Table S3. Summary statistics used to compare the efficacy of the three Hi-C pipelines. Toolspecific alignment statistics are shown in the corresponding worksheets. Statistics shown in Figure 3 are highlighted in red.

Table_S3_new.xlsx file

Table S4. Exponent of the distance-dependent power-law decay of chromatin interaction frequencies. Data from HiCExplorer's hicPlotDistVsCounts function was used to estimate the exponent using poweRlaw R package.

SAMPLE	Juicer	HiC.Pro	HiCExplorer
GM12878 (0%)	1.823	1.828	1.836
GM12878 (10%)	1.823	1.828	1.836
GM12878 (30%)	1.823	1.828	1.835
HMEC (0%)	1.775	1.791	1.783
HMEC (10%)	1.775	1.791	1.783
HMEC (30%)	1.775	1.791	1.783
KBM7 (0%)	2.291	2.435	2.438
KBM7 (10%)	2.291	2.435	2.438
KBM7 (30%)	2.291	2.435	2.438
UCD52 Library 1	1.858	2.243	1.862
UCD52 Library 2	1.826	1.839	1.831

Table S5. The number of TADs detected in each PDX Hi-C sample by each pipeline. Results for the Direct alignment strategy are shown.

SAMPLE	Juicer	HiCPro	HiCExplorer
GM12878 (0%)	7773	8165	8008
GM12878 (10%)	7761	8170	8009
GM12878 (30%)	7765	8165	8016
HMEC (0%)	10007	10527	10422
HMEC (10%)	10017	10528	10423
HMEC (30%)	10014	10528	10417
KBM7 (0%)	2127	3537	3556
KBM7 (10%)	2135	3530	3549
KBM7 (30%)	2138	3537	3569
UCD52 Library 1	3756	2317	4958
UCD52 Library 2	9970	9746	10546