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Abstract 

 

Genome-wide protein-protein interaction determination (or interactome) remains a 

significantly unsolved problem in structural biology. The difficulty is twofold since high-

throughput experiments (THEs) have often high false-positive rate in assigning PPIs and PPI 

quaternary structure is much more difficult to solve than tertiary structure using traditional 

structural biology techniques. We proposed a uniform pipeline to address both difficulties 

which recognizes PPIs by combining multi-chain threading with high-throughput experimental 

(HTE) data through naïve Bayesian classifiers, where quaternary structures are then 

constructed by mapping monomer models with the dimeric frameworks through interface-

specific structural alignments. The pipeline was applied to the Escherichia coli genome and 

created 35,125 confident PPIs that is 4.5-fold higher than HTE alone. Graphic analyses of the 

PPI networks reveal a scale-free cluster size distribution, which was found critical to the 

robustness of genome evolution and the centrality of functionally important proteins that are 

essential to E. coli survival. Finally, high-confidence complex structure models were 

constructed for all predicted PPIs built on quaternary threading templates, which show a close 

consistency with the experimental structures solved after the modeling. These results 

demonstrate the significant usefulness of threading-based homologous modeling in both 

genome-wide PPI network detection and complex structural construction. 

 

Keywords: Protein-protein interaction networks, multiple-chain threading, Escherichia coli 

genome, structural interactome, network centrality. 
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INTRODUCTION 

Most proteins conduct functions through interactions, either permanently or transiently, 

with other proteins. These interactions result in various protein-protein interaction (PPI) 

networks, or interactomes (Huttlin et al. 2015), that are essential to accommodate many 

important cellular processes, ranging from transcriptional regulation to signal transduction and 

metabolic pathways. Experimental methods to elucidate these networks are, however, limited 

and most of them (including yeast-two hybrid and tandem-affinity purification) have high error 

rates of up to 90% (von Mering et al. 2002). Furthermore, these high-throughput experimental 

(HTE) methods only address the issue of what proteins interact, but cannot provide information 

as to where and how the proteins interact, which are critical for understanding the biophysical 

mechanisms of the interaction networks and/or developing new therapies to regulate the 

networks (Archakov et al. 2003).  

While experimental structure biology through X-ray and NMR techniques could in principle 

provide the structural information of PPIs, these experiments are often too expensive and labor 

intensive to be applied on a genomic scale. There are also many complexes that are currently 

difficult to solve due to technical difficulties in protein expression and crystallization. In 

Escherichia coli, the most studied bacterial organism of our time, for example, there are only 

1,450 out of the 4,280 protein-coding genes (<34%) that have the structures experimentally 

solved (Xu and Zhang 2013). The number of protein complex structures is even less, with 693 

entries in the PDB which counts only for <7% of the ~10,000 putative PPIs in E. coli 

(Rajagopala et al. 2014). Homology modeling has been proved to be an effective approach to 

construct structure models by copying the frameworks from homologous PPI templates 

(Szilagyi and Zhang 2014). But until recently, the approach did not significantly contribute to 

the elucidation of PPI networks, due to the limited number of available homologous complex 

structures in the PDB (Aloy et al. 2004; Kundrotas et al. 2012; Szilagyi and Zhang 2014). 

Recent studies have shown that the structural library of protein-protein interfaces approaches 

to completion (Gao and Skolnick 2010), implicating that most of the complexes should have 

analogous interfaces in the PDB, which settles a promising base for the template-based 

structure modeling of a wide-range of interactions if advanced threading methods can be 

developed to recognize such analogies. There are also excellent efforts that tried to combine 

interaction data from different resources for large-scale interacting network identification 

(Jansen et al. 2003; von Mering et al. 2005; Zhang et al. 2012); many of the approaches 

however do not provide 3D structures of the complexes. 

In this work, we propose a new hybrid pipeline, Threpp, which extends the multiple-chain 

threading protocol (Guerler et al. 2013) to address two central problems of protein interactomes 

(Figure 1). First, we will develop a new Bayes classifier model to integrate high-throughput 

proteomic data with multimeric threading alignments to improve the accuracy and coverage of 

PPI recognitions. 3D structures of protein complexes are then constructed for all the predicted 

PPI pairs by threading the query sequences through a non-redundant complex structure library. 

Different from several existing homology-based methods that build complex structures by 

multiple-chain sequence comparison (Lu et al. 2002; Mukherjee and Zhang 2011), which 

requires separate complex library construction and often misses specific binding modes, 

Threpp deduces complex structure templates directly from monomer chain threading followed 

by oligomer-based mapping, which enables the multiple binding mode recognition through the 

entire PDB library. It is also different from the template-based docking (Kundrotas et al. 2012; 

Zhang et al. 2012; Szilagyi and Zhang 2014) which associates monomer and dimer structures 

by pure structural similarity, while Threpp detects PPI frameworks and the monomer-dimer 

associations using profile-based threading alignments which often have a higher accuracy than 

pure structure comparisons. 
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To examine the accuracy of Threpp, we carefully benchmarked the strength and weakness 

of the pipeline in PPI recognition on large-scale gold standard datasets. As a case study, the 

pipeline was applied to the E. coli genome to construct the structural networks of the species, 

with results revealing important functional implications of the modeled interactome. The 

Threpp algorithm, together with the structural models of all PPIs for the E. coli genome, are 

made freely downloadable at https://zhanglab.ccmb.med.umich.edu/Threpp/. 

 
Figure 1. Flowchart of Threpp which consists of three steps of threading-based framework 

identification, Bayesian classifier PPI recognition and complex structure construction by 

monomer/dimer template recombination. 
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RESULTS 

Benchmark test of Threpp on PPI assignments 

To train and test Threpp for PPI recognitions, we collected a ‘Gold Standard’ (GS) set of 

PPIs in the E. coli that have definite positive and negative references as assigned by Hu et al 

(Hu et al. 2009), where the positive samples contain 763 experimentally-established physical 

interactions obtained from DIP (Xenarios et al. 2000), BIND (Bader et al. 2003) and INTACT 

(Kerrien et al. 2012) databases, and the negative set consists of 134,632 putatively non-

interacting protein pairs compiled from the protein pairs belonging to different cellular 

compartments (see Table S1 in Supplementary Information, SI). Here, membrane proteins were 

excluded due to the close physical proximity (and potential physical interaction) with both 

cytoplasmic and periplasmic proteins. 

 

Table 1. Summary of PPI recognition by different methods. 

 

 MCC TPR FPR 

Individual datasets from high-throughput experiments and threading 

Tandem affinity purification (Butland set)  0.54 36.2% 0.05% 

MALDI-TOF (Arifuzzaman set)  0.41 32.4% 0.16% 

Tandem affinity purification (Hu set)  0.35 24.4% 0.13% 

Yeast-two hybrid (Rajagopala set)  0.27 9.6% 0.02% 

Threpp_threading 0.41 26.2% 0.08% 

Bayes combinations 

Classifier without Threpp_threading 0.58 42.4% 0.07% 

Threpp 0.64 59.1% 0.14% 

 

 
Figure 2. True positive (TPR) and false positive (FPR) rates of PPI recognition by 

Threpp_threading and four HTE methods. The predictions of Bayesian classifiers combining 

different sources of interaction evidences with and without Threpp_threading are shown in 

solid and dashed lines respectively. 
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PPI recognition by individual threading and HTE methods. Figure 2 presents the true 

positive rate (TPR) and false positive rate (FPR) of PPI assignments for the test proteins by 

Threpp based only on the Z-score of dimeric threading alignments, 𝑍𝑐𝑜𝑚  (named as 

‘Threpp_threading’, see Methods), where the detail of the data is listed in Table S2. Here, 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) and 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁), with the standard true positive (𝑇𝑃), true 

negative (𝑇𝑁), false positive (𝐹𝑃) and false negative (𝐹𝑁) calculated by comparing the PPI 

predictions with the GS assignments. As a comparison, we also list in Figure 2 the results from 

four sets of HTEs, including two tandem-affinity purification (TAP) sets (‘Butland set’ 

(Butland et al. 2005) and ‘Hu set’ (Hu et al. 2009)), the ‘Arifuzzaman set’ derived through 

matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry 

(Arifuzzaman et al. 2006), and the ‘Rajagopala set’ obtained by yeast two-hybrid (Y2H) 

screening (Rajagopala et al. 2014), where detailed assignments by the HTE data are listed in 

Table S3.  

 

Table 2. The ten proteins with the highest betweenness centrality (BC) values. 
 

ID BC Name of proteins 

DnaK 0.049 Chaperone protein DnaK 

TufA 0.037 Elongation factor Tu 1 

RpsB 0.029 30S ribosomal protein S2 

MetN 0.029 Methionine import ATP-binding protein MetN 

LpdA 0.027 Dihydrolipoyl dehydrogenase 

RplL 0.027 50S ribosomal protein L7/L12 

TufB 0.027 Elongation factor Tu 2 

RlmN 0.020 Dual-specificity RNA methyltransferase RlmN 

RplV 0.018 50S ribosomal protein L22 

RcsB 0.018 Transcriptional regulatory protein RcsB 

 

Table 1 (upper panel) summarizes the Matthew’s correlation coefficient (MCC) by the 

individual methods, where 𝑀𝐶𝐶 = (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)/

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃) represents a balanced metric of precision and 

recall of the PPI predictions. While the MCC of Threpp_threading (0.41) is lower than that of 

the ‘Butland set’ (0.54), it is comparable or slightly higher than other HTE results, including 

the ’Arifuzzaman set’ (0.41), the ’Hu set’ (0.35), and the ‘Rajagopala set’ (0.27). 

Bayesian classifier models increase PPI recognition accuracy of individual methods. In 

the lower panel of Table 1, we list the results of combined data from different methods by 

Threpp. First, we used the Bayesian classifier to combine the data from 4 HTE datasets, which 

results in a higher MCC (=0.58) than all individual datasets. As shown in Figure 2 (the dashed 

curve), both TPR and FPR increase with the decrease of the threshold, but the curve is above 

all individual experimental datasets, demonstrating the effectiveness of the Bayesian classifier 

model in selecting correct PPIs. Nevertheless, the MCC difference between the Bayesian model 

(0.58) and the best HTE data from the ‘Butland set’ (0.54) is modest.  

After combining the HTE with the Threpp_threading models, the MCC is increased to 0.64, 

which is 18.5% higher than the best individual dataset from the ‘Butland set’. This difference 

in MCC corresponds to a p-value = 1.1E-59 in the Student’s t-test, indicating that the difference 

is statistically significant. The result suggests that although the accuracy of the threading score 

is not high on its own, the modeling data is highly complementary to the HTE evidences, where 

a naïve Bayesian combination of the computer-based and experimental data can thus result in 

a highly significant improvement of both the recall and the precision of the PPI predictions. 
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Integrating threading model with HTE data for E. coli network detection 

The Escherichia coli genome contains in total 4,280 protein-coding genes (Benson et al. 

2018). As an application, we used Threpp to evaluate all the 9,157,060 putative pairs by the 

Bayesian combination of dimeric threading and HTE datasets (Butland et al. 2005; 

Arifuzzaman et al. 2006; Hu et al. 2009; Rajagopala et al. 2014). Despite the huge number of 

putative interactions, only 4,2802 monomer threading runs are needed with the interaction 

frameworks assigned by a pre-calculated homology look-up table for all templates, where the 

genome-scale network calculation is fast with ~2 hours on a 2000-HPDL1000h core cluster. 

The experiment yielded 35,125 confident PPIs (Table S4), which has a likelihood rate score 

above 1.87 by Threpp (see Eq. 3 in Methods). In case where the HTE data are not available, 

only Threpp threading scores are employed for the targets with a stringent complex framework 

Z-score cutoff of 𝑍𝑐𝑜𝑚 ≥ 25. Our benchmark results on the GS datasets show that the PPI 

assignments with such likelihood score and 𝑍𝑐𝑜𝑚 cutoffs have an average accuracy of 0.996. 

Overall, these interactions are combined from 28,263 PPIs by Threpp_threading and 21,932 by 

the four HTE datasets, where there are only 1,153 PPIs in the intersection set of the two and 

13,917 were dropped off by Threpp due to insufficient likelihood rate score. These predicted 

interactions contain 451 out of the 763 PPIs in the GS dataset, which is significantly higher 

than the number of GS PPIs predicted by either Threpp_threading (200) or the four HTE 

approaches (346). 

Here, if we ignore the threading alignments and only combine the HTE data, the number of 

PPIs detected by Threpp will be reduced to 7,872 that have the similar level of likelihood score, 

which corresponds to only 22% of all PPIs identifiable by the full Threpp pipeline. These data 

demonstrate again a high complementarity of the threading alignments to the HTE data, and in 

particular the impact of consideration of threading-based approach on the hybrid PPI 

recognitions. 

 

PPI networks reveal dominant roles of essential proteins in E. coli 

The 35,125 high-confidence PPI assignments detected by Threpp involve 3,273 proteins. 

Based on these PPIs, we constructed a comprehensive E coli protein interaction network 

(Figure 3a). In the plot, nodes represent individual proteins with edges being the interactions 

between proteins, where self-loops (corresponding to orphan proteins) and multiple edges 

(repeated PPI predictions) have been excluded. 

Node degree distribution is scale free. Figure 3b shows the degree distribution of the PPI 

networks for all 3,273 involved proteins, which follows a power-law of 𝑃(𝑘) ∝ 𝑘−1.33, where 

the degree (𝑘) of a protein node equals to the number of edges that have this node as one of its 

endpoints. This network possesses two outstanding characteristics which are important to 

facilitate the biological functionality and evolution of the E coli genome. First, there are 

dominantly more proteins in the genome with few interaction partners; this property of PPI 

networks helps enhance the robustness of the network against random mutations in the 

evolution, as the overall network is not influenced by the deletion and insert of individual 

proteins. On the other hand, the scale-free nature of the degree distribution indicates that a non-

trivial number of proteins, which is significantly higher than what is expected from a normal 

distribution, have many interaction partners; this feature allows a substantial amount of 

important proteins to serve as hub of interactions and dominate the functional interaction 

networks. 

Essential proteins interact with more partners than non-essential ones. In Figure 3c, we 

present the degree distributions of PPI networks for two sets of essential and non-essential 

proteins separately, where the 303 essential proteins are taken from Baba et al. that were found 

unable to be deleted from the chromosome for the survival of E. coli through the large-scale 

gene-deletion assay, and the rest are considered as ‘non-essential’ (Baba et al. 2006). While 
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both protein sets follow a stringent power-law distribution (i.e., 𝑃(𝑘) ∝ 𝑘−0.60 for essential 

and 𝑃(𝑘) ∝ 𝑘−1.34 for non-essential proteins), the average connectivity (or degree 𝑘) per node 

is significantly higher for essential proteins (33.5) than for non-essential genes (18.5). In 

particular, the percentage of proteins with more than 34 interaction partners in the essential 

proteins (30%) is much larger than that in the non-essential proteins (15%), indicating that the 

essential proteins tend to serve as the interaction hub which has resulted in their significant 

functional importance for E. coli to survive. 

 

 
 

Figure 3. PPI networks and the degree distributions of the E coli genome. (a) PPI networks 

constructed from 35,125 high-confidence PPIs by Threpp involving 3,273 proteins. (b) 

Distribution of PPI node degree (𝑘) that equals to the number of edges cross each node. (c) PPI 

cluster distribution for essential (circles) and non-essential (triangles) proteins. Lines in (b) and 

(c) are power law fit to 𝑃(𝑘) ∝ 𝑘−𝛾. 

 

Betweenness centrality. To examine the centrality of proteins in the PPI network, we 

define the betweenness centrality (BC) of a protein node 𝜈 by (Freeman 1977): 
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𝐵(𝜈) = ∑
𝜎(𝑠, 𝑡|𝜈)

𝜎(𝑠, 𝑡)
𝑠≠𝑡≠𝜈

                                                     (1) 

where 𝜎(𝑠, 𝑡) denotes the number of shortest paths from nodes 𝑠 to 𝑡, and 𝜎(𝑠, 𝑡|𝑣) is the 

number of the shortest paths from 𝑠 to 𝑡 that cross through 𝑣. The sum in Eq. (1) runs through 

all node pairs in the network excluding the target node 𝜈. Here, although both BC and degree 

(𝑘) defined above are related to the number of interaction partners for a given protein node, BC 

measures the number of the shortest paths passing through one node and reflects the 

information flow through the protein, i.e., a protein with a higher BC tends to control more 

functional flow of the PPI networks. 

In Table S5, we list the BC values for all protein nodes in E coli that have at least one 

interaction partner in the Threpp predicted PPI networks. The top ten nodes with the highest 

BCs are presented in Table 2, which all correspond to the functionally important proteins 

involving complex cellular processes, including chaperone, elongation factor, transcriptional 

regulatory and ribosomal proteins. 

As an illustration, we present in Figure 4 a local PPI network involving the DnaK protein, 

which has the highest BC score (=0.049). DnaK is known to serve as a chaperone to promote 

protein folding, interaction and translocation, both constitutively and in response to stress, by 

binding to unfolded polypeptide segments (Zhu et al. 1996). Here, RcsA, RcsB (with the 10th 

largest BC value) and RcsD are all involved in the Rcs phosphorelay pathway, a complex signal 

transduction system. Through this pathway, phosphate travels from the phosphotransfer protein 

RcsD to RcsB, which is essential to the regulation of a variety of cellular processes in the 

bacteria. In this example, the BC-based analysis helps to reveal the key role that the DnaK 

protein exerts in connecting the metabolic pathway (Rcs phosphorelay pathway) and cell 

process (cell division regulated by gene ftsA) (Carballes et al. 1999). With the PPI network 

data provided by the Threpp modeling, the BC analysis can be extended to other systems for 

key protein and pathway identifications to facilitate various medical and pharmaceutical studies. 

 

 
Figure 4. A local PPI network involving the chaperone protein DnaK (red) that mediates the 

Rcs phosphorelay signaling pathway. The RcsA, RcsB and RcsD proteins (in green) positively 

regulate the expression of the cell division gene ftsA (yellow) through the interactions with the 

DnaK protein. 
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Structural modeling of protein interactome in E. coli 

For structural interactome, Threpp was used to create 3D structure models for all the 

predicted 35,125 PPIs (see http://zhanglab.ccmb.med.umich.edu/Threpp/Ecoli3D.zip), where 

6,771 are found to have a Threpp S-score >13 (see https://zhanglab.ccmb.med.umich.edu/ 

Threpp/download/Ecoli3D.txt for S-score values of all the PPI complexes). Here, S-score is 

defined in Eq. (4) in Methods for estimating model quality of Threpp predictions. In a previous 

benchmark study (Guerler et al. 2013), it was shown that 78% of the dimer-threading models 

with a S-score >13 can have a TM-score >0.5 to their co-crystallized reference structures, 

indicating correct quaternary structure fold (Xu and Zhang 2010). Below, we selected two 

complexes from a DMSO reductase (DmsAB) and a hetero-trimeric xanthine dehydrogenase 

(YagRST), as illustrative examples (S-score >13) to analyze in detail the Threpp models. 

Although these PPIs have been shown critical to the function of E. coli, the interactions were 

not reported by any of the four high-throughput experimental datasets. 

Dimethyl sulfoxide reductase complex (DmsAB). E. coli is well known to withstand 

anaerobic conditions through the utilization of correlated reductases in anaerobic media, while 

DmsAB is a critical dimethyl-sufoxide reductase complex that supports the bacterial growth in 

anaerobic media via electron transport. Although no structure has been solved for any of the 

protein components, there are several experimental evidences that can be used as indirect 

validations of the Threpp structure modeling. For example, DmsA and DmsB are known to 

contain one (FS0) and four [4Fe-4S] clusters (FS1 to FS4) respectively for electron shuttling 

(Rothery et al. 2008), and DmsB is anchored on the membrane via residues Pro80, Ser81, 

Cys102 and Tyr104, where these resides are also used for mediating the downstream electron 

transferals (Cheng et al. 2005). 

 
Figure 5. Illustrative examples of quaternary structure modeling by Threpp. (a) DmsA (cyan) 

and DmsB (yellow) complex, where the predicted [4Fe-4S] clusters (FS0 to FS4) are 

highlighted as spheres with arrows indicating the direction of electron transportation. The 

binding sites of [4Fe-4S] clusters determined by biochemistry experiments (Rothery et al. 2008) 

are shown as red sticks, where the membrane anchor residues Pro80, Ser81, Cys102 and 

Tyr104 in DmsB are as blue sticks. (b) Trimeric iron-sulfur complex YagRST, where the 

Threpp model (red lines) is superposed on the X-ray structure (cartoon) that was solved after 

the modeling was completed. The monomer chains of YagR, YagS and YagT are shown in 

blue, green and yellow respectively.  

 

Figure 5a shows a cartoon representation of the Threpp model for the DmsAB complex, 

which has a high-confidence S-score of 52.3. The monomeric structure models for DmsA and 

DmsB were derived from the templates of PDB ID 1EU1 (chain A) and 2VPZ (chain B), while 
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the orientation of the monomers was modeled using 2IVF (chains A and B) that was recognized 

by Threpp_threading as dimeric framework (see Table S6). Although the monomer and 

complex templates have been identified separately, the TM-score and RMSD of the predicted 

model from the dimer framework are 0.89 and 3.54 Å, respectively, showing a high consistency 

of the monomer threading and dimeric framework. The framework protein, 2IVF, is a member 

of the DMSO reductase family and serve as an Ethylbenzene Dehydrogenaes from 

Aromatoleum aromaticum. As highlighted in Figure 5a, the complex model for DmsAB also 

contains well-shaped five [4Fe-4S] clusters, demonstrating the close consistency with the 

insights from the biochemical experiments (Cheng et al. 2005; Rothery et al. 2008). 

Trimeric iron-sulfur complex (YagRST). YagRST is a molybdenum-containing iron-sulfur 

enzyme located in the periplasm of E. coli, which functions in cell maintenance by detoxifying 

aromatic aldehydes to avoid cell damage (Neumann et al. 2009). Structurally, YagRST is a 

heterotrimer complex consisting of a large 78.1 kDa molybdenum-containing subunit (YagR), 

a medium 33.9 kDa FAD-containing subunit (YagS), and a small 21.0 kDa 2Fe2S-containing 

subunit (YagT). Built on the threading alignments, Threpp first created monomeric structure 

models for YagR, YagS and YagT using templates with PDB ID 1RM6 (chain A), 1RM6 (chain 

B) and 3SR6 (chain A), respectively. Accordingly, three framework templates were collected 

for constructing the quaternary structural models, including PDB ID 1FIQ (chains C and A, 

with a high S-score of 142.8), 3HRD (chains C and D, S-score=98.0), and 1RM6 (chains A and 

B, S-score=110.9) (Table S6). Functionally, all the three framework templates are related to 

molybdenum activities, where the 1FIQ is a mammalian xanthine oxidoreductase which 

parallels yagTSR in its capabilities as an aldehyde oxidoreductase; the 3HRD is characterized 

as nicotinate dehydrogenase and consists of similar subunits to YagRST, i.e., two larger 

molybdopterin subunits, one medium FAD-subunit, and a small FeS subunit (34); finally, the 

1RM6 is another member of the xanthine oxidase family from Thaura aromatica. This enzyme 

differs however in its enzymatic role, demonstrating affinities towards phenolic compounds 

rather than aldehydes (28). 

The complex structure of YagRST was solved by Correia, et al. (Correia et al. 2016) with 

a PDB ID: 5G5G, after the structural modeling was performed; this experimental structure can 

therefore be used as a blind test of the Threpp models. In Figure 5b, we present a 

superimposition of Threpp-predicted model (in C𝛼-trace) and the X-ray structure (cartoon) of 

the YagRST complex, which has a TM-score=0.90 and interface RMSD=2.01 Å. Here, an 

interface RMSD was calculated on the C𝛼 pairs with an inter-chain distance <5 Å, where the 

Threpp model covers 96.7% of interface residues. This result shows that a close similarity can 

be achieved between the Threpp model and the native in both global and interface structures. 

Comparison of Threpp models on 39 solved PPI complexes. In fact, there are in total 39 

out of the 35,125 protein-protein complexes whose structures have been experimentally solved 

in PDB since 2016, which is the time when our PPI structure library was constructed, on which 

the Threpp structural modeling was based. Compared to these experimental structures, the 

average TM-score of the Threpp models is 0.73, where the average sequence identity between 

the target and complex template in our modeling is 48% (see Table S7 for detailed list of the 

39 proteins and https://zhanglab.ccmb.med.umich.edu/Threpp/download/solved_structures.zip 

for PDB format of the structural models). These results further demonstrate the effectiveness 

of Threpp to the quaternary structure prediction. 

 

CONCLUSION AND DISCUSSION 

We developed a new pipeline, Threpp, for recognizing and structure modeling of protein-

protein interactions in organisms. Starting from a pair of monomer sequences, dimeric 

threading was extended to scan both sequences against a complex structural library collected 

from the PDB. The alignment score of the dimeric threading was then combined with the high-
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throughput experimental data through a naïve Bayesian classifier model to predict the 

likelihood of the target sequences to interact with each other, where the quaternary structure 

models of the identified PPIs were built by reassembling the monomeric alignments with the 

quaternary template structural frameworks. 

The pipeline was tested on a large set of protein pairs containing 763 experimentally 

established PPIs and 134,632 non-interacting protein pairs compiled from different cellular 

compartments. It was shown that although the threading-based assignment does not create a 

higher accuracy of PPI recognitions compared to the best high-throughput experiments, the 

combination of them can result in a significantly higher PPI recognition rate with the Matthews 

correlation coefficient 18.5% higher than the best dataset from the HTE; this increase is mainly 

attributed to the complementarity of the threading-based approach to the HTE results. 

As an application, Threpp was extended to scan all sequences in the E. coli genome and 

created 35,125 high-confidence PPI predictions which is 4.5 times higher than that without 

using the threading-based component scores (7,872). This significant data boost demonstrates 

the usefulness of complimentary computer-based PPI predictions in the interactome 

constructions against the high-throughput experiments. A detailed network analysis was 

performed on the Threpp PPI predictions, which revealed that the degree of the PPI network 

follows strictly a power-law distribution. This scale free feature is essential to the robustness 

of the PPI networks against evolution as the majority of proteins interact only with few partners, 

which makes the networks less sensitive to the deletion and insertion of local protein nodes. 

On the other hand, a substantial amount of functionally important proteins, which is 

significantly higher than that expected from a normal degree distribution, are found in direct 

interactions with nearly twice more proteins than the non-essential proteins. These proteins 

serve as the hub of the PPI networks and play an essential role for E. coli survival. 

To create structure models of the protein-protein interactions, Threpp reassembles the 

monomer models of each component obtained by single-chain threading approaches on the 

dimeric framework of the complex from the dimeric threading alignments. 6,771 out of the 

putative 35,125 PPIs are found to have a high confidence score that corresponds to the correct 

fold of the complexes with a TM-score >0.5. As case studies, two examples from dimethyl 

sulfoxide reductase (DmsAB) and trimeric iron-sulfur (YagRST) complexes are examined in 

detail, where the predicted models are found highly consistent with the experimental data from 

previous functional studies. Overall, 39 complex structures were solved after the structure 

library was created in 2016, where 72% of them have a TM-score >0.5, resulting in an average 

TM-score 0.73 compared to the native (Table S7). 

Historically, as a major technique of PPI assignments, the HTE has been suffering from high 

false positive rate from the beginning of its emergency. Meanwhile, traditional structural 

biology techniques (X-ray and NMR) have more difficulties in determining the PPI complex 

structures than that encountered for monomer proteins. These difficulties have significantly 

frustrated the progress of the interactome studies compared to the success of structural 

genomics that focuses on the structure and function of monomer proteins. The results presented 

in this study demonstrates promising improvement on both aspects of interactome through a 

hybrid pipeline that combines computational threading and traditional HTE datasets and 

analogy-based structure modeling. Although the pipeline has been applied only to E. coli in 

this study, it can be readily extended to the study of other organisms. With continuous 

improvements of the threading techniques and the enlargement of PPI structure datasets 

through new techniques such as cryo-EM (Cheng 2015), the Threpp pipeline, which has been 

made freely downloadable to the community, should find increasing usefulness and impact on 

the studies of other interactome systems. 
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METHODS 

Threpp consists of three consecutive steps of multiple-chain threading, Bayesian classifier-

based interaction prediction, and complex structure construction, with the flowchart depicted 

in Figure 1.  

 

Dimer-threading based PPI recognitions 

The multi-chain threading procedure in Threpp is extended from a former version of 

SPRING that was designed to detect complex structure templates for protein pairs of known 

interactions (Guerler et al. 2013). Initially, one of the target sequences (e.g. Chain A) is 

threaded by HHsearch, a profile-profile sequence aligner assisted with secondary structure (Wu 

and Zhang 2008), against the monomeric template library from the PDB, to create a set of 

putative templates (𝑇𝐴𝑖, i=1,2,…) each associated with a Z-score (𝑍𝐴𝑖). Here, the Z-score is 

defined as the difference between the raw alignment score and the mean in the unit of standard 

deviation, where a higher Z-score indicates a higher significance and usually corresponds to a 

better quality of the alignment. In parallel, the opposite chain (e.g. Chain B) is threaded 

separately by HHsearch through the PDB, yielding a set of templates (𝑇𝐵𝑖) with Z-score (𝑍𝐵𝑖). 

Then, all binding partners of the 𝑇𝐴𝑖 are gathered from the oligomer entry that is associated 

with 𝑇𝐴𝑖 in the PDB. If any of the binding partners of 𝑇𝐴𝑖 is homologous to any of the high-

ranking templates of Chain B (𝑇𝐵𝑖 ), an interaction framework is established for the target 

complex from the oligomer associated with 𝑇𝐴𝑖 (middle column in Figure 1). 

The homology comparisons between the PDB templates are pre-calculated by an all-to-all 

PSI-BLAST scan where a homology is defined between two templates if the E-value <0.01. 

The Z-score of the framework is defined as the smaller of the two monomeric Z-scores. For 

heterodimer proteins, this threading process is repeated using Chain B as the starting probe to 

identify binding partners and the frameworks. The confidence of the target chain interactions 

by the threading alignments is evaluated by the highest Z-score of the complex, named 𝑍𝑐𝑜𝑚, 

among all the templates identified by the procedure. 

 

Bayes classifier for multiple evidence combination 

To evaluate if the putative chains (A and B) interact, we combined the 𝑍𝑐𝑜𝑚 score with the 

interaction evidence from HTEs through a model of the naïve Bayes classifiers (Domingos and 

Pazzani 1997). With the classifier, Threpp_threading is encoded by a single binary feature 

which equals ‘1’ if 𝑍𝑐𝑜𝑚 ≥ 25 and otherwise ‘0’. The threshold of 25 was derived from a 

separate set of 200 training proteins taken from the PDB, which are non-homologous to the test 

proteins of this study, by maximizing the Matthew’s correlation coefficient (MCC) of the PPI 

recognitions. Data from each of the experimental datasets is also represented by a binary feature 

which equals ‘1’ if the corresponding experiment indicates that the pair of proteins interacts 

and otherwise ‘0’. In the present study, we identified four experimentally derived PPI networks 

for E. coli from the literature (Butland et al. 2005; Arifuzzaman et al. 2006; Hu et al. 2009; 

Rajagopala et al. 2014), although more HTE features can be combined similarly when 

available. 

The classifier is parameterized using the positive and negative gold standard sets, which are 

randomly split into five subsets with equal size, where four of the five subsets are used to 

estimate the conditional probabilities for the positive (P) and negative (N) samples by 

{
𝑝𝑃(𝑓𝑖) = 𝑛𝑃(𝑓𝑖)/𝑛𝑃

𝑝𝑁(𝑓𝑖) = 𝑛𝑁(𝑓𝑖)/𝑛𝑁
                                                                       (2) 

where 𝑛𝑃(𝑁)(𝑓𝑖) is the number of positive (negative) interacting cases for a given score of 𝑓𝑖 of 

the ith feature ( 𝑖 = 1, ⋯ ,5  represents the five features from Threpp_threading and HTE 
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datasets), and 𝑛𝑃 and 𝑛𝑁 are the total numbers of positive and negative interacting cases in the 

training sample, respectively. The remaining subset of protein pairs are used for testing in 

Results, where the likelihood of interaction is evaluated by 

𝐿(𝑓1, ⋯ , 𝑓5) = Π𝑖
5[𝑝𝑃(𝑓𝑖)/𝑝𝑁(𝑓𝑖)].                                                         (3) 

We note that the likelihood ratio is derived solely from features that are available, indicating 

that the sample protein pairs are interacting. The remaining features are excluded (i.e. treated 

as missing evidence) since the unavailability of an experimental confirmation or threading 

alignments does not indicate whether a pair of proteins interacts or not. 

 

Structure assembly of protein complexes 

If the proteins are deemed to interact, the complex structures are constructed by structurally 

aligning the top-ranked monomer templates of Chain A and B to all putative interacting 

frameworks using TM-align (Zhang and Skolnick 2005). The structural alignment is built on 

the subset of interface residues. The resulting models are evaluated by the Threpp score of 

S-score = min(𝑍𝐴, 𝑍𝐵) + 𝑤1𝑇𝑀𝑚𝑖𝑛 + 𝑤2𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡                              (4) 

where 𝑍𝐴(𝐵) is the Z-score of the monomer threading alignment by HHsearch for Chain A(B); 

𝑇𝑀𝑚𝑖𝑛 is the smaller TM-score returned by TM-align when aligning the top-ranked monomer 

models of A and B to the interaction framework; 𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is a residue-specific, atomic contact 

potential derived from 3,897 non-redundant structure interfaces from the PDB using the 

formula of RW (Zhang and Zhang 2010). The weight parameters w1 and w2 are set to 12.0 and 

1.4 through a training set of protein complexes to maximize the modeling accuracy of the 

interface structures. 
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