1 Identification of novel avian and mammalian deltaviruses provides new insights

2 into deltavirus evolution

- 3
- 4 Masashi Iwamoto^{1,2}, Yukino Shibata³, Junna Kawasaki^{4,5}, Shohei Kojima^{4,6}, Yung-Tsung
- 5 Li⁷, Shingo Iwami², Masamichi Muramatsu¹, Hui-Lin Wu^{7,8}, Kazuhiro Wada³, Keizo
- 6 Tomonaga^{4,5,9}, Koichi Watashi^{1,10}, Masayuki Horie^{4,11,*}
- 7
- 8 ¹Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- 9 ²Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University,
- 10 Fukuoka, Japan
- ³Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- ⁴Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
- ¹³ ⁵Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University,
- 14 Kyoto, Japan
- ⁶Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research
- ⁷Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- 17 ⁸Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine
- 18 ⁹Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- 19 ¹⁰Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
- 20 ¹¹Hakubi Center for Advanced Research, Kyoto University
- 21
- 22 *Corresponding author
- 23 Masayuki Horie, DVM, PhD
- 24 Hakubi Center for Advanced Research, Kyoto University
- 25 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan

26 Email: horie.masayuki.3m@kyoto-u.ac.jp

28 Abstract

29	Hepatitis delta virus (HDV) is a satellite virus that requires hepadnavirus envelope
30	proteins for its transmission. Although recent studies identified HDV-related deltaviruses
31	in certain animals, the evolution of deltaviruses, such as the origin of HDV and the
32	mechanism of its coevolution with its helper viruses, is unknown, mainly because of the
33	phylogenetic gaps among deltaviruses. Here we identified novel deltaviruses of passerine
34	birds, woodchucks, and white-tailed deer by extensive database searches and molecular
35	surveillance. Phylogenetic and molecular epidemiological analyses suggest that HDV
36	originated from mammalian deltaviruses and the past interspecies transmission of
37	mammalian and passerine deltaviruses. Further, metaviromic and experimental analyses
38	suggest that the satellite-helper relationship between HDV and hepadnavirus was
39	established after the divergence of the HDV lineage from non-HDV mammalian
40	deltaviruses. Our findings enhance our understanding of deltavirus evolution, diversity,
41	and transmission, indicating the importance of further surveillance for deltaviruses.

42 Introduction

43	Hepatitis delta virus (HDV) is the only member of the genus Deltavirus which is not
44	assigned to a family (1). The HDV genome is an approximately 1.7-kb circular, negative
45	single-stranded RNA, harboring a single open reading frame (ORF) encoding the small
46	and large hepatitis delta antigens (S-HDAg, 24 kDa and L-HDAg, 27 kDa) that are
47	translated from the same transcriptional unit via RNA-editing of the stop codon, which is
48	catalyzed by the host protein ADAR1 (2-5). The 19 amino acid residue extension of the
49	C-terminal region of L-HDAg contains a farnesylation site required to interact with
50	helper virus envelope proteins (6). The genome structure of HDV is unique in that it has
51	genomic and antigenomic ribozymes, which are essential for its replication (7, 8), and is
52	highly self-complementarity, generating a rod-like structure (9-11). Although HDV can
53	autonomously replicate, it requires an envelope protein of other "helper" viruses to
54	produce infectious virions. Hepatitis B virus (HBV) (family Hepadnaviridae) provides
55	the envelope proteins required for HDV transmission between humans (12).
56	Approximately 15–20 million people worldwide are estimated to be infected with HDV
57	among 350 million HBV carriers (13). Compared with mono-infection with HBV,
58	coinfection of HDV and HBV accelerates the pathogenic effects of HBV, such as severe
59	or fulminant hepatitis and progression to hepatocellular carcinoma, through unknown
60	mechanisms (14).
61	The evolutionary origin of HDV presents an enigma. However, recent discoveries of
62	deltaviruses of vertebrate and invertebrate species (15-18), significantly changed our
63	understanding of deltavirus evolution. These non-HDV deltaviruses are distantly related
64	to HDV but may share the same origin because of their similarly structured circular RNA
65	genomes (approximately 1.7 kb), which encode DAg-like proteins, possess ribozymes

sequences, and are highly self-complementary (15-18). These findings provide clues to
the mechanism of deltavirus evolution. For example, a recent study hypothesizes that
mammalian deltaviruses codiverged with their host mammalian species (18). However,
the few known deltaviruses are highly divergent (15-18). Therefore, the phylogenetic
gaps between the deltaviruses must be filled through the identification of putative novel
deltaviruses.

72 The discoveries of non-HDV deltaviruses provides insights into the relationships 73 between deltaviruses and their helper viruses. Recently identified non-HDV deltaviruses 74 likely do not coinfect with hepadnaviruses, suggesting the presence of other helper 75 viruses (15-18). This hypothesis is supported by absence of a large isoform of DAg, 76 which is required for the interaction of HDV with the HBV envelope proteins, in rodent 77 deltavirus (18). Further, viral envelope proteins of reptarenavirus and hartmanivirus, but 78 not HBV, confer infectivity upon the snake deltavirus (19). These findings suggest that 79 hepadnaviruses do not serve as helper viruses for non-HDV deltaviruses and that the 80 deltavirus-hepadnavirus relationship is specific to the HDV lineage. However, the large 81 phylogenetic gap between HDV and the few other deltaviruses makes it difficult to assess 82 the hypothesis, raising the importance of further research. 83 In this study, to understand the evolution of deltaviruses, we analyzed publicly

available transcriptome data and found novel mammalian and avian deltaviruses. Our phylogenetic analysis suggests that HDVs originated from non-HDV mammalian deltaviruses and does not support the codiversification hypothesis of deltavirus and mammalian evolution. Moreover, *in silico* and experimental analyses, together with previous findings, suggest that the satellite-helper relationship between HDV and hepadnavirus was established after the divergence of the novel non-HDV mammalian

- 90 deltaviruses and the HDV lineage. Further, we present evidence for recent interfamily
- 91 transmission of deltaviruses among passerine birds. Our findings therefore provide novel
- 92 insights into the evolution of deltaviruses.
- 93

94 **Results**

95	Identification of deltavirus-related sequences in avian and mammalian transcriptomes
96	We first assembled 46,359 RNA-seq data of birds and mammals. Using the resultant
97	contigs as queries, we identified five deltavirus-related contigs in the SRA data of birds
98	and mammals, including the zebra finch (Taeniopygia guttata), common canary (Serinus
99	canaria), Gouldian finch (Erythrura gouldiae), Eastern woodchuck (Marmota monax),
100	and white-tailed deer (Odocoileus virginianus). We named the deltavirus-like sequences
101	Taeniopygia guttata deltavirus (tgDeV), Serinus canaria-associated deltavirus (scDeV),
102	Erythrura gouldiae deltavirus (egDeV), Marmota monax deltavirus (mmDeV), and
103	Odocoileus virginianus (ovDeV), respectively (Table 1).
104	The amino acid sequences tlanslated from the contigs are 36.0%–66.7% identical to
105	those of the DAg proteins of known deltaviruses (Table 1, Supp Tables 1 and 2). The
106	tgDeV, mmDeV, and ovDeV contigs, which comprise approximately 1,700 nucleotides,
107	encode one ORF with a sequence similar to those of DAg genes of known deltaviruses
108	(Fig 1a, Table 1, Supp Tables 1 and 2). In contrast, the contigs scDeV and egDeV are 761
109	and 596 nucleotides in length, respectively (Fig. 1b, Supp Tables 1 and 2). Note that the
110	nucleotide sequences of tgDeV and egDeV are 97.7% identical, and we therefore
111	analyzed tgDeV instead of tgDeV and egDeV.
112	
113	Genome structures of novel avian and mammalian deltaviruses
114	The three contigs (tgDeV, mmDeV, and ovDeV) are almost identical in length to the

115 full-length genomes of known deltaviruses. We therefore checked for potential circularity

116 of the contigs. Dot-plot analyses revealed that each of both ends of these three contigs is

117 identical (Supp Fig. 1), suggesting that the contigs were derived from circular RNAs. We

118	further mapped the original RNA-seq data to the corresponding circularized contigs using
119	the Geneious mapper, revealing that some of the reads properly spanned the junctions
120	(data not shown), indicating that these contigs are derived from circular RNAs. Therefore,
121	we designated the resultant circular contigs of tgDeV, mmDeV, and ovDeV as full-length
122	novel deltavirus genomes (1,706, 1,712, and 1,690 nucleotides, respectively) (Fig. 1a).
123	These novel genomes are characterized by high self-complementarity, genomic and
124	antigenomic ribozymes, and poly(A) signals, which are conserved among known
125	deltaviral genomes (Fig. 1 and Supp Table 2) (15-18). Further, the predicted secondary
126	structures of the ribozymes are highly similar to those of HDV as well as those of other
127	deltaviruses (Supp Fig. 2).
128	

129 Characterization of DAg proteins encoded by the novel deltaviruses

130 We next characterized the putative DAg proteins encoded by the novel deltaviruses. Most 131 of their biochemical features, biologically relevant amino acid residues, and functional 132 domains (15-18) are conserved among the DAg proteins (Fig. 2a). The isoelectric points 133 of DAg proteins from the novel deltaviruses range from 10.35 to 10.63 (Supp Table 2), 134 which are nearly identical to those of known deltaviruses. All the post-translational 135 modification sites in HDAg are conserved among those of all DAg proteins of the novel 136 deltaviruses, except for the serine phosphorylation site on scDeV-DAg (Fig. 2a). The 137 NLS is conserved among the DAg proteins, although location of the predicted NLS of 138 scDeV DAg protein differs (Fig. 2a). 139 We next investigated whether the novel deltaviruses utilize A-to-I RNA-editing. To 140 answer this question, we mapped short reads of the SRA data, which we initially used to

141 detect the deltaviruses, to identify the nucleotide variations among the stop codons. We

142	found a potential RNA-editing site within the stop codon of the ovDeV-DAg gene, in
143	which there was 0.4% nucleotide variation (5 of 1160 reads) at the second nucleotide
144	position of the stop codon (U <u>A</u> G), all of which were G instead of the consensus
145	nucleotide A (Fig. 2b). The quality scores of the five G variants ranged from 35 to 41
146	(Supp Fig. 3), which likely exclude the possibility of a sequencing error. This variation
147	may be explained by A-to-I editing by ADAR1, as known for HDV (2). However,
148	possible RNA-editing generates a protein two amino acid residues longer because of a
149	stop codon immediately downstream (Fig. 2c). Further, the C-terminal farnesylation
150	motif (CXXQ) required for the interaction with hepadnaviral envelope proteins (6) was
151	absent from the longer product. These observations suggest that even if RNA-editing
152	occurs, the resultant gene product does not contribute to the interaction with hepadnaviral
153	envelope proteins. Further, we were unable to identify nucleotide variations of the
154	mapped reads at the stop codons in the genomes of tgDeV and mmDeV (data not shown).
155	
156	The novel deltaviruses potentially replicate in their hosts

157 To determine whether the novel deltaviruses potentially replicate in their respective,

158 putative host species, we evaluated the mapping pattern of viral reads described above.

159 We found that the read depths of the predicted transcribed regions (the DAg coding

160 regions to poly-A signals) were much greater than those of the other genomic regions (Fig.

161 3), indicating that most viral reads were derived from viral mRNAs. These findings

162 suggest that the novel deltaviruses replicate in their hosts.

163 The mapping pattern on tgDeV differed slightly from the others. Specifically,

although the read depth of the DAg ORF region was higher, the reads represented only

165 80% of the ORF (Fig. 3a). This trend was apparent in another tgDeV-positive RNA-seq

166 data (Supp Fig. 4). However, it is not clear whether this is attributed to an artifact or

167 actually reflects the transcription pattern of tgDeV.

168

169 Transmission of tgDeV- and tgDeV-like viruses among passerine birds

170 We next investigated whether the novel deltaviruses are transmitted among animal

171 populations. We first analyzed tgDeV infections in birds using RNA-seq data (Table 2

and Supp Table 3). Among 6453 SRA data, tgDeV-derived reads were identified in 34

173 SRAs, including the SRAs in which tgDeV and egDeV were initially detected. The 34

tgDeV-positive SRA data were obtained from tissues such as blood, kidney, and muscles,

suggesting broad tropism and viremia, or systemic infection, or both, with tgDeV.

176 Further, tgDeV sequences were detected in several bird species such as the

177 black-headed bunting (Emberiza melanocephala) and yellow-bellied tit (Pardaliparus

178 *venustulus*). All tgDeV-positive bird species belong to the order Passeriformes. These

179 tgDeV-positive SRA data are included in the nine BioProjects deposited by independent

180 researchers, and thus the birds were likely from different sources. Further, the

tgDeV-positive sample in SRR9899549 (BioSample accession: SAMN12493457) is

182 derived from a black-headed bunting caught in the wild. These data suggest that tgDeV

183 (or tgDeV-like viruses) circulate among diverse passerine birds, even in the wild.

184 During the above analysis, we found that SRA data from the yellow-bellied tit

185 (SRR7244693 and SRR7244695–SRR7244698) contain many reads mapped to the

186 tgDeV genome. Therefore, we extracted the mapped reads of SRA data and performed de

- 187 *novo* assembly. We obtained a 1707-nt circular complete genome sequence, which we
- 188 designated pvDeV. The pvDeV nucleotide sequence is 98.2% identical to that of tgDeV,
- and the properties of its DAg protein sequence are similar to those of tgDeV DAg (Supp

190 Fig. 5).

191	We next employed real-time RT-PCR to further evaluate potential deltavirus
192	infections of passerine birds. We analyzed 30 and 5 whole-blood samples from zebra and
193	Bengalese finches (Lonchura striata var. domestica), respectively, and found that one
194	Bengalese finch was positive for real-time RT-PCR test. To exclude the possibility of
195	contamination of a plasmid used as a control for real-time PCR, we performed RT-PCR
196	using a primer set that distinguishes viral from plasmid amplicons (Figs. 4a and b). We
197	obtained a band of the expected size only from the cDNA sample (Fig. 4c), revealing that
198	the bird was truly positive for a tgDeV-like virus. Therefore, we named this virus lsDeV,
199	and further analysis revealed that its full-length genome nucleotide sequence (1708 nt) is
200	98.2% and 98.4% identical to those of tgDeV and pvDeV, respectively. Moreover, its
201	genome features are almost identical to those of tgDeV and pvDeV (Supp Fig. 5).
201 202	genome features are almost identical to those of tgDeV and pvDeV (Supp Fig. 5).
	genome features are almost identical to those of tgDeV and pvDeV (Supp Fig. 5). <i>Evidence for recent interfamily transmission of deltaviruses among passerine birds</i>
202	
202 203	Evidence for recent interfamily transmission of deltaviruses among passerine birds
202 203 204	<i>Evidence for recent interfamily transmission of deltaviruses among passerine birds</i> We found that the sequence similarities among the passerine deltaviruses (tgDeV, pvDeV,
202 203 204 205	<i>Evidence for recent interfamily transmission of deltaviruses among passerine birds</i> We found that the sequence similarities among the passerine deltaviruses (tgDeV, pvDeV, and ls DeV) (Fig. 4d) were not consistent with evolutionary codivergence. According to
 202 203 204 205 206 	<i>Evidence for recent interfamily transmission of deltaviruses among passerine birds</i> We found that the sequence similarities among the passerine deltaviruses (tgDeV, pvDeV, and ls DeV) (Fig. 4d) were not consistent with evolutionary codivergence. According to the TimeTree (20), deltavirus-positive passerine birds diverged approximately 44 million
202 203 204 205 206 207	<i>Evidence for recent interfamily transmission of deltaviruses among passerine birds</i> We found that the sequence similarities among the passerine deltaviruses (tgDeV, pvDeV, and ls DeV) (Fig. 4d) were not consistent with evolutionary codivergence. According to the TimeTree (20), deltavirus-positive passerine birds diverged approximately 44 million years ago (Fig. 4e and Supp Fig. 6). Considering the rapid evolutionary rates of HDVs
202 203 204 205 206 207 208	<i>Evidence for recent interfamily transmission of deltaviruses among passerine birds</i> We found that the sequence similarities among the passerine deltaviruses (tgDeV, pvDeV, and ls DeV) (Fig. 4d) were not consistent with evolutionary codivergence. According to the TimeTree (20), deltavirus-positive passerine birds diverged approximately 44 million years ago (Fig. 4e and Supp Fig. 6). Considering the rapid evolutionary rates of HDVs (approximately 10^{-3} substitutions per site per year) (21-23), it is unlikely that these

211

212 Transmission of mmDeV among woodchucks

213 We similarly analyzed mmDeV infections using SRA data for the order Rodentia, other

214	than mice (Mus musculus) and rats (Rattus norvegicus). Our analysis of 4776 SRA
215	datasets detected mmDeV reads in 20 SRA data of seven woodchucks (Table 2 and Supp
216	Table 3). Although these mmDeV-positive SRA data were contributed by the same
217	research group, the animals were apparently obtained at different times (24, 25),
218	suggesting that mmDeV was transmitted among woodchucks. The mmDeV-positive SRA
219	data are derived from samples of liver or peripheral blood mononuclear cells.
220	We next used real-time RT-PCR to analyze 81 woodchuck samples (liver, n= 43;
221	serum, $n = 38$). However, mmDeV was undetectable (data not shown), which may be
222	explained by the absence of mmDeV infection or clearance, low level of infection, or
223	both.
224	
	No evidence of transmission of other deltaviruses
225	<i>No evidence of transmission of other deltaviruses</i> We next focused on ovDeV and scDeV sequences of ruminant animals and passerine
225 226 227	
225 226	We next focused on ovDeV and scDeV sequences of ruminant animals and passerine
225 226 227	We next focused on ovDeV and scDeV sequences of ruminant animals and passerine birds, respectively (Table 2 and Supp Table 3). We detected ovDeV-derived reads only in
225 226 227 228	We next focused on ovDeV and scDeV sequences of ruminant animals and passerine birds, respectively (Table 2 and Supp Table 3). We detected ovDeV-derived reads only in five SRA data. The SRA data were obtained from brain, muscle, testis, pedicles, and
225 226 227 228 229	We next focused on ovDeV and scDeV sequences of ruminant animals and passerine birds, respectively (Table 2 and Supp Table 3). We detected ovDeV-derived reads only in five SRA data. The SRA data were obtained from brain, muscle, testis, pedicles, and antlers, suggesting systemic infection, viremia, or both. However, we were unable to
225 226 227 228 229 230	We next focused on ovDeV and scDeV sequences of ruminant animals and passerine birds, respectively (Table 2 and Supp Table 3). We detected ovDeV-derived reads only in five SRA data. The SRA data were obtained from brain, muscle, testis, pedicles, and antlers, suggesting systemic infection, viremia, or both. However, we were unable to determine if these samples were derived from multiple individuals. We detected
 225 226 227 228 229 230 231 	We next focused on ovDeV and scDeV sequences of ruminant animals and passerine birds, respectively (Table 2 and Supp Table 3). We detected ovDeV-derived reads only in five SRA data. The SRA data were obtained from brain, muscle, testis, pedicles, and antlers, suggesting systemic infection, viremia, or both. However, we were unable to determine if these samples were derived from multiple individuals. We detected scDeV-derived reads only from the SRA data in which the virus was initially detected. We

235 Phylogenetic relationships among deltaviruses

236 To decipher the evolutionary relationships among deltaviruses, we conducted a

237 phylogenetic analysis using known and the novel deltavirus sequences discovered here.

238	We did not include sequences of recently identified fish, toad, newt, termite, and
239	duck-associated deltaviruses because they share very low amino acid sequence identities
240	with the novel deltaviruses as well as with HDVs (Fig. 5a), which may reduce the
241	accuracy of tree (16). We further excluded scDeV for this reason, and we did not include
242	tgDeV-like viruses, because their sequences are nearly identical to that of tgDeV. The
243	reconstructed tree shows that the newly identified tgDeV forms a strongly supported
244	cluster with snake DeV and rodent DeV, although they are distantly related to each other
245	(Fig. 5b). Note that mmDeV and ovDeV are more closely related to HDVs than the other
246	deltaviruses.

247

248 Candidate helper viruses

249 To gain insights into helper viruses of the novel deltaviruses, we first analyzed the 250 coexisting viruses in the SRA data using BLASTx. Note that we omitted experimental 251 woodchuck hepatitis virus (WHV) infections associated with the mmDeV-positive 252 woodchuck-derived SRA data (SRR2136864 to SRR2136999). We also excluded viruses 253 that infect invertebrates and endogenous retroviruses as well. These analyses reveal that 254 polyomavirus, bornavirus, and circovirus sequences are present in the deltavirus-positive 255 SRA data of passerine birds (Table 3 and Supp Table 4). Further, we detected contigs with 256 98%–100% identities to human viruses (human mastadenovirus or mammalian 257 rubulavirus 5) (Supp Table 4), although these may represent contamination, index 258 hopping, or both. Among these viruses, only the genome of bornavirus encodes an 259 envelope protein. Note that scDeV and bornavirus-positive SRA data was obtained from 260 pooled samples (SAMN04260514), and we therefore were unable to determine whether 261 scDeV and canary bornavirus 3 infected the same individual.

262	We next cross-referenced the mmDeV reads and the metadata, which also provide
263	insights into the mmDeV helper virus. Among 20 mmDeV-positive SRA data, 18 were
264	obtained from animals experimentally infected with the hepadnavirus WHV, which was
265	experimentally shown to serve as a helper virus for HDV (26, 27). However, the other
266	two SRA data (SRR437934 and SRR437938) were derived from animals negative for
267	antibodies against WHV as well as WHV DNA (24). These observations suggest that
268	mmDeV was transmitted to the two animals without WHV and that WHV therefore was
269	not the helper virus for mmDeV that infected these two individuals.
270	

271 Replication of tgDeV and mmDeV in human and woodchuck cell lines

272 To investigate whether the novel deltavirus sequences are replicable or not, we performed 273 transfection-based assays in cell culture systems. We constructed plasmid expression 274 vectors harboring the minus-strand genome of the tgDeV or mmDeV dimer sequence 275 under the transcriptional control of the CMV promoter (see Materials and Methods). We 276 first determined if the replication initiated by transfecting these plasmids. These plasmids 277 express the minus-strand genome and therefore DAg protein is expressed if the viral 278 genome replicates (19). We transfected the plasmid vectors into Huh7 human hepatic 279 cells and WCH-17 woodchuck hepatic cells and used western blotting (Figs. 6a and b) 280 and immunofluorescence assay (IFA) (Figs. 6c-f) to detect the expression of DAg 281 proteins. Western blotting detected the expected bands (approximately 22 kDa) only in 282 transfected cells (Figs. 6a and b). Note that a single specific band was detected in lysates 283 prepared from each cell type, suggesting that tgDeV and mmDeV expressed only one 284 DAg isoform. Consistent with the above results, specific signals were observed only in 285 the transfected cells in IFA (Figs. 6c and d, red signals). Together, these data suggest that

the tgDeV and mmDeV initiated replication from the constructed plasmids in the cellculture system.

288	The DAg proteins predominantly localized to the nucleus 2 days post-transfection
289	(Figs. 6e and f). Interestingly, large viral speckles were observed in the nucleus, similar to
290	those detected in cells infected with HDV (28, 29). These results suggest that tgDeV and
291	mmDeV employ a nuclear replication strategy similar to that used by HDV.
292	
293	HBV envelope proteins do not contribute to the production of infectious tgDeV and
294	mmDeV
295	As described in the above section "Candidate helper viruses", there is no evidence of
296	coinfections of hepadnaviruses with tgDeV or mmDeV. However, this does not
297	necessarily mean hepadnaviruses do not serve as helper viruses for the novel deltaviruses.
298	To determine whether tgDeV or mmDeV utilize the HBV envelope proteins (HBs), we
299	transfected the deltavirus expression plasmids together with an HBs expression vector or
300	the cognate empty vector into Huh7 cells. The culture supernatants were incubated with
301	HepG2-NTCP cells, which are susceptible to HBs-dependent HDV infection (30, 31).
302	HDV served as a control to monitor HBs-dependent virus release and subsequent cell
303	entry. Viral RNA was undetected in supernatants of cells that did not express HBs (Fig.
304	7a). In contrast, cotransfection of the HBs plasmid released large amounts of HDV RNA
305	into the supernatant, consistent with published data (32), whereas tgDeV or mmDeV
306	RNA was undetectable (Fig. 7a).
307	We next measured the amounts of viral RNA and detected DAg protein in
308	HepG2-NTCP cells 7 days after incubation with the supernatants. HDV RNA and DAg
309	protein were highly expressed in the infected cells (Fig. 7b and c). HDV infection was

- 310 inhibited by the preS1 peptide (Myrcludex B), which was shown to inhibit
- 311 HBs-dependent HDV infection (33). These indicate that HDV infection is indeed
- 312 mediated by the HBs. On the other hand, tgDeV and mmDeV RNA or DAg protein was
- 313 undetectable, suggesting that HBs do not contribute to the production of infectious tgDeV
- or mmDeV.

315 Discussion

316 Important aspects of the evolution of deltaviruses are unknown, such as the origin of 317 HDV and the coevolution of deltaviruses and their helper viruses, mainly because few 318 deltaviruses are known, and they are highly genetically divergent (15-18). Therefore, the 319 resulting large gaps in the deltavirus phylogenetic tree create a formidable obstacle to 320 understanding deltavirus evolution. Here we identified five complete genomes of novel 321 deltaviruses from birds and mammals (Fig. 1 and Supp Fig. 5), which partially fill these 322 phylogenetic gaps (Fig. 5b). Moreover, our present findings reveal that the evolution of 323 deltaviruses is much more complicated than previously thought. For example, one 324 hypothesis states that mammalian deltaviruses codiverged with their mammalian hosts 325 (18). However, our phylogenetic analysis shows that the tree topology of mammalian 326 deltaviruses is incongruent with their hosts'. For example, ovDeV, which we detected in 327 deer, is most closely related to human HDV (Fig. 5b). Further, the distantly related 328 mmDeV and rodent DeV (detected in *Proechimys semispinosus* (18)) were detected in 329 rodent species. These data suggest that deltaviruses were transmitted among mammalian 330 species and did not always codiverge with their hosts. Moreover, we discovered recent 331 interfamily transmission of passerine deltaviruses (tgDeV and its relatives) (Fig. 4e). 332 Therefore, avian and mammalian deltaviruses may have, at least partially, evolved by 333 interspecies transmission. 334 Our present phylogenetic analysis also gives insights into the origin of human HDVs. 335 As described above, ovDeV and mmDeV are close relatives of human HDVs, suggesting 336 that HDVs arose from other mammalian deltaviruses. Recent studies on the phylogeny of

bat deltaviruses support our findings and conclusions (34, 35) (Supp Fig. 7). However, we

338 were unable to exclude the possibility of infection of animal lineages apart from

mammals with unknown deltaviruses phylogenetically located between those viral
lineages. Further investigations are required for a better understanding of the deltavirus
evolution.

342 There is a paucity of knowledge about helper viruses for non-HDV deltaviruses, 343 other than the snake deltavirus (19), although evidence indicates that hepadnaviruses may 344 not serve as helper viruses for the novel deltaviruses discovered here, as suggested for 345 other non-HDV deltaviruses (15-18). Here we only detected bornavirus, circovirus, and 346 polyomavirus, but not hepadnavirus sequences in association with deltavirus-positive 347 SRA data (Table 3). Further, mmDeV was detected in two woodchuck individuals that 348 were demonstrated to be negative for WHV (Table 2 and Supp Table 3). Moreover, we 349 found that HBs did not contribute to the formation of infectious tgDeV and mmDeV in 350 cell culture experiments. These observations suggest that hepadnaviruses do not serve as 351 helper viruses for the novel non-HDV deltaviruses detected here. Further, we were 352 unable to demonstrate that the deltaviruses identified here express proteins similar to the 353 L-HDAg protein (Figs. 6a and b), which is expressed via RNA-editing and is essential for 354 HDV to interact with HBs (2, 37). Although RNA-editing may alter the stop codon of 355 ovDeV DAg, this does not lead to the expression of a large isoform of DAg (L-DAg) 356 protein containing a farnesylation site (Figs. 2b and c). The lack of L-DAg expression was also observed in rodent deltaviruses (18). Therefore, L-DAg expression phenotype 357 358 may have been acquired after the divergence of ovDeV and the HDV lineage (Fig. 5b). 359 Among the coexisting viruses, only bornavirus produces an envelope glycoprotein 360 (G protein), which might be used by non-HDV deltaviruses to produce infectious virions. 361 Indeed, snake deltavirus utilizes the envelope proteins of reptarenaviruses and 362 hartmaniviruses to produce infectious particles (19). Furthre, HDV forms infectious

363 virions using envelope proteins *in vitro* of RNA viruses such as vesiculovirus and

364 hepacivirus (38). Therefore, the bornavirus G protein might envelop non-HDV

365 deltaviruses.

366 In contrast, the coexisting viruses, circoviruses and polyomaviruses, are 367 nonenveloped. Therefore, it is unlikely that these viruses can serve as helper viruses for 368 the deltaviruses. However, we cannot exclude the possibility that these viral capsid 369 proteins might contribute to the transmissibility of deltaviruses through unknown 370 mechanisms. Additionally, virus-derived sequences in host genomes, called endogenous 371 viral elements (EVEs), might mediate the formation of infectious particles. Here detected 372 the expression of retroviral EVEs in certain deltavirus-positive SRA data (data not 373 shown). Although HDVs do not use retroviral envelope proteins (38), non-HDV 374 deltaviruses might utilize strategies distinct from those employed by HDVs. Alternatively, 375 non-HDV deltaviruses may not require helper viruses and utilize extracellular vesicles for 376 transmission. Further biological experiments, together with molecular surveillance, are 377 therefore required to understand the satellite-helper relationships of deltaviruses. 378 Here we show that the sequences of tgDeV and tgDeV-like viruses, such as pvDeV 379 and lsDeV, are relatively closely related to known vertebrate deltaviruses (Fig. 5b). 380 Although a previous study found a deltavirus from duck, this duck-associated virus was 381 detected in oropharyngeal/cloacal swabs and is distantly related to vertebrate deltaviruses, 382 suggesting the possibility of its dietary origin (15, 18). This may be true for scDeV 383 studied here. scDeV was detected in skin (Table 1). Although scDeV was excluded from 384 our phylogenetic analysis, the amino acid identities between the DAg protein of scDeV 385 with other vertebrate deltaviruses range from 32.7%-39.5% (Fig. 5a). Therefore, scDeV 386 may be derived from contaminants, which should be addressed in the future. In contrast,

387	tgDeV and tgDeV-like viruses were detected in tissues such as the spleen and muscles
388	(Table 2), suggesting that tgDeV and tgDeV-like viruses are authentic avian deltaviruses.
389	Here we show that certain novel deltaviruses are transmitted among animal
390	populations (Table 2 and Supp Table 3). Note that few reads were mapped to the virus
391	genomes in some SRA data, which may be attributed to index hopping (39-43) from SRA
392	data containing numerous deltavirus-derived reads. Therefore, these data should be
393	interpreted with caution. Nevertheless, our conclusions are not affected, because they are
394	supported by robust data (Table 2). For data in which index hopping has possibly
395	occurred, further analyses are needed to confirm deltavirus infections.
396	Our present analysis provides virological insights into important characteristics of
397	deltavirus infections, such as tissue and host tropism. For example, infections with tgDeV
398	(and tgDeV-like viruses), mmDeV, and ovDeV were not limited to the liver and were
399	detected in at least two different tissues (Table 2). These observations are consistent with
400	those of previous studies that non-HDV deltaviruses in multiple organs and blood and
401	that they replicate in numerous cell types (18, 19). Therefore non-HDV deltaviruses may
402	infect diverse tissues and cause systemic infection, viremia, or both. Furthre, tgDeV and
403	mmDeV replicated in human and woodchuck cells (Fig. 6), which is consistent with the
404	ability of the snake deltavirus to replicate in mammalian cells (19). These observations
405	suggest that the host range of deltaviruses is broad and that the helper viruses of
406	non-HDV deltaviruses may be the determinants of host range.
407	Our analyses further suggest that tgDeV and mmDeV are sensitive to host immune
408	responses. We cross-referenced tgDeV reads and metadata and made an intriguing
409	finding that may contribute to the virus-host interaction. BioProject PRJNA297576
410	contains 12 RNA-seq data for six zebra finches (44). Interestingly, the tgDeV reads were

411	almost exclusively detected in birds treated with testosterone vs the controls (Supp Fig.
412	8a and Supp Table 5). Therefore, the immunosuppressive effects of testosterone (45) may
413	increase the transcription or replication of tgDeV, or both, to enable detection using
414	RNA-seq. Furthre, when we cross-referenced the mmDeV reads and the metadata, we
415	found that 18 of 20 mmDeV-positive SRA data derived from five individuals were
416	acquired through an experiment lasting 27 weeks (PRJNA291589) (25). Among 18 SRA
417	data, those of one individual (ID 1008) provide insights into mmDeV infection as
418	follows: At first (-3 weeks), mapped reads were not detected, although the proportion of
419	mapped reads were highest at one week and then drastically decreased (Supp Fig. 8b and
420	Supp Table 6). Interestingly, a previous study suggested that the host's immune response
421	can clear rodent deltaviruses (18). Our present observations together with this previous
422	finding, suggest that the host immune response suppresses and then clear deltavirus
423	infections. This may explain the low prevalence of RT-PCR-positive samples of
424	woodchucks and passerine birds as described in the Results (sections "Circulation of
425	tgDeV and tgDeV-like viruses among passerine birds" and "Circulation of mmDeV in
426	woodchucks"). Note that latent or low levels of persistent deltavirus infections may occur.
427	Indeed, snake deltavirus establishes a persistent infection in a cell culture system (19).
428	Therefore, deltaviruses might persistently infect host cells with a low level of virus
429	replication, and some stimulations, such as immunosuppression, may trigger robust virus
430	replication. Further studies are therefore required to understand the interactions between
431	deltaviruses and their hosts.
432	Together, our present data contribute to a deeper understanding of the evolution of
433	deltaviruses and suggest the presence of undiscovered deltaviruses that infect diverse

434 animal species. Further investigations will provide further insights into deltavirus

435 evolution.

437 Materials and methods

- 438 Detection of deltaviruses from publicly available transcriptome data
- 439 Paired-end, RNA-seq data from birds and mammals were downloaded from NCBI SRA
- 440 (46). The SRA accession numbers used in this study are listed in Supplementary material.
- 441 The downloaded SRA files were dumped using pfastq-dump (DOI:
- 442 10.5281/zenodo.2590842; https://github.com/inutano/pfastq-dump), and then
- 443 preprocessed using fastp 0.20.0 (47). If genome data of either the same species or the
- same genus were available, the preprocessed reads were mapped to the corresponding
- 445 genome sequences (the genome information is available upon request) by HISAT2 2.1.0
- 446 (48), and then unmapped paired-end reads were extracted using SAMtools 1.9 (49) and
- 447 Picard 2.20.4 (http://broadinstitute.github.io/picard/). The extracted unmapped reads
- 448 were used for *de novo* assembly. If genome data were unavailable, the preprocessed reads
- 449 were directly used for *de novo* assembly. *De novo* assembly was conducted using SPAdes
- 450 (50) and/or metaSPAdes (51) 3.13.0 with k-mer of 21, 33, 55, 77, and 99. The resultant
- 451 contigs were clustered by cd-hit-est 4.8.1 (52, 53) with a threshold of 0.95. Finally, the
- 452 clustered contigs \geq 500 nt were extracted by SeqKit 0.9.0 (54), and they were used for the
- 453 downstream analyses.
- 454 Two-step sequence similarity searches were performed to identify RNA virus-like
- 455 sequences. First, BLASTx searches were performed against a custom database for RNA
- 456 viruses using the obtained contigs as queries employing BLAST+ 2.9.0 (55) with the
- 457 following options: -word_size 2, -evalue 1e⁻³, max_target_seqs 1. The custom database of
- 458 RNA viruses consisted of clustered sequences (by cd-hit 4.8.1 with a threshold of 0.98)
- 459 from viruses of the realm *Riboviria* in the NCBI GenBank (the sequences were
- 460 downloaded on June 2, 2019) (46). Next, the query sequences with viral hits were

	461	subjected to second	l BLASTx analyses	, which were	performed	against the	NCBI nr
--	-----	---------------------	-------------------	--------------	-----------	-------------	---------

- 462 database. Finally, the second blast hits with the best hit against deltaviruses were regarded
- 463 as deltavirus-like agents, and they were used for detailed analyses.
- 464
- 465 Confirmation of circularities of deltavirus contigs
- 466 Self dot-plot analyses of linear deltavirus contigs were conducted using the YASS online
- 467 web server (29). Based on the analysis, the contigs were manually circularized using
- 468 Geneious 11.1.5 (https://www.geneious.com). Further confirmation of the circularities of
- 469 deltavirus contigs was obtained by mapping short reads to circular deltavirus contigs
- 470 using Geneious software as follows. The reads used for the *de novo* assembly were first
- 471 imported to Geneious, after which they were mapped to the circular contigs using the
- 472 Geneious mapper. The mapped reads across the circularized boundaries were confirmed
- 473 manually.
- 474
- 475 Detection of possible RNA-editing sites at stop codons of DAg genes

476 We used the mapped reads obtained by the analyses described above to detect possible

- 477 RNA-editing at the stop codons of DAg genes of deltaviruses. We analyzed the
- 478 nucleotide variations (presence of variations, variant nucleotide(s), and variant
- 479 frequency) of mapped reads at each of the stop codons of newly identified deltaviruses
- 480 using the "Find Variation/SNPs" function in Geneious. We used a custom Python script to
- 481 visualize base quality scores of the NGS reads mapped at the second nucleotide of the
- 482 stop codon genome. The codes are available at following URL:
- 483 https://github.com/shohei-kojima/iwamoto_et_al_2020.
- 484

485 Sequence characterization

486	DAg ORFs were detected by the "Find ORFs" function in Geneious with a threshold of
487	500 nucleotides. Poly(A) signals were manually detected. Putative ribozyme sequences
488	were identified using nucleotide sequence alignment with other deltaviruses. Ribozyme
489	structures were first inferred using the TT2NE webserver (56), and the obtained data were
490	then visualized using the PsudoViewer3 web server (57). We used the visualized data as
491	guides to draw ribozyme structures.
492	The self-complementarities of deltavirus-like contigs were analyzed using the Mfold
493	web server (58). Coiled-coil domains and nuclear export signals (NLSs) were predicted
494	using DeepCoil (59) and NLS mapper
495	(http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) web servers,
496	respectively.
497	
498	Short read mapping for detection of deltavirus infection
499	To detect deltavirus-derived reads in publicly available RNA-seq data, short reads were
500	mapped to deltavirus genomes and then the numbers of mapped reads were counted as
501	follows. SRA files were downloaded from NCBI, dumped, and preprocessed following
502	the procedure described above. The preprocessed reads were then mapped to linearized

- 503 deltavirus contigs by HISAT2 with the default setting. SAM tools were used to extract the
- 504 mapped BAM files from the resultant BAM files, and the mapped read numbers were
- 505 counted using BamTools 2.5.1 (60).

- 507 Recovery of a deltavirus genome from RNA-seq data of Pardaliparus venustulus
- 508 Mapped reads obtained from SRR7244693, SRR7244695, SRR7244696, SRR7244697,

509 and SRR7244698 in the above analysis (section *Short read mapping for detection of*

510 *deltavirus infection*) were extracted by Geneious. All the extracted reads were

511 co-assembled using Geneious Assembler with the circular contig assembly function. The

- 512 obtained circular contigs were characterized as described previously.
- 513
- 514 Animals and samples
- 515 Zebra finches (n = 30) and Bengalese finches (n = 5) were obtained from breeding

516 colonies at Wada lab, Hokkaido University. The founder birds were originally obtained

517 from local breeders in Japan. Five to twelve birds were kept together in cages in an aviary

and were exposed to a 13:11 light-dark cycle. Blood samples were collected from the

519 wing vein using $30 \text{ G} \times 8 \text{ mm}$ syringe needles (Becton Dickinson; Franklin Lakes, NJ,

- 520 USA). Each blood sample was diluted 1.5 times with PBS, frozen immediately on dry ice
- 521 after collection, and maintained at -80°C until further requirement. These experiments

522 were conducted under the guidelines and with the approval of the Committee on Animal

523 Experiments of Hokkaido University. These guidelines are based on the national

524 regulations for animal welfare in Japan (Law for the Humane Treatment and

525 Management of Animals with partial amendment No.105, 2011).

526 Woodchucks (*Marmota monax*) were purchased from Northeastern Wildlife

527 (Harrison, ID, USA) and kept at the Laboratory Animal Center, National Taiwan

528 University College of Medicine. At three days of age, the animal supplier infected

- 529 captive-born woodchucks with WHV from the same infectious pool. Wild-caught
- 530 woodchucks were infected naturally and live trapped. Serum samples were collected
- from the woodchucks periodically via the femoral vein by means of venipuncture. Liver
- tissues of woodchucks were obtained at autopsy, snap-frozen in liquid nitrogen, and

533	stored at -80°C until RNA extraction. This study used liver tissues from 10 wild-caught
534	and 33 captive-born woodchucks and serum samples from 33 wild-caught and five
535	captive-born woodchucks. In this study, all the experimental procedures involving
536	woodchucks were performed under protocols approved by the Institutional Animal Care
537	and Use Committee of National Taiwan University College of Medicine.
538	
539	Real-time and Endpoint RT-PCR detection of deltaviruses from animal specimens
540	Total RNAs were isolated from the whole blood samples from zebra finches and serum
541	samples from woodchucks using Quick RNA Viral Kit (Zymo Research; Irvine, CA,
542	USA). The obtained RNA samples were stored at -80° C until further requirement. Total
543	RNAs were also extracted from 50 mg of the woodchuck liver tissues using either Trizol
544	(Thermo Fisher Scientific; Waltham, MA, USA) or ToTALLY RNA kit (Thermo Fisher
545	Scientific; Waltham, MA, USA) according to the manufacturers' instructions.
546	The obtained RNA was reverse-transcribed into cDNA using ReverTra Ace qPCR
547	RT Master Mix (TOYOBO; Osaka, Japan), and these were used as templates for real-time
548	PCR analyses. Real-time PCR was performed with KOD SYBR qPCR Mix (TOYOBO)
549	and primers (Supp Table 7) using the CFX Connect Real-Time PCR Detection System
550	(Bio-Rad; Hercules, CA, USA) according to the manufacturer's instructions. The
551	real-time PCR systems for mmDeV and tgDeV were validated using
552	pcDNA3-mmDeV(-) and pcDNA3-tgDeV(-) monomer, respectively, as controls.
553	End-point RT-PCR was also performed to confirm deltavirus infections. PCR was
554	performed with Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific) using
555	the above-described cDNAs and primers listed in Supp Table 7. The PCR products were
556	analyzed by agarose gel electrophoresis. The obtained PCR products were purified and

557 sequenced by Sangar sequencing in FASMAC (Atsugi, Japan).

558

- 559 Determination of a full genome sequence of deltavirus in passerine birds
- 560 To determine the full genome sequence of detected deltaviruses, the cDNA obtained in
- 561 the section "Realtime and Endpoint RT-PCR detection of deltaviruses from animal
- 562 specimens" was amplified using illustra GenomiPhi V2 Kit (GE healthcare; Chicago, IL,
- 563 USA). The amplified DNA was then purified with innuPREP PCRpure Kit (Analytik
- 564 Jena: Jena, Germany). PCR was performed with Phusion Hot Start II DNA Polymerase
- using the primers listed in Supp Table 7. The PCR products were analyzed using agarose
- 566 gel electrophoreses. When single bands were observed, the amplicon was purified with

567 innuPREP PCRpure Kit. When several bands were detected, bands of the expected sizes

- 568 were extracted and purified using Zymoclean Gel DNA Recovery Kit (Zymo Research).
- 569 The purified amplicons were sequenced in FASMAC (Atsugi, Japan).
- 570

571 Phylogenetic analysis

- 572 Deduced amino acid sequences of DAg proteins were used to infer the phylogenetic
- 573 relationship between deltaviruses. Multiple alignment was performed by MAFFT 7.427
- 574 using the E-INS-i algorithms (61), and ambiguously aligned regions were then removed
- 575 using trimAl 1.2rev59 with the --strict option (62). The phylogenetic relationship was
- 576 inferred by the maximum likelihood method using RAxML Next Generation v. 0.9.0 (63).
- 577 The LG+G model, which showed the lowest BIC by prottest3 3.4.2 (64), was used. The
- 578 reliability of the tree was assessed by 1,000 bootstrap resampling using the transfer
- 579 bootstrap expectation method (65). The alignment file is available in Supporting
- 580 materials.

581

582 Detection of co-infected viruses

583	To identify co-infected viruses in deltavirus-positive SRAs, a three-step BLASTx search
584	was performed. First, BLASTx searches were performed against a custom database,
585	including RefSeq protein sequences from viruses using the assembled contigs (see the
586	subsection Detection of deltaviruses from publicly available transcriptome data) as
587	queries. The custom database was prepared as follows. Virus-derived protein sequences
588	in the RefSeq protein database (46) were downloaded on July 17, 2020, and were
589	clustered by cd-hit 4.8.1 (threshold = 0.9). Then, sequences of more than 100 amino acid
590	residues were extracted using SeqKit 0.10.1 and these were used as a BLAST database.
591	The first BLAST hits were extracted, which were used for the second BLASTx analysis.
592	The second BLASTx analysis was performed against the NCBI RefSeq protein database.
593	The BLAST hits with the best hit to viral sequences were extracted and used for the final
594	BLASTx searches. The final BLASTx searches were performed against the NCBI nr
595	database. The BLAST hits with the best hit to viral sequences were extracted and
596	analyzed manually.
597	

598 *Cell culture*

- 599 HepG2-NTCP cells were cultured with Dulbecco's modified Eagle's medium
- 600 (DMEM)/F-12 + GlutaMax (Thermo Fisher Scientific) supplemented with 10 mM
- 601 HEPES (Sigma Aldrich; St. Louis, MO, USA), 100 unit/ml penicillin (Meiji; Tokyo,
- 602 Japan), 100 mg/ml streptomycin (Meiji), 10% FBS (Sigma Aldrich), 5 μg/ml insulin
- 603 (Wako; Tokyo, Japan) and 400 g/ml G418 (Nacalai tesque). Huh7 and WCH-17 cells
- 604 were maintained in DMEM (Wako) containing 10% FBS (Sigma Aldrich), 100 unit/ml

- 605 penicillin (Meiji), 100 mg/ml streptomycin (Meiji), 100 mM nonessential amino acids
- 606 (Thermo Fisher Scientific), 1 mM sodium pyruvate (Sigma Aldrich), and 10 mM HEPES
- 607 (Sigma Aldrich).
- 608
- 609 Antibody production
- 610 The peptides corresponding to 65 to 78 aa (DSSSPRKRKRGEGG) of tgDeV DAg and
- 611 174 to 187 aa (ESPYSRRGEGLDIR) of mmDeV DAg conjugated with cysteine at N
- 612 terminus were synthesized. Each of the peptides was injected into mice, and antisera were
- obtained from the mice at 42 days after the peptide injections. Each of the antisera was
- affinity-purified using the corresponding peptide. The whole procedure was performed in
- 615 SCRUM (Tokyo, Japan).
- 616
- 617 *Rescue of mmDeV and tgDeV*
- 618 The DNA of negative-strand genomes of mmDeV and tgDeV was synthesized in
- 619 GenScript Japan (Tokyo, Japan). The synthesized DNAs were inserted into the KpnI
- -XbaI site of the pcDNA3 vector, designated as pcDNA3-mmDeV(-) monomer and
- 621 pcDNA-tgDeV (-) monomer. In addition, tandem sequences of mmDeV and tgDeV
- 622 genome were inserted into the pcDNA3 vector, which were named pcDNA3-mmDeV(-)
- 623 dimer and pcDNA-tgDeV (-) dimer, respectively. To rescue these viruses,
- 624 pcDNA3-mmDeV(-) dimer or pcDNA-tgDeV (-) dimer was transfected into Huh7 and
- 625 WCH-17 cells using Lipofectamine 3000 and Lipofectamine 2000 (Thermo Fisher
- 626 Scientific), respectively, according to the manufacturer's instructions. The transfected
- 627 cells were cultured for 48 h and were used for western blotting, IFA to verify DAg protein
- 628 expression.

050 western bioling	630	Western	blotting
---------------------	-----	---------	----------

- 631 Cells were lysed with SDS sample buffer [100 mM Tris-HCl (pH 6.8) (Sigma Aldrich),
- 4% SDS (Nippon gene; Tokyo, Japan), 20% glycerol (Nacalai tesque), 10%
- 633 2-mercaptoethanol (Wako)]. The cell lysates were subjected to SDS-PAGE and
- transferred onto polyvinylidene difluoride membranes (Merck Millipore; Darmstadt,
- 635 Germany). After blocking the membranes with 5% skim milk (Morinaga; Tokyo, Japan),
- they were reacted with anti-tgDeV DAg, anti-mmDeV DAg, or anti-actin (Sigma
- 637 Aldrich) antibodies as primary antibodies, followed by reaction with horseradish
- 638 peroxidase (HRP)–conjugated secondary antibodies (Cell Signaling Technology;
- 639 Danvers, MA, USA).
- 640
- 641 Indirect immunofluorescence assay (IFA)
- 642 The cells were fixed in 4% paraformaldehyde (Wako) and then permeabilized using 0.3%
- 643 Triton X-100 (MP Biomedicals; Santa Ana, CA, USA). After blocking the cells by
- 644 incubation in PBS containing 1% bovine serum albumin (BSA) (KAC; Kyoto, Japan),
- they were treated with the primary antibodies against HDAg, tgDeV DAg, or mmDeV
- 646 DAg and then incubated with Alexa555-conjugated secondary antibody (Thermo Fisher
- 647 Scientific), together with DAPI (Nacalai tesque). To detect deltavirus-positive cells, the
- 648 fluorescence signal was observed using fluorescence microscopy, BZ-X710 (KEYENCE;
- 649 Osaka, Japan). High magnification examination of the subcellular localization was
- 650 performed using confocal microscopy, LSM900 (ZEISS; Oberkochen, Germany).
- 651
- 652 Deltavirus preparation and infection assay

653	HDV was produced from the culture supernatants of Huh7 cells transfected with HDV
654	(pSVLD3) and HBs (pT7HB2.7) expressing plasmid, as described previously (32, 66).
655	tgDeV and mmDeV were also subjected to the same assay. The supernatants of
656	transfected cells were collected at 6, 9, and 12 days post-transfection, and they were then
657	filtrated and concentrated using 0.45- μ m filters and Amicon Ultra (Merck Millipore),
658	according to the manufacturer's instructions. The concentrated supernatants were
659	inoculated into HepG2-NTCP cells with 5% PEG8000 (Sigma Aldrich) for 24 h followed
660	by washing to remove free viruses. The inoculated cells were cultured for 6 days and used
661	for the downstream analyses.
662	
663	Acknowledgments
664	HDV and HBs expression plasmids were kindly provided by Dr. John Taylor (the Fox
665	Chase Cancer) and Dr. Camille Sureau (Institute National de la Transfusion Sanguine).
666	We thank Dr. Keiko Takemoto (Kyoto University) for her kind help with the setting of
667	computer resources. The super-computing resources were provided by Human Genome
668	Center, the Institute of Medical Science, the University of Tokyo, and the NIG
669	supercomputer at ROIS National Institute of Genetics. All the silhouette images except
670	for woodchuck were downloaded from silhouetteAC (http://www.silhouette-ac.com/).
671	This study was supported by the Hakubi project at Kyoto University (MH);
672	Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education,
673	Culture, Science, Sports, and Technology (MEXT) of Japan, Grant Numbers
674	JP19H04839 (SI), JP16H06429 (KT), JP16K21723 (KT), JP16H0643 (KT),
675	JP17H05821 (MH), and JP19H04833 (MH); the Japan Society for the Promotion of
676	Science KAKENHI, Grant Numbers JP19K16672 (MI), JP20J00868 (MI), and

- 677 JP20H03499 (KW); AMED Grant Numbers JP20jm0210068j0002 (KW) and
- 678 JP20fk0310114j0004 (KW).
- 679

680 Author contributions

- 681 MH conceived the study. MI, KW, and MH designed the study. MI conducted cell culture
- 682 experiments. MH, JK, SK performed in silico analyses. YS, YTL, HLW, KW, and MH
- 683 prepared and analyzed animal specimens. All the authors analyzed and discussed the data.
- 684 MI and MH wrote the manuscript.

686 Figure legends

- 687 Figure 1. Genome organization of novel deltaviruses.
- 688 Genomes of (a) tgDeV, mmDeV, and ovDeV (complete genomes) and (b) scDeV and
- 689 egDeV (partial genomes). Annotations (ORF, poly-A signal, and ribozymes) are shown
- 690 by colored arrow pentagons. The numbers indicate nucleotide positions. (c)
- 691 Self-complementarities of novel deltaviruses. The predicted RNA structures were
- 692 visualized using the Mfold web server (58). Red, blue, and green arcs indicate G-C, A-U,
- 693 and G-U pairs, respectively.
- 694

695 Figure 2. Amino acid sequence characterization of putative delta antigens of novel

- 696 deltaviruses.
- 697 (a) Alignment and functional features of the putative S-HDAg and DAgs of
- 698 representative HDVs and novel deltaviruses. (Putative) functional domains are shown by
- 699 colored boxes. Me: arginine methylation site, Ac: lysine acetylation site, P: Serine
- 700 phosphorylation site. (b) ovDeV mRNA (upper panel) and a possible A-to-I RNA-editing
- site (lower panel). Consensus ovDeV-DAg mRNA sequence and mapped read sequence
- 702 with potential RNA-edited nucleotides (blue boxes). Pink boxes indicate the ORF of
- 703 ovDeV DAg. (c) Deduced amino acid sequences of ovDeV-DAg proteins translated from
- the viral mRNA with or without RNA-editing. The blue letter shows the possible
- 705 RNA-editing site.
- 706

707 Figure 3. Mapping coverages of original short reads of each contig.

708 Mapped read graphs of (a) tgDeV, (b) mmDeV, and (c) ovDeV. Lines, arrow pentagons,

and arrowheads indicate viral genomes, ribozymes, and poly(A) signals, respectively.

- 710 The numbers above the graphs show nucleotide positions. The light pink box indicates a
- 711 low read depth region in the putative transcript of tgDeV.
- 712

713 Figure 4. Interfamily transmission of deltaviruses among passerine birds.

- 714 (a-c) RT-PCR detection of a deltavirus from Lonchura striata. (a) Plasmid used for the
- restablishment of real-time PCR detection system for tgDeV and (b) the tgDeV circular
- 716 genome. The blue arrows indicate the primers used for endo-point RT-PCR detection. (c)
- 717 Endo-point RT-PCR for detection of the circular deltavirus genome. M, 100-bp ladder
- 718 marker. (d) Pairwise nucleotide identities between deltaviruses detected in passerine
- 719 birds. (e) Phylogenetic tree of passerine birds positive for deltaviruses. Phylogenetic tree

720 of birds and deltavirus infections are indicated. MYA: million years ago.

721

722 Figure 5. Phylogenetic analysis of deltaviruses.

723 (a) Heat map of pairwise amino acid sequence identities between deltaviruses. (b) The

phylogenetic tree was inferred by the maximum likelihood method using an amino acid

sequence alignment of representative deltaviruses. Known phenotypes (RNA-editing and

- expression of the large isoform of DAg protein) and helper virus(es) of each virus are
- shown on the right. Note that the SDeV phenotypes are shown in gray letters, because
- there is insufficient information, evidence, or both for the RNA-editing and L-DAg
- repression. The deltaviruses identified in this study are indicated by the blue circles.
- 730 Bootstrap values >70 are shown. SDeV: snake deltavirus, RDeV: rodent deltavirus.

731

Figure 6. Detection of tgDeV DAg and mmDeV DAg in cells ectopically expressing
the tgDeV or mmDeV dimer genome.

- 735 mmDeV dimer-sequence expression plasmid. The numbers on the left side of panels
- indicate the size marker of protein (kDa). (c-f) Indirect immunofluorescence analysis of
- the expression of tgDeV or mmDeV DAg protein. The cells were observed using
- fluorescent microscopy (c and d) or a confocal microscopy (e and f). Blue; DAPI, Red;
- tgDeV or mmDeV DAg. Scale bars = $50 \mu m$ (c and d) and $5 \mu m$ (e and f).
- 740

741 Figure 7. No infectious particle of tgDeV and mmDeV was produced by

742 supplementation of HBV envelop proteins.

(a) Quantification of deltavirus RNAs in culture supernatants. HDV, tgDeV, or mmDeV

expression plasmid was transfected with or without plasmid expressing HBV envelope

- 745 proteins into Huh7 cells. Viral RNA levels in supernatants were quantified using
- quantitative RT-PCR (n = 3). (**b** and **c**) HepG2-NTCP cells were incubated with the
- 747 culture supernatants of the transfectants for 24 h in the presence or absence of 500 nM
- 748 Myrcludex B (MyrB), an inhibitor of HBV envelope-dependent viral entry. The cells
- 749 were cultured for an additional 6 days, and viral RNA levels and protein exprssion were
- analyzed using quantitative RT-PCR (n = 3) (b) and IFA (c), respectively. The numbers in
- 751 (c) correspond to those of (b). Blue, DAPI; Red, HDV; tgDeV, or mmDeV DAg. Scale

752 bar = 50 μ m.

754 **Reference**

755	1.	Magnius L, Taylor J, Mason WS, Sureau C, Deny P, Norder H, Ictv Report C.
756		2018. ICTV Virus Taxonomy Profile: Deltavirus. J Gen Virol 99:1565-1566.
757	2.	Wong SK, Lazinski DW. 2002. Replicating hepatitis delta virus RNA is edited in
758		the nucleus by the small form of ADAR1. Proc Natl Acad Sci U S A
759		99:15118-23.
760	3.	Bergmann KF, Gerin JL. 1986. Antigens of hepatitis delta virus in the liver and
761		serum of humans and animals. J Infect Dis 154:702-6.
762	4.	Bonino F, Heermann KH, Rizzetto M, Gerlich WH. 1986. Hepatitis delta virus:
763		protein composition of delta antigen and its hepatitis B virus-derived envelope. J
764		Virol 58:945-50.
765	5.	Taylor JM. 2020. Infection by Hepatitis Delta Virus. Viruses 12.
766	6.	O'Malley B, Lazinski DW. 2005. Roles of carboxyl-terminal and farnesylated
767		residues in the functions of the large hepatitis delta antigen. J Virol 79:1142-53.
768	7.	Kuo MY, Sharmeen L, Dinter-Gottlieb G, Taylor J. 1988. Characterization of
769		self-cleaving RNA sequences on the genome and antigenome of human hepatitis
770		delta virus. J Virol 62:4439-44.
771	8.	Sharmeen L, Kuo MY, Dinter-Gottlieb G, Taylor J. 1988. Antigenomic RNA of
772		human hepatitis delta virus can undergo self-cleavage. J Virol 62:2674-9.
773	9.	Chen PJ, Kalpana G, Goldberg J, Mason W, Werner B, Gerin J, Taylor J. 1986.
774		Structure and replication of the genome of the hepatitis delta virus. Proc Natl
775		Acad Sci U S A 83:8774-8.
776	10.	Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. 1986. The
777		hepatitis delta (delta) virus possesses a circular RNA. Nature 323:558-60.
778	11.	Wang KS, Choo QL, Weiner AJ, Ou JH, Najarian RC, Thayer RM, Mullenbach
779		GT, Denniston KJ, Gerin JL, Houghton M. 1986. Structure, sequence and
780		expression of the hepatitis delta (delta) viral genome. Nature 323:508-14.
781	12.	Rizzetto M. 2015. Hepatitis D Virus: Introduction and Epidemiology. Cold
782		Spring Harb Perspect Med 5:a021576.
783	13.	Littlejohn M, Locarnini S, Yuen L. 2016. Origins and Evolution of Hepatitis B
784		Virus and Hepatitis D Virus. Cold Spring Harb Perspect Med 6:a021360.
785	14.	Rizzetto M. 2016. The adventure of delta. Liver Int 36 Suppl 1:135-40.
786	15.	Wille M, Netter HJ, Littlejohn M, Yuen L, Shi M, Eden JS, Klaassen M, Holmes
		27

787		EC, Hurt AC. 2018. A Divergent Hepatitis D-Like Agent in Birds. Viruses 10.
788	16.	Chang WS, Pettersson JH, Le Lay C, Shi M, Lo N, Wille M, Eden JS, Holmes
789		EC. 2019. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus
790		Evol 5:vez021.
791	17.	Hetzel U, Szirovicza L, Smura T, Prahauser B, Vapalahti O, Kipar A, Hepojoki J.
792		2019. Identification of a Novel Deltavirus in Boa Constrictors. mBio 10.
793	18.	Paraskevopoulou S, Pirzer F, Goldmann N, Schmid J, Corman VM, Gottula LT,
794		Schroeder S, Rasche A, Muth D, Drexler JF, Heni AC, Eibner GJ, Page RA,
795		Jones TC, Muller MA, Sommer S, Glebe D, Drosten C. 2020. Mammalian
796		deltavirus without hepadnavirus coinfection in the neotropical rodent
797		Proechimys semispinosus. Proc Natl Acad Sci U S A
798		doi:10.1073/pnas.2006750117.
799	19.	Szirovicza L, Hetzel U, Kipar A, Martinez-Sobrido L, Vapalahti O, Hepojoki J.
800		2020. Snake Deltavirus Utilizes Envelope Proteins of Different Viruses To
801		Generate Infectious Particles. mBio 11.
802	20.	Hedges SB, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base of
803		divergence times among organisms. Bioinformatics 22:2971-2.
804	21.	Chao YC, Tang HS, Hsu CT. 1994. Evolution rate of hepatitis delta virus RNA
805		isolated in Taiwan. J Med Virol 43:397-403.
806	22.	Krushkal J, Li WH. 1995. Substitution rates in hepatitis delta virus. J Mol Evol
807		41:721-6.
808	23.	Alvarado-Mora MV, Romano CM, Gomes-Gouvea MS, Gutierrez MF, Carrilho
809		FJ, Pinho JR. 2011. Dynamics of hepatitis D (delta) virus genotype 3 in the
810		Amazon region of South America. Infect Genet Evol 11:1462-8.
811	24.	Fletcher SP, Chin DJ, Ji Y, Iniguez AL, Taillon B, Swinney DC, Ravindran P,
812		Cheng DT, Bitter H, Lopatin U, Ma H, Klumpp K, Menne S. 2012.
813		Transcriptomic analysis of the woodchuck model of chronic hepatitis B.
814		Hepatology 56:820-30.
815	25.	Fletcher SP, Chin DJ, Gruenbaum L, Bitter H, Rasmussen E, Ravindran P,
816		Swinney DC, Birzele F, Schmucki R, Lorenz SH, Kopetzki E, Carter J, Triyatni
817		M, Thampi LM, Yang J, AlDeghaither D, Murreddu MG, Cote P, Menne S. 2015.
818		Intrahepatic Transcriptional Signature Associated with Response to
819		Interferon-alpha Treatment in the Woodchuck Model of Chronic Hepatitis B.

820		PLoS Pathog 11:e1005103.
821	26.	Ryu WS, Bayer M, Taylor J. 1992. Assembly of hepatitis delta virus particles. J
822		Virol 66:2310-5.
823	27.	Gudima S, He Y, Chai N, Bruss V, Urban S, Mason W, Taylor J. 2008. Primary
824		human hepatocytes are susceptible to infection by hepatitis delta virus
825		assembled with envelope proteins of woodchuck hepatitis virus. J Virol
826		82:7276-83.
827	28.	Zuccola HJ, Rozzelle JE, Lemon SM, Erickson BW, Hogle JM. 1998. Structural
828		basis of the oligomerization of hepatitis delta antigen. Structure 6:821-830.
829	29.	Noe L, Kucherov G. 2005. YASS: enhancing the sensitivity of DNA similarity
830		search. Nucleic Acids Res 33:W540-3.
831	30.	Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H,
832		Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. 2012.
833		Sodium taurocholate cotransporting polypeptide is a functional receptor for
834		human hepatitis B and D virus. Elife 1:e00049.
835	31.	Iwamoto M, Watashi K, Tsukuda S, Aly HH, Fukasawa M, Fujimoto A, Suzuki
836		R, Aizaki H, Ito T, Koiwai O, Kusuhara H, Wakita T. 2014. Evaluation and
837		identification of hepatitis B virus entry inhibitors using HepG2 cells
838		overexpressing a membrane transporter NTCP. Biochem Biophys Res Commun
839		443:808-13.
840	32.	Sureau C, Guerra B, Lee H. 1994. The middle hepatitis B virus envelope protein
841		is not necessary for infectivity of hepatitis delta virus. J Virol 68:4063-6.
842	33.	Gripon P, Cannie I, Urban S. 2005. Efficient inhibition of hepatitis B virus
843		infection by acylated peptides derived from the large viral surface protein. J
844		Virol 79:1613-22.
845	34.	Bergner LM, Orton RJ, Broos A, Tello C, Becker DJ, Carrera JE, Patel AH, Biek
846		R, Streicker DG. 2020. Diversification of mammalian deltaviruses by host
847		shifting. bioRxiv doi:10.1101/2020.06.17.156745.
848	35.	Edgar RC, Taylor J, Altman T, Barbera P, Meleshko D, Lin V, Lohr D,
849		Novakovsky G, Al-Shayeb B, Banfield JF, Korobeynikov A, Chikhi R, Babaian
850		A. 2020. Petabase-scale sequence alignment catalyses viral discovery. bioRxiv
851		doi:10.1101/2020.08.07.241729.
852	36.	Anonymous. !!! INVALID CITATION !!! (34, 35).
		39

853	37.	Chang FL, Chen PJ, Tu SJ, Wang CJ, Chen DS. 1991. The large form of
854		hepatitis delta antigen is crucial for assembly of hepatitis delta virus. Proc Natl
855		Acad Sci U S A 88:8490-4.
856	38.	Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F,
857		Cosset FL. 2019. Enveloped viruses distinct from HBV induce dissemination of
858		hepatitis D virus in vivo. Nat Commun 10:2098.
859	39.	Kircher M, Sawyer S, Meyer M. 2012. Double indexing overcomes inaccuracies
860		in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40:e3.
861	40.	Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J. 2014. Analysis,
862		optimization and verification of Illumina-generated 16S rRNA gene amplicon
863		surveys. PLoS One 9:e94249.
864	41.	Renaud G, Stenzel U, Maricic T, Wiebe V, Kelso J. 2015. deML: robust
865		demultiplexing of Illumina sequences using a likelihood-based approach.
866		Bioinformatics 31:770-2.
867	42.	D'Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, Shakya M,
868		Podar M, Quince C, Hall N. 2016. A comprehensive benchmarking study of
869		protocols and sequencing platforms for 16S rRNA community profiling. BMC
870		Genomics 17:55.
871	43.	Wright ES, Vetsigian KH. 2016. Quality filtering of Illumina index reads
872		mitigates sample cross-talk. BMC Genomics 17:876.
873	44.	Fuxjager MJ, Lee JH, Chan TM, Bahn JH, Chew JG, Xiao X, Schlinger BA.
874		2016. Research Resource: Hormones, Genes, and Athleticism: Effect of
875		Androgens on the Avian Muscular Transcriptome. Mol Endocrinol 30:254-71.
876	45.	Duffy DL, Bentley GE, Drazen DL, Ball GF. 2000. Effects of testosterone on
877		cell-mediated and humoral immunity in non-breeding adult European starlings.
878		Behavioral Ecology 11:654-662.
879	46.	Coordinators NR. 2018. Database resources of the National Center for
880		Biotechnology Information. Nucleic Acids Res 46:D8-D13.
881	47.	Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ
882		preprocessor. Bioinformatics 34:i884-i890.
883	48.	Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome
884		alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol
885		37:907-915.

886	49.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
887		G, Durbin R, Genome Project Data Processing S. 2009. The Sequence
888		Alignment/Map format and SAMtools. Bioinformatics 25:2078-9.
889	50.	Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
890		VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N,
891		Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly
892		algorithm and its applications to single-cell sequencing. J Comput Biol
893		19:455-77.
894	51.	Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new
895		versatile metagenomic assembler. Genome Res 27:824-834.
896	52.	Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large
897		sets of protein or nucleotide sequences. Bioinformatics 22:1658-9.
898	53.	Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the
899		next-generation sequencing data. Bioinformatics 28:3150-2.
900	54.	Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit
901		for FASTA/Q File Manipulation. PLoS One 11:e0163962.
902	55.	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
903		TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.
904	56.	Bon M, Orland H. 2011. TT2NE: a novel algorithm to predict RNA secondary
905		structures with pseudoknots. Nucleic Acids Res 39:e93.
906	57.	Byun Y, Han K. 2009. PseudoViewer3: generating planar drawings of
907		large-scale RNA structures with pseudoknots. Bioinformatics 25:1435-7.
908	58.	Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization
909		prediction. Nucleic Acids Res 31:3406-15.
910	59.	Ludwiczak J, Winski A, Szczepaniak K, Alva V, Dunin-Horkawicz S. 2019.
911		DeepCoil-a fast and accurate prediction of coiled-coil domains in protein
912		sequences. Bioinformatics 35:2790-2795.
913	60.	Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. 2011.
914		BamTools: a C++ API and toolkit for analyzing and managing BAM files.
915		Bioinformatics 27:1691-2.
916	61.	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software
917		version 7: improvements in performance and usability. Mol Biol Evol
918		30:772-80.

919	62.	Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for
920		automated alignment trimming in large-scale phylogenetic analyses.
921		Bioinformatics 25:1972-3.
922	63.	Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a
923		fast, scalable and user-friendly tool for maximum likelihood phylogenetic
924		inference. Bioinformatics 35:4453-4455.
925	64.	Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of
926		best-fit models of protein evolution. Bioinformatics 27:1164-5.
927	65.	Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Davila Felipe M,
928		De Oliveira T, Gascuel O. 2018. Renewing Felsenstein's phylogenetic bootstrap
929		in the era of big data. Nature 556:452-456.
930	66.	Kuo MY, Chao M, Taylor J. 1989. Initiation of replication of the human hepatitis
931		delta virus genome from cloned DNA: role of delta antigen. J Virol 63:1945-50.
932		

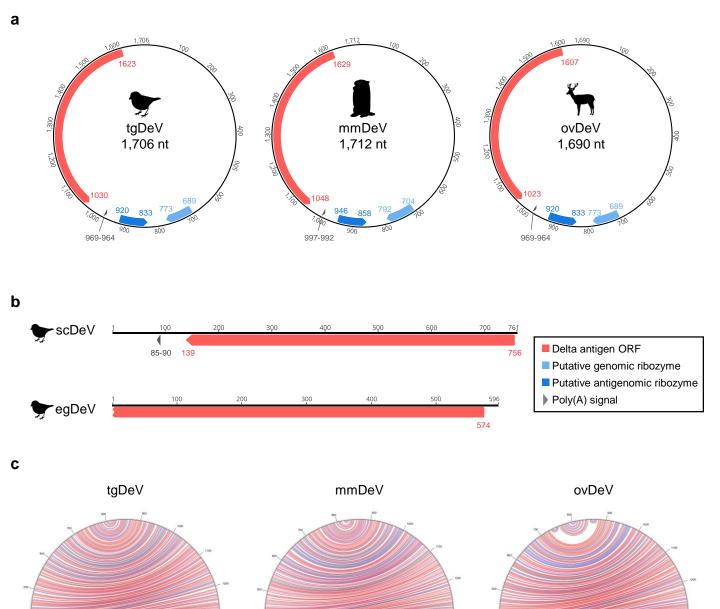
Table 1. Summary of novel deltaviruses												
V /:		Heat an eating	Tissue	SRA	DDBJ	Contig	GC content	BLA	STx best hit			
Virus name		Host species		accession	accession	length (nt)	(%)	Virus name	Accession	Identity (%)		
Taeniopygia guttata DeV	tgDeV	Taeniopygia guttata	Scapulohumeralis caudalis	SRR2545946	BR001665	1706	56.6	Rodent deltavirus	QJD13558	63.3		
Marmota monax DeV	mmDeV	Marmota monax	Liver	SRR2136906	BR001661	1712	53.4	Hepatitis delta virus	AIR77039	60.0		
Odocoileus virginianus DeV	ovDeV	Odocoileus virginianus	Pedicle	SRR4256033	BR001662	1690	56.4	Hepatitis delta virus	AHB60712	available 66.7 Die ur		
Erythrura gouldiae DeV	egDeV	Erythrura gouldiae	Skin	SRR7504989	BR001660	596	59.4 ^{a)}	Rodent deltavirus	QJD13555	63.5 aC		
Serinus canaria-associated DeV	scDeV	Serinus canaria	Skin	SRR2915371	BR001664	761	54.4 ^{a)}	Hepatitis delta virus	AIR77012	36.0 ±		
Pardaliparus venustulus DeV	pvDeV	Pardaliparus venustulus	Lung, Kidney, Cardiac muscle, Flight muscle, Liver	SRR7244693 SRR7244695 SRR7244696 SRR7244697 SRR7244698	BR001663	1708	55.8	Rodent deltavirus	QJD13562	36.0 - 20 36.0 - 20 4.0 International 62.9 - 100		
Lonchura striata DeV	lsDeV	Lonchura striata var. domestica	Blood	-	LC575944	1708	56.2	Rodent deltavirus	QJD13555	62.9 IICen		

a) GC content of the partial genome sequences.

				Host		
Virus	BioProject/ BioStudy	SRA		Taxonomy	RPM ^{a)} (read per million)	Tissue
	BioStudy		Family	Species	(read per minion)	
tgDeV	PRJNA297576	SRR2545943	Estrildidae	Taeniopygia guttata	10.28	Pectoralis
		SRR2545944			1.02	Scapulohumeralis caudalis
		SRR2545946			56.73	Scapulohumeralis caudalis
	PRJNA558524	SRR9899549	Emberizidae ^{b)}	Emberiza melanocephala	3.11	Blood
	PRJNA470787	SRR7244693	Paridae	Pardaliparus venustulus	10.68	Lung
		SRR7244695			2.07	Kidney
		SRR7244696			2.65	Cardiac muscle
		SRR7244697			7.12	Flight muscle
		SRR7244698			1.77	Liver
	PRJNA478907	SRR7504989	Estrildidae	Erythrura gouldiae	1.07	Skin
mmDeV	PRJNA291589	SRR2136906		Marmota monax	70.86	Liver
		SRR2136907			63.08	Liver
		SRR2136916			1.02	Liver
	SRP011132	SRR437934			46.34	РВМС
		SRR437938			19.83	РВМС
ovDeV	PRJNA317745	SRR4256033		Odocoileus virginianus	180.73	Pedicle
scDeV	PRJNA300534	SRR2915371		Serinus canaria	9.79	Skin

Table 2. Detection of	deltavirus-derived	reads in RNA-seq data.
	ucita in us ucifica	i caus in in in scy uata

The full version of the table is available as Supplementary Table 3.


a) This table only shows the samples with RPM >1.

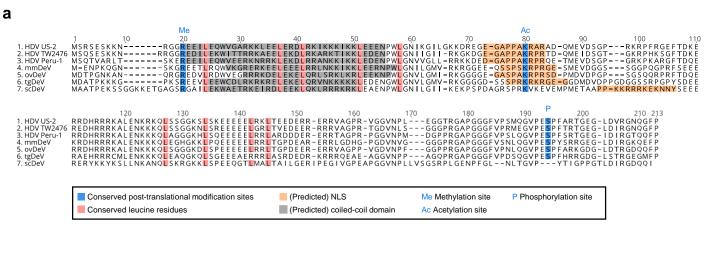

b) Emberizidae is regarded as the subfamily Emberizinae of the family Fringillidae in TimeTree.

Table 3. Coexisting viruses in deltavirus-positive SRAs

CD A	Hos	st	Virus name	Envelope	Deltavirus
SRA accession	Species	Common name	v irus name	Envelope	infection
SRR2545944	Taeniopygia guttata	Zebra finch	Serinus canaria polyomavirus	-	tgDeV
SRR5001849	Taeniopygia guttata	Zebra finch	Serinus canaria polyomavirus	-	tgDeV
SRR5001850	Taeniopygia guttata	Zebra finch	Serinus canaria polyomavirus	-	tgDeV
SRR5001851	Taeniopygia guttata	Zebra finch	Serinus canaria polyomavirus	-	tgDeV
SRR2915371	Serinus canaria	Common canary	Canary bornavirus 3	+	scDeV
			Canary circovirus	-	
SRR7504989	Erythrura gouldiae	Gouldian finch	Erythrura gouldiae polyomavirus 1	-	egDeV

Fig. 1 (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is mavailable under aCC-BY-NC-ND 4.0 International license.

b

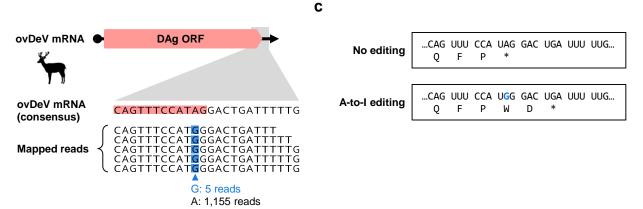
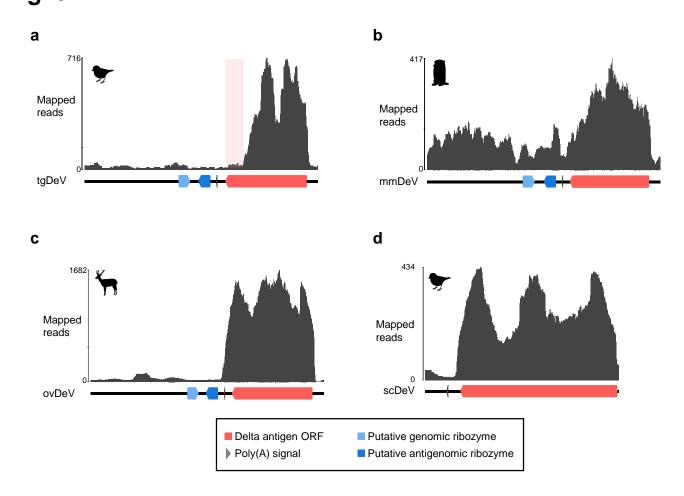
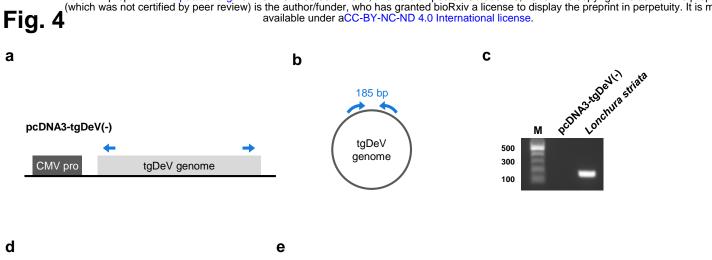
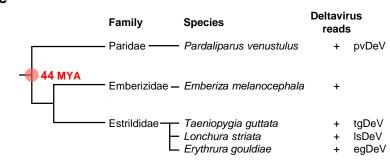





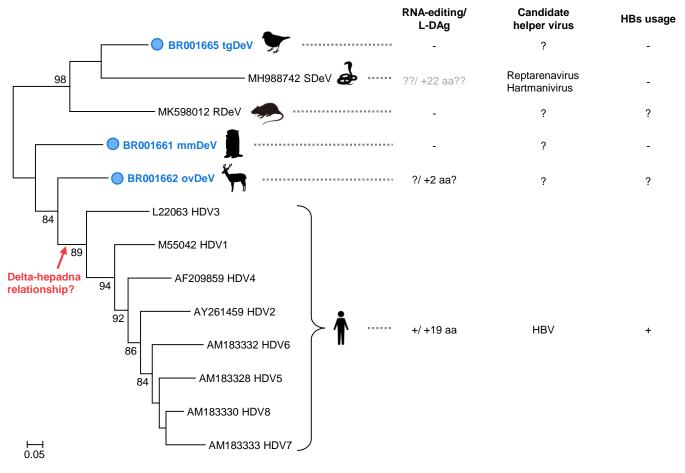
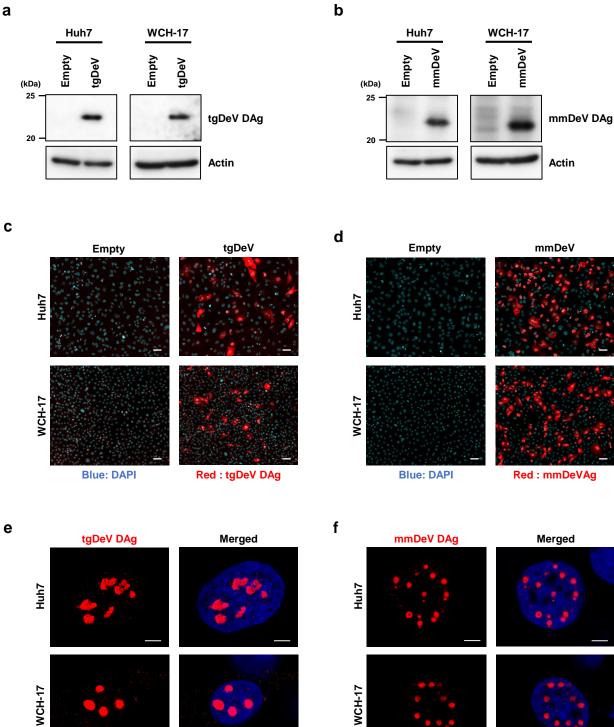
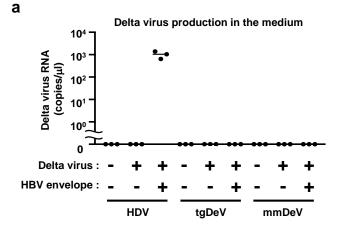
Fig. 3 (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is mavailable under aCC-BY-NC-ND 4.0 International license.

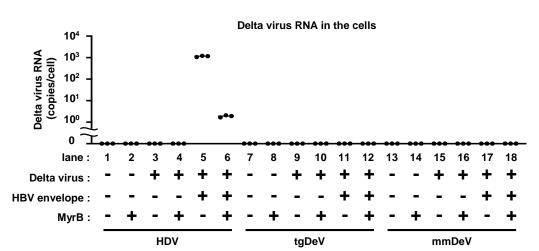
	Nucleotide identity (%)												
	pvDeV	tgDeV	lsDeV										
pvDeV		98.2	98.4										
tgDeV	98.2		98.2										
IsDeV	98.4	98.2											

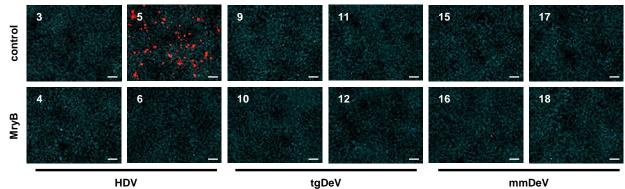
DeV

-	M55042 HDV1	AY261459 HDV2	L22063 HDV3	AF209859 HDV4	AM183328 HDV5	AM183332 HDV6	AM183333 HDV7	AM183330 HDV8	ovDeV	mmDeV	MK598012 RDeV	tgDeV	MH988742 SDeV	MH824555 duck DeV	scDeV	MN031240 fish DeV	MK962760 toad DeV	MN031239 newt DeV	MK962759 termite DeV	
M55042 HDV1		75.0	67.9	74.0	73.0	70.9	72.6	74.0	63.3	57.7	55.1	51.3	48.5	40.2	35.0	22.4	21.5	23.6	21.3	
AY261459 HDV2	75.0		66.2	74.9	76.5	73.3	72.4	76.9	62.6	56.4	54.8	51.5	46.2	35.6	37.1	19.0	24.6	25.6	20.4	
L22063 HDV3	67.9	66.2		64.9	63.1	62.1	64.2	63.1	62.4	60.3	55.6	54.3	49.7	36.7	35.1	19.0	20.6	20.0	20.4	
AF209859 HDV4	74.0	74.9	64.9		72.4	73.3	74.0	76.9	67.0	60.8	56.1	52.8	47.2	39.4	33.2	19.0	23.6	23.3	20.4	
AM183328 HDV5	73.0	76.5	63.1	72.4		74.4	74.5	79.5	62.6	53.4	52.3	50.0	45.3	36.8	38.1	20.0	23.7	24.7	22.4	Identity (%)
AM183332 HDV6	70.9	73.3	62.1	73.3	74.4		71.9	77.4	66.7	54.4	54.8	52.0	48.7	37.2	37.1	20.6	22.6	23.3	21.5	High
AM183333 HDV7	72.6	72.4	64.2	74.0	74.5	71.9		79.1	62.7	54.5	53.4	49.6	46.4	37.9	37.7	19.1	24.2	23.4	22.0	
AM183330 HDV8	74.0	76.9	63.1	76.9	79.5	77.4	79.1		65.6	57.4	54.3	52.0	46.2	37.2	39.5	19.5	22.6	27.4	20.4	
ovDeV	63.3	62.6	62.4	67.0	62.6	66.7	62.7	65.6		67.0	57.7	58.9	51.3	37.2	36.6	24.5	23.1	22.3	21.9	
mmDeV	57.7	56.4	60.3	60.8	53.4	54.4	54.5	57.4	67.0		54.6	55.8	49.7	39.9	32.7	22.1	23.7	22.8	21.5	
MK598012 RDeV	55.1	54.8	55.6	56.1	52.3	54.8	53.4	54.3	57.7	54.6		64.1	54.7	36.0	33.0	19.9	19.4	20.0	21.8	
tgDeV	51.3	51.5	54.3	52.8	50.0	52.0	49.6	52.0	58.9	55.8	64.1		54.2	37.2	33.8	20.2	23.3	21.8	19.9	
MH988742 SDeV	48.5	46.2	49.7	47.2	45.3	48.7	46.4	46.2	51.3	49.7	54.7	54.2		35.9	35.1	17.2	21.7	20.8	19.6	
MH824555 duck DeV	40.2	35.6	36.7	39.4	36.8	37.2	37.9	37.2	37.2	39.9	36.0	37.2	35.9		29.5	15.3	16.8	22.3	16.2	Low
scDeV	35.0	37.1	35.1	33.2	38.1	37.1	37.7	39.5	36.6	32.7	33.0	33.8	35.1	29.5		17.3	21.8	22.3	17.9	
MN031240 fish DeV	22.4	19.0	19.0	19.0	20.0	20.6	19.1	19.5	24.5	22.1	19.9	20.2	17.2	15.3	17.3		15.0	12.5	14.0	
MK962760 toad DeV	21.5	24.6	20.6	23.6	23.7	22.6	24.2	22.6	23.1	23.7	19.4	23.3	21.7	16.8	21.8	15.0		15.4	14.0	
MN031239 newt DeV	23.6	25.6	20.0	23.3	24.7	23.3	23.4	27.4	22.3	22.8	20.0	21.8	20.8	22.3	22.3	12.5	15.4		15.0	
MK962759 termite DeV	21.3	20.4	20.4	20.4	22.4	21.5	22.0	20.4	21.9	21.5	21.8	19.9	19.6	16.2	17.9	14.0	14.0	15.0		

b


Fig. 6 (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is mavailable under aCC-BY-NC-ND 4.0 International license.


(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is r available under aCC-BY-NC-ND 4.0 International license. Fig. 7

b

С

Blue: nucleus Red: DAg