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ABSTRACT

How do functional brain networks emerge from the underlying wiring of the brain? We examine
how resting-state functional activation patterns emerge from the underlying connectivity and length
of white matter fibers that constitute its "structural connectome". By introducing realistic signal
transmission delays along fiber projections, we obtain a complex-valued graph Laplacian matrix that
depends on two parameters: coupling strength and oscillation frequency. This complex Laplacian
admits a complex-valued eigen-basis in the frequency domain that is highly tunable and capable of
reproducing the spatial patterns of canonical functional networks without requiring any detailed neural
activity modeling. Specific canonical functional networks can be predicted using linear superposition
of small subsets of complex eigenmodes. Using a novel parameter inference procedure we show that
the complex Laplacian outperforms the real-valued Laplacian in predicting functional networks. The
complex Laplacian eigenmodes therefore constitute a tunable yet parsimonious substrate on which
a rich repertoire of realistic functional patterns can emerge. Although brain activity is governed by
highly complex nonlinear processes and dense connections, our work suggests that simple extensions
of linear models to the complex domain effectively approximate rich macroscopic spatial patterns
observable on BOLD fMRI.
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1 Introduction

The exploration of structure and function relationships is a fundamental scientific inquiry at all levels of biological
organization, and the structure-function relationship of the brain is of immense interest in neuroscience. Attempts at
mathematical formulations of neuronal activity began with describing currents traveling through a neuron’s membranes
and being charged via ion channels[1]. Recently, the focus of computational models have expanded from small
populations of neurons to macroscale brain networks, which are now available via diffusion-weighted and functional
magnetic resonance imaging (dMRI and fMRI) [2]. Using computational tractography on dMRI images, detailed whole
brain white-matter tracts, and their connectivity can be obtained, to yield the brain’s structural connectivity (SC). Using
correlated activation patterns over time in fMRI data reveals functional connectivity (FC) with high spatial resolution.
Such high resolution images of the brain also allowed neuroscientists to label the brain according to anatomical or
functional regions of interest (ROIs) [3, 4]. Subsequently, efforts in graph-theoretic modeling have emerged as an
effective computational tool to study the brain’s SC-FC relationship based on the parcellated brains: ROIs become
nodes and connectivity strengths become edges on the graph, while dynamical systems describing neuronal activity are
played out on this graph structure [5, 2, 6].

Diverse graph based methods have been employed to relate the brain’s SC to FC. Particularly, perturbations and
evolution of the structural and functional networks have been investigated using both graph theoretical statistics [7, 8, 9,
10, 11, 12, 13] as well as network controllability [14, 15]. Structurally informed models use graphical representations
of the brain’s connections to couple anatomically connected neuronal assemblies [16, 17], numerical simulations of
such neural mass models (NMMs) provides an approximation of the brain’s local and global activities, and are able
to achieve moderate correlation between simulated and empirical FC [18, 19, 20, 21, 22]. However, approximations
through stochastic simulations are unable to provide a closed form solution and inherits interpretational challenges
since dynamics is only obtained from iterative optimizations of high dimensional NMM parameters.

An emergent field of work have suggested low-dimensional processes involving diffusion or random walks on the
structural graph as a simple means of simulating FC from SC. These simpler models are equally if not more successful
at simulating fMRI FC patterns [23, 24] as well as MEG oscillatory patterns [25, 26] than conventional NMMs. Lastly,
these simpler graph diffusion models, which naturally employ the Laplacian of SC, have been generalized to yield
spectral graph models whereby Laplacian eigen-spectra were sufficient to reproduce functional patterns of brain activity,
using only a few eigenmodes [27, 24, 26]. Thus, a Laplacian matrix representation of a network can be used to
find characteristic properties of the network [28], and its eigenmodes (or spectral basis) are the ortho-normal basis
that represent particular patterns on the network. Such spectral graph models are computationally attractive due to
low-dimensionality and more interpretable analytical solutions.

The SC’s Laplacian eigenmodes are therefore emerging as the substrate on which functional patterns of the brain
are thought to be established via almost any reasonable process of network transmission [27, 24, 29], and metrics
quantifying structural eigenmode coupling strength to functional patterns were also recently introduced [30]. These
works mainly focused on replicating canonical functional networks (CFNs), which are stable large scale circuits made
up of functionally distinct ROIs distributed across the cortex that were extracted by clustering a large fMRI dataset [31].
In [31] seven CFNs (these are spatial patterns, not to be confused for the entire network of graph of the connectome)
were identified. Hence recent graph modeling work has attempted to address whether these canonical patterns can
emerge by only looking at the structural connectivity information of the brain.

Although spectral graph models have been reasonably successful, they leave several important gaps. First, they
accommodate only passive spread, hence are incapable of producing oscillating or traveling phenomena, which are
critical properties of brain functional activity. Second, they do not incorporate path delays caused by finite axonal
conductance speed of activity propagating through brain networks. Third, they are capable of reproducing only
deterministic and steady-state features of empirical brain activity, giving a single predicted FC for a given SC. Hence
these models cannot easily explain the substantial variability observed amongst individuals, as well as between different
recording session of the same individual. This suggests that simplistic spectral graph models will need to be augmented
with a set of richer time- or individual-varying features or parameters in order to make them more realistic. Unfortunately,
this is a goal that is at variance with the key attraction of these methods - their parsimony and low-dimensionality.

In this study we propose a novel spectral graph approach that is able to produce a far richer range of functional activity
and dynamics without compromising on the simplicity and parsimony of the spectral graph model. We hypothesise
that the introduction of realistic path delays and axonal conductance speeds can allow graph spectra to display the
kinds of pattern-richness observed in real data. Hence we utilize both the SC connectivity strength matrix as measured
by white-matter fiber tract density, as well as the distance matrix as measured by the average white-matter fiber tract
distance between pairs of ROIs. We show that the additional distance information allows for examining of network
dynamics in the complex domain in terms of a novel complex-valued Laplacian. This approach involves only global
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model parameters, which between them accommodate a rich diversity of spatiotemporal patterns that are capable
of closely reproducing the diversity of spatial patterning seen across a large number of healthy subjects. Through
this minimalist complex diffusion model, the characteristic patterns of signal spread described by corresponding
complex-valued eigen-spectra can be tuned to exhibit activation patterns resembling human CFNs. We show that the
complex approach significantly and consistently exceeds the performance of existing works relating real-valued SC
Laplacian’s eigen-spectra to measured FC [24, 30, 27, 21]. The introduction of the complex-valued Laplacian and
accompanying complex graph diffusion may be an important contribution to the emerging literature on graph models of
brain activity, and furthers our understanding of the structure-function relationship in the human brain.

We begin with a general theory of complex graph diffusion incorporating path delays, leading to the emergence of the
complex-valued Laplacian. Then we present detailed statistical analysis showing the ability of complex eigenmodes
to be tuned by model parameters and reproducing CFNs. We present comparison with the current approach of using
real-valued eigenmodes, followed by a detailed Discussion.

2 Theory

Notation. In our notation, vectors and matrices are represented in bold, and scalars by normal font. We denote
frequency of a signal, in Hertz (Hz), by symbol f , and the corresponding angular frequency as ω = 2πf . The structural
connectivity matrix is denoted by C = cjk, consisting of connection strength cjk between any two pairs of brain
regions j and k.

2.1 Network Diffusion of Brain Activity

For an undirected, weighted graph representation of the structural network ci,j , we model the average neuronal activation
rate for the i-th region as xi(t):

dxi(t)

dt
= −β(xi(t)− α

j∑
i 6=j

ci,jxj(t− τνi,j)) + p(t) (1)

Where we have a mean firing rate equation at the i-th region controlled by an inverse of the common characteristic time
constant β, and input signals from the j-th regions connected to region i are scaled by the connection strengths from
ci,j and delayed by t− τνi,j . The term τνi,j is the delay in seconds obtained from the distance adjacency matrix defined
by τνi,j, =

Di,j
ν , with ν representing the conductance speed in the brain’s SC network. The global coupling parameter α

acts as a controller of weights given to long-range white-matter connections.

The delays between connected brain regions turn into phase shifts in the frequency profiles of the oscillating signals.
Thus we obtain the following Fourier transforms from (1): dxi(t)dt → jωxi(ω), x(t− τνi,j)→ e−jωτ

ν
i,jxi(ω), and the

oscillatory frequency ω = 2πf . Lastly, we define a complex connectivity matrix as a function of angular frequency ω as
CCC∗(ω) = cij exp

{
−jωτνi,j

}
. Therefore, a structural connectivity matrix whose nodes are normalized by degi =

∑
j cij

at frequency ω can be expressed as:

CCC(ω) = diag(
1

degdegdeg
)CCC∗(ω) (2)

2.2 Complex Laplacian Matrix

Our goal is to examine the characteristic patterns of diffusion revealed by the structural network’s normalized Laplacian
matrix. Here, we make use of (2) to introduce a complex Laplacian matrix that absorbs the network properties of
both the structural connectivity matrix as well as the distance adjacency matrix. By applying the Fourier transforms
mentioned above, we obtain a closed-form solution for X̄̄X̄X(ω):

X̄̄X̄X(ω) = (jωI + βL(α, k))−1PPP (ω) (3)

In this closed-form solution, we define a complex Laplacian matrix L as a function of global coupling α. Since
frequency ω and transmission speed ν always occur as a ratio, we define a wave number k = ω

ν . The wave number
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represents the spatial frequency of any propagating wave, describing the amount of oscillations per unit distance traveled
[32]. Then the complex Laplacian matrix L has the form:

L(α, k) = III − αCCC∗(k) (4)

Where III is the identity matrix and CCC∗(k) is the complex connectivity matrix as defined above. While (3) indicates
that the propagating signals in the network is governed by L, the complex Laplacian of the network describes the
characteristic patterns of signal spread in a network, and we can obtain these spatial patterns via the decomposition:

L(α, k) =
N∑
n=1

un(α, k)λn(α, k)uHn (α, k) (5)

Where λn(α, k) are the eigenvalues of the complex Laplacian matrix and un(α, k)’s are the complex eigenmodes of
the complex Laplacian matrix. Here, the entries of the complex Laplace eigenmodes represent the relative amount of
activation in each parcellated brain region as controlled by global coupling and wave number parameters.

Canonical Functional Network (ψ)

compare similarity

Eigenmodes of Complex Laplacian(U) Eigenmode U1

Figure 1: The analysis overview. Structural connectivity matrix (C) and distance adjacency matrix (D) were extracted
from diffusion MRI derived tractograms, to construct the complex Laplacian of the brain’s structural network. An eigen
decomposition on the network’s complex Laplacian (L) was performed obtain complex structural eigenmodes of the
brain (U ). The spatial similarities were computed between the structural eigenmodes and canonical functional networks
in fMRI. Here, as an example, we show brain rendering of the leading eigenmode from the HCP template structural
connectome (right column, top) and the canonical visual functional network (right column, bottom).

3 Results

3.1 Structural connectivity based functional activation patterns

We use the HCP template connectome to demonstrate the wide range of spatial activity patterns achievable by the
eigenmodes of the complex Laplacian matrix. The top row of Figure 2 shows three exemplary real-valued structural
eigenmodes (α = 1) without frequency and transmission speed tuning. Consistent with previous works, we see the
Laplace eigenmodes of the human structural connectome display a wide range of cortical activity patterns [27, 24]. As
a comparison, we show in the next row complex Laplace eigenmodes with low wave number (k = 0.1), representing a
network with extremely high transmission speed or near zero delay. In such a low delay network, the complex Laplace
eigenmdoes closely resemble the spatial patterns seen in real-valued Laplace eigenmodes where delays are not a factor
in the network. We also show two additional examples of complex Laplace eigenmodes with higher wave number
values, emphasizing the impact of transmission speed and delays in the structural network of the brain. The combination
of coupling strength and wave number global parameters enables a richer diversity of spatial cortical patterns, with
left and right hemisphere specific activations around the dorsal-caudal brain regions. Despite the increase in model
complexity, our approach allows a feature-rich graph theoretics approach to directly infer resting state functional brain
patterns from the structural graph of the brain.

3.2 Eigenmodes of the complex Laplacian resemble CFN activation patterns

We re-assigned the voxel-wise parcellations of the seven CFNs from Yeo et al. [31] to brain regions from the Desikan-
Killiany atlas (Figure 3, left column), this re-sampling of the parcellations allow spatial pattern comparisons of equal
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Figure 2: Complex Laplacian eigenmode for different parameter choices. Three representative eigenmodes decomposed
from the complex Laplacian with different tuning parameters and three representative eigenmodes decomposed from
the real-valued Laplacian without transmission speed and distance delay properties are shown. The top row shows
brain renderings of the real Laplacian eigenmodes with coupling strength α = 1. Complex Laplacian eigenmodes
with high transmission speed approaches extremely small wave number or delays in the network (α = 1, k = 0.1),
closely resembles the real Laplacian eigenmodes (second row). Complex Laplacian eigenmodes with higher wave
numbers with parameters (α = 1, k = 30) and (α = 5, k = 30) are respectively shown in the third and fourth rows,
demonstrating that parameter choice control the spatial distribution of structural eigenmodes.

dimensions against our structural connectomes and Laplace eigenmodes. The middle column of Figure 3 shows best
matching complex Laplace eigenmodes after optimization of the global parameters with the HCP template connectome
to each CFN. In addition to displaying the best-performing eigenmode in each case, we further ranked the eigenmodes
according to their spatial correlation values and displayed the best weighted linear combination of the top 10 complex
Laplace eigenmodes on the right column of Figure 3. The spatial correlation values of the best performing eigenmode,
and details of cumulative combinations of eigenmodes are reported below and in Figure 6. We observe that CFN
patterns emerge when parameters, optimized for each network, are applied to the complex Laplacian. Only a few
structural eigenmodes are required to capture a specific functional network.

3.3 Parameter tuning of complex Laplacian eigenmodes

To examine the sensitivity of our eigenmodes to our complex Laplacian parameters, we first computed spatial correlation
values for the all eigenmodes for each CFN across the entire parameter range. Figure 4 (top) shows the effect of fixing
k and varying α, while bottom row shows the effect of varying k at a fixed α. At a glance, almost all eigenmodes are
capable of resembling any given CFN with the proper choice of tuning parameters, and it is evident that we need to tune
both the global coupling strength and wave number for a dominant eigenmode matching a specific CFN to emerge. For
any given CFN, we find parameter regimes that recruit multiple eigenmodes while others recruit a single one. This
is especially true of the wave number parameter and not so for coupling strength. Furthermore, the best achievable
spatial correlation stay consistent as we tweak the global coupling strength, whereas wave number tuning causes shifts
in spatial similarity value and eigenmode occupation. And finally, the limbic network has the lowest spatial match and
the least a mount of shift in spatial correlation values.

To further examine the tunable parameter’s effects on the leading (best performing) eigenmodes, we show a heat map of
the spatial correlation achieved by the dominant eigenmode as we shifted parameter values in Supplementary Figure
1. As expected, global coupling parameter had no effect on dominant eigenmode’s fit while the wave number did.
Subsequently, we split the wave number parameter into its two components: transmission velocity and oscillating
frequency of signals in the network, showing that those two components equally affect spatial patterns emerging from
the complex Laplacian eigenmodes (Supp. Figure 1 bottom row). The spatial correlation patterns of each functional
network also implies that there are potentially functional network specific eigenmodes obtainable from the structural
complex Laplacian, which will be explored further in the subsequent group level analysis.
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Best Fit with Top 10 Structural 
Eigenmodes Σu1θ1...u10θ10

Canonical Functional Networks ψ

Fronto-
parietal

α = 2.9, k = 42.3

min

max

Limbic

α = 3.9, k =  74.9

Default

α = 3.0, k = 30.4

Visual

α = 3.9, k = 249

 

Somato-
motor

α = 1.0, k = 100

Dorsal
Attention

α = 2.6, k =  78.5

Ventral
Attention

Best Fit Structural Eigenmode u

Eigenmode 17, R = 0.66

Eigenmode 73, R = 0.56

Eigenmode 35, R = 0.61

Eigenmode 19, R = 0.62

Eigenmode 84, R = 0.60

Eigenmode 16, R = 0.61

Eigenmode 56, R = 0.58 α = 3.32, k = 60.8

Figure 3: Canonical functional networks reproduced by structural eigenmodes. Brain renderings of the seven canonical
functional networks are shown in the left column. Individual structural eigenmodes with the highest spatial correlation
to each functional network, after parameter optimization, are shown in the middle column. After ranking all structural
eigenmodes by highest spatial correlation, a linear combination of the top ten best performing eigenmodes are shown in
the right column. Parameter values producing the best spatial matches to each canonical functional network are listed in
the right column and applies to all eigenmodes.

On the group level, we found parameter sets that provided the most spatially similar complex Laplace eigenmode for
each canonical functional network. The rank of the most spatially similar eigenmodes are summarized in violin plots in
Figure 5. With the exception of the default mode network, whose best structural match spans across the range of all
eigenmodes, all other canonical functional networks exhibit selectivity towards a specific subset of ranked eigenmodes.
The limbic and visual networks, which contains dense connections in the anterior and ventral regions of the brain,
prefer to occupy eigenmodes at both low and high ends of the eigen spectrum. On the other hand, the dorsal and ventral
attention networks mainly occupy the middle of the eigen-spectrum. The specific occupancy patterns shown here
implies there may be a hierarchy to the functional and structural organization of the brain, and the functioning brain
minimizes the recruitment of unrelated structural connections when engaged in conscious brain activity.

3.4 Complex Laplacian eigenmodes outperform real Laplacian eigenmodes

We created 1000 random realizations of connectivity matrices and their corresponding distance adjacency matrices that
share the same sparsity, mean, and standard deviation values as the HCP template connectome values. Comparisons
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Figure 4: Structural eigenmode spatial similarity to canonical functional networks depends on model parameters. Colors
display the spatial correlation values (Spearman’s) of all complex Laplacian eigenmodes across all parameter values
with each canonical functional network. Shifts in coupling strength (α, top, with wave number held constant at k = 10)
does not cause a change in peak spatial correlation, but only in the ordering of the eigenmodes. In contrast, however,
shifts in wave number (k, bottom), with coupling strength held constant at α = 1, leads to changes in eigenmode spatial
patterns and spatial correlation to canonical functional networks.

between eigenmodes of the HCP template connectome and randomly generated connectomes are displayed in Figure 6.
The Laplace eigenmodes of the brain’s white matter network can be seen as individual subsets of cortical activation
patterns that make up the brain’s functional activity. Therefore, spatial match between cumulative combinations of
eigenmodes to each canonical functional network were computed in addition to just the leading eigenmode.

Overall, the HCP complex Laplacian’s best-performing eigenmodes achieved higher spatial correlation and lower
residuals than other variants of Laplace eigenmodes in 6 out of the 7 CFNs (left-most point on each curve). As more
individual eigenmodes are linearly combined, all variants show a steady improvement in spatial similarity, with the
fully random variant using the most number of eigenmodes to achieve a high spatial match, suggesting the fully random
eigenmodes are the least informative. On the other hand, the complex eigenmodes from randomized distance Laplacians
(magenta) consistently performs better than fully random complex eigenmodes (green) but lacks the structural distance
information to compete with complex Laplace eigenmodes constructed with HCP template connectivity and distance
adjacency matrix. The spatial similarity reported in Figure 6 is Pearson’s correlation due to its smoothness, we show the
same quantification with Spearman’s correlation in Supplementary Figure 2, which is more appropriate for discrete
samples, but its more volatile due to its nonlinear ordering of samples.
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Figure 5: Canonical functional networks have complex Laplacian eigenmode specificity. Each dot on the violin
plot corresponds to the best performing eigenmode number. Showing that across all subjects (n = 36), canonical
functional networks occupies specific structural eigenmodes as the dominant structural basis. Default mode network
is the exception as the best performing eigenmode spans across all eigenmodes. On the other hand, the rest of the
canonical functional networks cluster to specific eigenmode numbers.

Spatial similarities from random variants of complex Laplace eigenmodes were normalized into a Z-score distribution
for construction of 95% confidence intervals and comparisons against HCP connectome variants. Comparing only
the leading eigenmodes without cumulative combinations, Complex Laplacian eigenmodes significantly outperforms
random connectivity eigenmodes for all functional network comparisons (P < 0.05), but only significantly outperforms
the randomized distance eigenmodes for the limbic, visual, frontoparietal, and dorsal attention networks. On the
other hand, the real-valued Laplace eigenmodes does not significantly outperform eigenmodes from fully random
connectivity profiles for all functional networks. The P -values for both Pearson’s and Spearman’s metrics are shown in
Supplementary Tables S1 and S2.

3.5 Group level eigenmode analysis

Figure 7 shows a violin plot of the best spatial correlation achieved by each subject’s complex Laplacian in orange, real
Laplacian in blue, and random distance adjacency matrix paired with the HCP connectome in magenta. Consistent
with our HCP template connectome analysis, the complex Laplacian eigenmodes outperforms both the real Laplacian
eigenmodes and randomized distance complex Laplacian eigenmodes. Our complex Laplacian framework includes the
additional distance and delay information in the brain networks compared to conventional real Laplacian eigenmodes,
therefore we generated complex Laplacien eigenmodes from HCP structural connectivity paired with random distance
adjacency matrices, which as a comparative degree of freedom. Paired T-tests were performed for all CFNs, the complex
Laplacian eigenmodes outperformed real Laplcian eigenmodes at the group level for all networks except the limbic
network (p = 0.64). On the other hand, significantly higher spatial similarity was achieved by complex Laplacian
eigenmodes for all networks except the dorsal attention network (p = 0.12) when comparing against the random
distance group results.

4 Discussion

In this study we have proposed a complex graph Laplacian framework that demonstrates an ability to capture functional
connectivity patterns, while maintaining parsimony and low-dimensionality of spectral graph models. The model
involves only two global and biophysically meaningful parameters, one controlling the speed of activity propagation,
and the other controlling coupling strength between remote populations of neurons connected via axonal projections.
We presented detailed statistical analysis of the resulting complex-value Laplacian eigenmodes, focusing on their
ability to predict the spatial patterns observed on seven CFNs that are well established in functional neuroimaging. The
implications of our main contributions are discussed below, with additional context and relevance to current literature.
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Figure 6: Structural eigenmodes of the HCP template complex Laplacian predict canonical functional networks better
than structural eigenmodes of the real Laplacian. For each canonical functional network, we quantified its spatial
similarity against linear combinations of structural eigenmodes obtained from various types of Laplacians. The spatial
similarities quantified by linear least squares residuals are shown on top, and Pearson’s correlations are shown on the
bottom. Overall, accumulation of structural eigenmodes improves the spatial similarity between functional networks
and structural eigenmodes. The complex HCP eigenmodes (orange) and real-valued HCP eigenmodes (blue) both
outperform eigenmodes decomposed from random connectomes and random distance matrices (green). However, only
the complex HCP eigenmodes outperform complex eigenmodes decomposed from the HCP template connectome
paired with random distance matrices (magenta).

4.1 A simple yet feature-rich graph theoretic approach

We derived a simple model of network diffusion of activity which takes into account the path delays introduced by
realistic axonal conductance speeds and fiber lengths, and showed that at the first order the behavior of the model can
be captured within a complex Laplacian, on which a complex-valued graph diffusion process is enacted. Using this
definition of the complex Laplacian we demonstrated that its eigenmodes constitute a sparse basis that is capable of
reproducing the characteristic spatial patterns of empirical resting state functional activity given by the 7 CFNs.

4.2 Higher predictive power than existing graph models

We showed that the complex Laplacian outperforms the existing models that use the eigenmodes of real-valued
Laplacian. These results are far better than can be expected by chance, as indicated by the significance values of our
results with respect to large simulations with Laplacians calculated from random connectomes. Thus, future graph
models can benefit from the enhanced predictive power of the proposed complex Laplacian approach, which in the cases
we have tested highly significantly improves performance(see Figure 5). Our work can therefore find direct applicability
in many clinical and neuroscientific contexts where predicting functional patterns from structure is important [33, 34],
particularly in cases of epilepsy [35], stroke [36, 37], and neurodegeneration [38].

4.3 Complex eigenmodes accommodate a diversity of spatial patterns

One of the most intriguing aspects of our study is the demonstration that almost all (complex) eigenmodes are capable of
resembling any given CFN, with the proper choice of tuning parameters. As observed from Figure 4, certain parameter
regimes recruit multiple eigenmodes while others recruit a single one; however with the right selection of the two model
parameters, it is possible to "steer" the eigenmodes in such a manner that a small number of them can reproduce any
CFN. This not only denotes the strength of our approach, we believe it points to an essential characteristic of real brain
activity, which is thought to accommodate a large repertoire of microstates and their concomitant spatial patterns. This
rich repertoire was shown above to be capable of being engaged by our parsimonious graph model, which may point to
the possibility that complex behavior may be achievable by simple and parsimonious mechanisms, and may not require
the kinds of high-dimensional and non-linear oscillatory models that have held sway in the field of neural modeling [21,
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Figure 7: Complex Laplacian outperforms real Laplacian in recapitulating canonical functional networks with individual
structural connectomes. Violin plot showing that on a group level (each dot correspond to one subject, n = 36), the
best performing structural eigenmodes of the complex Laplacian (orange) outperforms the corresponding structural
eigenmode from the real Laplacian (blue) and random distance complex Laplacian (magenta). Paired T-test results of
complex Laplacian against either real Laplacian or random distance complex Laplacian shows the complex Laplacians
eigenmodes achieving significantly higher spatial similarity on the group level (P-values shown as ∗ < 0.5, ∗∗ < 0.01).

19]. Our work also supports the idea that macroscopic neurophysiological data on a graph can be sufficiently modeled
with linear metrics, and nonlinear methods may not be required for problem of such scale [39, 40].

4.4 Rich repertoire is tunable with two biophysical parameters

In our model, the brain can access any configuration of spatial patterns seen in real resting state functional networks by
tuning only two of its global and biophysically meaningful parameters: coupling strength and wave number. Our current
work indicates that physical distances and the transmission rate of oscillatory activity in combination with coupling
strength is sufficient in generating various canonical functional brain patterns. This demonstration in an analytical
model, that a rich repertoire of states is accessible to the brain by tuning biophysical processes, has not previously been
reported to our knowledge. The present computational study is not intended to explore the neural mechanisms that
might control these parameters. Nevertheless, modern neuroscience provides several potential mechanisms.

Coupling strength α is a direct scaling of white-matter excitatory long range connections between neural populations in
the brain. Phase and amplitude coupling of oscillatory processes in the brain is evidently important for the formation
of coherent wide-band frequency profiles of brain recordings and processing of information [41, 42, 43, 44, 45].
Parameterization of coupling strength between distant brain regions via the connectome is ubiquitous in connectivity
based models of BOLD fMRI [46, 45, 21, 23] and electroencephalography activity [47, 22, 48]. Furthermore,
pathological FC patterns as a result of disconnections in the brain can be reproduced with decrease in coupling strength
[49, 50].

The other key tunable parameter in our model, wave number k, is the ratio between the oscillatory frequency and
transmission velocity of a propagating signal, describing the amount of oscillations per unit distance traveled by any
signal spreading throughout the brain’s structural network. While transmission speed of signals between brain regions
is often overlooked in brain modeling efforts, its importance is emphasized by the biology of the central nervous system.
Neuronal spike arrival timing at the cellular level and coherent oscillatory activity at the network level are carefully
managed by synaptic strengths as well as axonal myelination, respectively [51, 52]. Further, wave number can be
controlled not just by conductance speed, but also by the operative frequency of oscillations ω. From the deep literature
on wide-band frequency response of brain recordings, it is already known that different functional networks of resting
state BOLD data are preferentially encapsulated by different higher-frequency bands via phase- and amplitude-coupling
[44, 45]. Hence it is plausible that wave number tuning may be achieved biologically via either dynamic conductance
speed or dynamic control of frequency bands.
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4.5 Relationship to existing studies

Recent graph models involving eigen spectra of the adjacency or Laplacian matrices of the structural connectome have
greatly contributed to our understanding of how the brain’s structural wiring gives rise to its functional patterns of
activity (REF). Although these models have very attractive features of parsimony and low-dimensionality, they suffer
from being feature poor and an inability to make stronger predictions about functional networks.

Such models mapping between structural and functional patterns of the human brain have typically assumed that SC
and FC are not independent entities, and that relationship between the two cannot simply be explained by a direct
mapping [21]. In addition to connection strength between regions, metrics such as anatomical distances [53], shortest
path lengths [54], diffusion properties [27, 36], and structural graph degree [55] were also found to contribute to the
brain’s observed functional patterns. Higher-order walks on graphs have also been quite successful; typically these
methods involve a series expansion of the graph adjacency or Laplacian matrices [56, 57]. The diffusion and series
expansion methods are themselves closely related [29], and almost all harmonic-based approaches may be interpreted as
special cases of each other, as demonstrated elegantly in recent studies [58, 59]. The wealth of studies elucidating how
the observed function originate from the underlying structural network provided a strong motivation for our approach,
which extracts functional patterns from the informative complex graph Laplacian that incorporates both the connection
strengths as well as the anatomical distances of the structural network.

In contrast to spectral graph models, inferring functional connectivity from biophysiological models of neuronal
populations have been a specialty of dynamic causal models (DCMs). Such generative models have emerged as
powerful tools mainly to infer effective (directional) connectivity for smaller networks [60, 61, 62, 63, 64], or dynamic
functional connectivity [65, 66]. While the goal of DCMs is similar to our proposed model that makes model inferences
about FC, the two frameworks are different in terms of approach and dimensionality. DCMs examine the second order
covariances of brain activity, and it is only recent works with spectral and regression DCM models have expanded the
model coverage to the whole-brain scale and the potential to incorporate SC data [67, 68, 69]. However, these models
rely on formulation of local neural masses to derive dynamical behavior, which are then used to generate effective or
dynamic connectivity through simulations. By avoiding large-scale simulations of neuronal activity, in our proposed
framework we not only allowed canonical functional patterns to emerge directly from a complex Laplacian matrix, we
have also created a model with only two global parameters. Most DCM models have many more degrees of freedom
compared to our work because of their parameterization for different interactions within and between brain regions. In
contrast to some of more recent spectral DCM parameterizations, additionally, our global parameters reflecting the
brain’s anatomical connection density and distances traveled between connections continue to have clear biophysical
interpretability.

Frequency-band specific magnetoencephalography (MEG) resting-state networks have been successfully modeled with
a combination of delayed NMMs and eigenmodes of the structural network [25], suggesting delayed interactions in a
brain’s network give rise to functional patterns constrained by structural eigenmodes. In our recent work, we expanded
upon eigenmdoes of SC matrices by integrating time delays in the brain with SC to create a complex Laplacian matrix
in the Fourier domain [26]. Using the eigen-spectra of the complex Laplacian matrix, we found specific subsets of
complex eigenmodes that contributed to specific cortical alpha and beta wave patterns. The findings in the current
article expands upon these time-delayed eigenmodes to find subsets of eigenmodes predictive of canonical functional
networks derived from resting state fMRI. Our theorized framework provides two global parameters that act on the
structural connectome and its corresponding distance adjacency matrix to control coupling strength and delays in the
network. These findings supports other works suggesting there is a possible organizational hierarchy, or gradients of
topographical organization that spatially constraints cortical function [70, 71, 72, 73, 74]. Margulies et al. proposed
that so-called “principal gradients”, which may be interpreted as the Laplacian eigenmodes of the FC matrix, serve as
the core organizing axis of cerebral cortex, spanning from unimodal sensorimotor to integrative transmodal areas [70].
The complex eigenmodes proposed here may therefore be considered as the structural analog of Margulies’ principal
gradients. Similarly, we found that the unimodal sensorimotor networks at one end of the principal gradient, which
accounts for the most variance in connectivity, achieved the highest spatial correlations. On the other hand, transmodal
networks on the opposite end of the axis, needed much more cumulatively combined structural eigenmodes to achieve
high spatial similarity.

Atasoy et al. previously modeled the same resting-state canonical functional networks used here with real-valued
Laplacian eigenmodes as structural substrates on which a mean field neural model dictated cortical dynamics [24].
While the model dimensionalities between the two studies are vastly different, we show that in the absence of a neural
dynamical system, the addition of time lag in the network allowed canonical functional networks to emerge from just
structural substrates. Furthermore, we believe incorporating time lags in our structural connectivity of the brain to
create complex Laplacian matrices is an informative but unexplored alternative to regular Laplacian normalizations
of brain networks. Particularly, the complex connectivity matrix in Fourier domain allows exploration of oscillatory

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.09.16.300384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.300384
http://creativecommons.org/licenses/by-nc/4.0/


PREPRINT - OCTOBER 19, 2020

frequency and phase shifts between brain regions as a property of the network, potentially presenting an opportunity in
utilizing complex structural eigenmodes to integrate SC for explaining imaginary coherence patterns in MEG and EEG.

4.6 Limitations

The current results are limited by data resolution. Tractograms obtained from diffusion weighted images are approx-
imations of the brain’s axonal white-matter connections. We recognize that tractography, paired with anatomical
parcellation of brain regions, does fail to appreciate the finer structures in the brain, especially the more refined
connections and nuclei in the brain stem as well as close neighbor connections. Despite the coarse parcellation and
rough approximations of white matter architecture, our proposed approach utilizes a spatial embedding of the brain’s
connectomics information and is extendable to finer parcellations.

Our theorized model relies on an averaged approximation of fiber distances between ROIs, and we assumed a global
parameter to account for conductance speed in the brain. In reality, the amount of myelination and synaptic strength
varies greatly in the brain. However, our approximations were enough in recapitulating canonical functional networks
in the human brain, while benefiting from a low dimensional and interpretable model. It is also worth nothing that the
canonical functional networks used in this work were obtained from data-driven clustering of fMRI activity, and is
far from a comprehensive representation of the brain’s functional patterns. While our work can be extended to finer
functional parcellations, we sought to avoid overlap between canonical functional networks by using the 7 networks
parcellation. For example, the dorsal and ventral attention networks are found to overlap with the salience network
[75], and task activated fMRI patterns revealed regions that are positively and negatively associated with attention and
default networks [76].

5 Conclusions

In conclusion, we show that the spatial embedding of the brain’s connections in a structural connectome is a rich
substrate, on which we can derive intrinsic functional patterns of the brain with a simple network diffusion approach.
We show that Laplace eigenbasis in the complex frequency domain outperforms conventional eigenbasis of the graph
Laplacian in capturing spatial patterns of canonical functional networks. We recognize the complex nonlinear activities
and dense connections present in the brain, but our work suggests that we can continue to extend simpler linear modeling
approaches to approximate what we observe with macroscopic imaging techniques such as BOLD fMRI and diffusion
weighted imaging.

6 Methods

6.1 Structural Connectivity Network Computation

We constructed structural connectivity networks according to the Desikan-Killiany atlas where the brain images were
parcellated into 68 cortical regions and 18 subcortical regions as available in the FreeSurfer software [77, 3]. We first
obtained openly available diffusion MRI data from the MGH-USC Human Connectome Project to create an average
template connectome [78]. Additionally, we obtained individual structural connectivity networks from 36 subjects’
diffusion MRI data. Specifically, Bedpostx was used to determine the orientation of brain fibers in conjunction with
FLIRT, as implemented in the FSL software [79]. Tractography was performed using probtrackx2 to determine the
elements of the adjacency matrix. We initiated 4000 streamlines from each seed voxel corresponding to a cortical or
subcortical gray matter structure and tracked how many of these streamlines reached a target gray matter structure. The
weighted connection between the two structures ci,j was defined as the number of streamlines initiated by voxels in
region i that reach any voxel within region j, normalized by the sum of the source and target region volumes. This
normalization prevents large brain regions from having extremely high connectivity due to having initiated or received
many streamline seeds. Afterwards, connection strengths are averaged between both directions (ci,j and cj,i) to form
undirected edges. Additionally, to determine the geographic location of an edge, the top 95% of non-zero voxels by
streamline count were computed for both edge directions, the consensus edge was defined as the union between both
post-threshold sets.

6.2 Canonical Functional Networks

We chose the 7 CFN parcellations mapped by Yeo et al. [31] as the functional spatial patterns most frequently visited by
the human brain. The brain parcellations were created from fMRI recordings of 1000 young, healthy English speaking
adults at rest with eyes open. A clustering algorithm was used to parcellate and identify consistently coupled voxels
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within the brain volume. The results revealed a coarse parcellation of seven networks: ΨΨΨCFN = {limbic, default, visual,
frontoparietal, somatomotor, ventral attention, dorsal attention}.

The CFN parcellation was co-registered to brain regions of interest in the gyral based Desikan-Killany atlas [3] to match
the dimensionality of our complex Laplacian structural eigenmodes. Then spatial activation maps of each canonical
network was produced by normalizing the number of voxels per brain region belonging to a specific CFN by the total
number of voxels in the brain region of interest (Fig 1). Both the functional networks and the Desikan-Killiany atlas are
openly available for download from Freesurfer [80] (http://surfer.nmr.mgh.harvard.edu/).

6.3 Global Parameter Optimization for Individual Structural Eigenmodes

To ensure that we obtained a globally optimal set of parameters α, k that provided a complex Laplacian eigenmode uuun
which is the most similar to the spatial pattern of each of the seven ΨΨΨCFN , we performed an optimization of the cost
function: f(α, k, n) = 1− corr(ΨΨΨCFN ,uuun(α, k)) to determine the optimal eigenmode, coupling, and wavenumber
for each canonical functional network. We used the "basin-hopping" global optimization technique on this cost function,
a robust technique for non-convex cost functions [81]. This algorithm is able to escape from local minima in the
parameter space by accepting and "hopping" to new parameters even if they increase the cost function. The algorithm
will accept iterations that decrease the cost function evaluation with a probability of 1, but only accept iterations that do
not decrease cost function with a probability of exp(∆(f)/T ), where ∆(f) is the change in the cost function across
successive iterations, and T is a constantly decreasing "temperature" term. Larger T indicates that the algorithm is
more willing to accept jumps in cost function evaluation. We initiated the optimization procedure from ten different
initial parameter values and selected the best result out of all initialization runs.

6.4 Similarity Analysis Between Canonical Functional Networks and Cumulative Linear Combination of
Structural Eigenmodes

Here, we examine whether structural eigenmodes can form a linear basis for activation patterns for canonical functional
networks and examine if a cumulative combination of structural eigenmodes improves the spatial similarity with CFN’s
when compared to individual structural eigenmodes. For each CFN, we first ordered the eigenmodes based on their
individual similarity after global parameter optimization using procedures described in the previous section. For each
CFN, we then computed similarity of the optimal linear weighting of sorted individual structural eigenmodes ul with
ΨCFN by cumulatively adding structural eigenmodes ordered by their similarity. We minimized the L2 − norm of∥∥∥ΨCFN −

∑N
l=1 ul(α, k)wl

∥∥∥, to obtain the optimal weights wl and a quantification of spatial patterns obtained by the
best cumulative set of eigenmodes.

Spatial similarity of cumulative eigenmodes with CFNs were then computed using both Pearson’s (Figure 6) and
Spearman’s correlations (Figure S2). While Spearman’s correlation was appropriate for non-continuous correlative
comparisons, its non-linearity due to sorting of values was evident in volatile changes of spatial similarity, and Pearson’s
correlation provided more stable results.

We repeated the above analysis for both the conventional real-valued Laplacian without frequency and transmission
speed tuning, as well as complex Laplacians obtained from randomized connectivity matrices. For random connectivity
matrices, we constructed 1000 realizations of random connectivity and distance matrices to allow us to compare and
quantify the performance of the brain’s structural eigenmodes against eigenmodes of randomized graphs. The random
matrices were constructed with the same sparsity as the HCP template connectome, and the elements of the random
matrices were assigned by randomly sampling from a distribution that’s representative of the mean and variance of the
HCP template connectome and distance matrices.

7 Code & Data Availability

Intermediate light-weight data and code that support the findings of this study are available from the GitHub repository
at https://github.com/axiezai/complex_laplacian. The code used to produce basic figures can be run as interactive
Jupyter notebooks after installing the computing environment from https://zenodo.org/record/3532497 [82], instructions
for downloading and setting up the computing requirements are documented in the README file.
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8 Supplementary Material

Figure S1: Parameter dependency of structural complex Laplace eigenmodes. Heat-maps displaying best achievable
spatial correlation values (Spearman’s) by a single eigenmode across all parameter values for each canonical functional
network. Shifts in coupling strength (top) does not cause a change in peak spatial correlation. The bottom row shows
the transmission speed and oscillating frequency of signals in the network dictates the cortical activation patterns in the
brain, shifts in wave number parameters while holding global coupling constant changes the best achievable spatial
similarity to each canonical network.
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Table S1: P -values table from random connectome comparisons of leading eigenmodes. Z-score distributions of
spatial correlation (Pearson’s) were created from 1000 sets of complex Laplace eigenmodes of C∗random(Drandom) and
C∗HCP (Drandom) random connectomes. For all canonical networks’ similarity comparisons, a 95% confidence interval
of the Z-scores distributions were obtained and used to compute the P -values shown in the tables.

Figure S2: Spatial pattern similarity of HCP template connnectome complex Laplacian structural eigenmodes to
canonical functional networks quantified with Spearman’s correlation. The same analysis performed in Figure 2 but
Pearson’s correlation was replaced with Spearman’s correlation for discrete samples for the bottom row, and the top
row shows linear least square residuals. Despite the more inconsistent increasing trend in spatial pattern similarity due
to ranking of discrete samples, the complex Laplacian eigenmodes are able to outperform the real-valued Laplacian
eigenmodes (blue), complex eigenmodes from random structural connectome with random distance matrix (green), as
well as complex eigenmodes from HCP template connectome with random distance matrix.
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Table S2: P -values table from random connectome comparisons of leading eigenmodes. This table is produced the
same way as Table S1, but the Z-score distributions were computed from Spearman’s correlation
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